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Abstract: This paper investigates the problem of stabilization of time delay linear singular
systems subject to actuator saturation. A polytopic approach is used to describe the saturation
behavior. By using an augmented Lyaponuv-Krasovskii functional and adopting the delay
partitioning technique, less conservative sufficient conditions are established to ensure the closed
loop system to be locally admissible based on a state feedback controller. In this paper, all the
conditions are transformed into minimization problem involving LMI conditions by adopting the
idea of the cone complementarity algorithm. A numerical example illustrates the effectiveness
of the design.

1. INTRODUCTION

The time delay singular representation, which is a mixture
of algebraic and differential equations with time delay,
often appear in various engineering systems, including
chemical engineering systems, lossless transmission lines,
etc Niculescu [2000]. Consequently, various problem of
analysis and synthesis of time delay linear singular systems
have been gained much attention in the past years: stabil-
ity analysis Feng [2011], H∞ control Wu [2009], robust
control Chaibi [2012], observer-based control Su [2011].
On the other hand, in practical case, all actuators cannot
deliver unlimited energy to physical plants. Thus, the im-
plementation of control laws without taking into account
the actuator saturation effect may have adverse effects on
the performance and stability of closed-loop system. Thus,
the stability analysis and controller design for systems with
actuator saturation have drawn much research attention in
this past decade. In Hu [2002], the problem of control has
been discussed for linear systems with actuator saturation
and persistent disturbances. Lv and Lin have presented in
Lv [2008] an analysis of the L2 gain and L∞ performance
for singular linear systems under actuator saturation. The
objective of this paper is to design a control law for sta-
bilization of time delay linear singular systems subject to
actuator saturation. The main contribution is reduction of
conservatism by adopting the delay partitioned technique
Feng [2011] and using an augmented Lyapunov-Krasovskii
functional with triple integral term.
The reminder of this paper is organized as follows. In
section 2, we give a description of time delay linear singu-
lar systems in presence of actuator saturation. In section
3, new delay dependent sufficient conditions are derived
by using an augmented Lyapunov-Krasovskii functional.
Then, these conditions are transformed into a minimiza-
tion problem involving LMI conditions. In section 4, an
illustrative example is given to demonstrate the effective-

ness of the proposed result. Some conclusions are drawn
in section 5.
Notations. Throughout this paper, X ∈ Rn denotes
the n−dimensional Euclidean space, while X ∈ Rn×m

refers to the set of all n × m real matrices. Notation
X > 0 (respectively, X ≥ 0) means that matrix X is real
symmetric positive definite (respectively, positive semi-
definite). If not explicitly stated, all matrices are assumed
to have compatible dimensions for algebraic operations.
Symbol (∗) stands for matrix block induced by symmetry,
and sym(X) stands for X + XT . ϱ(M) denotes spectral
radius the matrix M . Cn,τ̄ denotes the Banach space
of continuous functions mapping [−τ, 0] to Rn. λmax(P )
stand for the maximal eigenvalues of matrix P . ∥.∥ refers
to the Euclidean vector norm or spectral matrix norm and
∥ϕ∥c = sup−τ≤t≤0∥ϕ(t)∥ stands for the norm of a function
ϕ(t) ∈ Cn,τ . ρ(M) denotes the spectral radius of the matrix
M .

2. PROBLEM FORMULATION

We consider the following time delay linear system

Eẋ(t) =Ax(t) +Aτx(t− τ) +Bisat(u(t), ū) (1)

x(t) = ϕ(t), ∀t ∈ [−τ , 0],

where x(t) ∈ ℜnx is the state vector; u(t) ∈ ℜnu is the
control input; τ represents the delay satisfying 0 < τ ≤ τ ;
ϕ(t) ∈ Cn,τ̄ is a compatible vector valued initial function.
sat: Rnu → Rnu is a vector valued standard function
defined as:
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sat(u(t), ū) = [ sat(u1(t), ū1) sat(u2(t), ū2) (2)

· · · sat(unu(t), , ūnu) ]
T

sat(ul(t), ūl) =

{
ūl if ul(t) > ūl

ul(t) if − ūl ≤ ul(t) ≤ ūl

−ūl if ul(t) < −ūl

(3)

where ū is the saturation level, ul(t) is the lth input of
u(t) and ūl is the lth input of ū, l = 1, · · · , nu.
The matrix E ∈ Rnx×nx may be singular and we assume
that rank(E) = nx1 ≤ nx. A, Aτ and B are known real
constant matrices with appropriate dimensions.
We consider the following state-feedback control law:

u(t) = Kx(t) (4)

In order to obtain the main results in this paper, the
following definitions and lemmas are needed:

Definition 1. Define the following subsets of Rnx .

ε(P, ϱ) = {x ∈ Rnx ;xTPx ≤ ϱ}, (5)

where P a positive definite matrix and ϱ is a positive
number. ε(P, ϱ) is an ellipsoid set.

L(H, ū) = {x ∈ Rnx ; |Hlx| ≤ ūl, l = 1, . . . , nu}, (6)

whereHl is the lth row of the matrixH ∈ Rnu×nx . L(H, ū)
is a polyhedral set.

Definition 2. Dai [1989] Time delay descriptor system{
Eẋ(t) = Ax(t) +Aτx(t− τ)

x(t) = ϕ(t), ∀t ∈ [−τ̄ , 0].
(7)

is said to be

(1) regular if det
(
sE −A

)
̸= 0.

(2) impulse free if deg
(
det

(
sE −A

))
= rank(E).

(3) asymptotically stable if for any ε > 0 there exists
a scalar δ(ε) > 0 such that for any compatible
initial condition, ϕ(t), with sup

−τ<t≤0
∥ϕ(t)∥ < δ(ε), the

solution x(t) of (7) satisfies ∥x(t)∥ < ε for t ≥ 0 and
lim
t→0

x(t) = 0.

(4) admissible if it is regular, impulse-free and asymptot-
ically stable.

Lemma 1. Hu [2002] Let K,H ∈ Rnu×nx be given matrix,
for x ∈ Rnx , if x ∈ L(H,u) then

sat(Kx, ū) = co{MsK +M−
s H, s ∈ [1, η]} ; η = 2nu (8)

where co denotes the convex hull.

Consequently, there exist δ1 ≥ 0, . . . , δη ≥ 0 with

η∑
s=1

δs =

1 such that,

sat(Kx, ū) =

η∑
s=1

δs[MsK +M−
s H]x (9)

Here, Ms is an nu by nu diagonal matrix with elements
either 1 or 0 and M−

s = Inu −Ms. There are 2nu possible
matrices of this type. One can also consult the work of
Benzaouia [2007] for more details and other extensions to
linear systems with both constraints on the control and
the increment or rate of the control.

Lemma 2. Sun [2009] For any constant matrix M > 0,
any scalars τm and τM with 0 ≤ τm < τM , and a vector
function x(t) : [−τM , −τm] → Rn such that the integrals
concerned are well defined, then the following inequalities
holds

1) −τr

∫ t−τm

t−τM

xT (s)Mx(s)ds ≤

−
∫ t−τm

t−τM

xT (s)dsM

∫ t−τm

t−τM

x(s)ds

2) −τs

∫ −τm

−τM

∫ t

t+θ

xT (s)Mx(s)dsdθ ≤

−
∫ −τm

−τM

∫ t

t+θ

xT (s)dsdθM

∫ −τm

−τM

∫ t

t+θ

x(s)dsdθ

with τr = τM − τm and τs =
1

2
(τ2M − τ2m).

Lemma 3. Wang [1992] Given matrices X,Y with com-
patible dimensions. Then, the following inequality holds
for any matrix Q

XY T + Y XT ≤ XQXT + Y Q−1Y T

3. MAIN RESULTS

Let H be given matrices. By applying lemma 1, the
saturated feedback control (4) can be written as:

sat(Kx(t), ū) =

η∑
s=1

δs[MsK +M−
s H]x(t) ; (10)

δs ≥ 0,

η∑
s=1

δs = 1 (11)

Combining (1), (4) and (10), the closed-loop system can
be expressed as follows:

Eẋ(t) =

η∑
s=1

δs[Asx(t) +Aτx(t− τ)] (12)

with x(t) = ϕ(t) for t ∈ [−τ̄ , 0] and As = A + B(MsK +
M−

s H), s ∈ [1, η].

Theorem 1. Consider the time delay singular system de-
scribed in (1). Given an integer m ≥ 1, and positive
scalars τ and ϱ, if there exist matrices S, Gl, l = 1, 2, 3,

P =

[
P11 P12

∗ P22

]
> 0, Z =

[
Z11 Z12

∗ Z22

]
> 0, W > 0,

Q = [Qkl]m×m > 0, H such that the following conditions
hold: Λ

11
s Λ12

s Λ13
s Λ14

∗ Λ22 Λ23 Λ24

∗ ∗ Λ33 P12

∗ ∗ ∗ Λ44

 < 0; s = 1, . . . , η (13)

Qmm < Q11 (14)

ε(ETP11E, ϱ) ⊂ L(H, ū) (15)
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in which

Λ11
s = sym

(
ETP12 −G1As

)
− ETZ22E +Q11

+
τ2

m2

(
Z11 − ETWE

)
Λ12
s =

(
−ETP12 + ETZ22E

)
I1 −

(
G1Aτ +AT

s G
T
2

)
I2 +Q12I3

Λ13
s = G1 −AT

s G
T
3 + ETP11 + SRT +

τ2

m2
Z12

Λ14 = P22 − ETZT
12 +

τ

m
ETWE

Λ22 = −IT1 (ETZ22E)I1 − IT2 sym(G2Aτ )I2 + IT3 Q22I3 −Q
Λ23 = IT2

(
G2 −AT

τ G
T
3

)
Λ24 = IT1

(
−P22 + ETZT

12

)
Λ33 = sym(G3) +

τ2

m2
Z22 +

τ4

4m4
W

Λ44 = −Z11 − ETWE

Q12 = [Q12 · · · Q1m] , Q22 =

Q22 · · · Q2m

∗
. . .

...
∗ ∗ Qmm


I1 =

[
Inx 0nx,(m−1)nx

]
, I2 =

[
0nx,(m−1)nx

Inx

]
I3 =

[
I(m−1)nx

0(m−1)nx,nx

]
.

R ∈ Rnx×(nx−nx1 ) is any matrix with full column and
satisfies ETR = 0.

Then, the system is regular, impulse free and asymptoti-
cally stable within set ε(ETP11E, ϱ) for all initial condi-
tions satisfying

(λmax(E
TP11E) +

τ2

m2
λmax(P22) +

τ2

m2
λmax(P

T
12EETP12)

+ 1 + τλmax(Q) +
1

2

τ3

m3
λmax(Z))∥ϕ∥2c

+ (
1

2

τ3

m3
λmax(Z)

+
1

12

τ5

m5
λmax(E

TWE))∥ϕ̇∥2c ≤ ϱ

(16)

Proof : First, we prove that the closed-loop system is
regular and impulse free within the set ε(ETP11E, ϱ).
By using similar arguments an in the proof of theorem 3.1
in Kchaou [2013], we can demonstrate that:

The pair (E,

η∑
s=1

δsÂs) is regular and impulse free.

ρ
(( η∑

s=1

δsÂ
22
s

)−1(
Â22

τ

))
< 1 (17)

Let the singular type Lyapunov Krasovskii functional be:

V(x(t)) = ηT1 (t)Pη1(t) +

∫ t

t− τ
m

ΓT (s)QΓ(s)ds

+
τ

m

∫ 0

− τ
m

∫ t

t+θ

ηT2 (s)Zη2(s)dsdθ

+
τ2

2m2

∫ 0

− τ
m

∫ 0

−θ

∫ t

t+α

ẋT (s)ETWEẋ(s)dsdαdθ

(18)

where

η1(t) =

[
xT (t)ET

∫ t

t− τ
m

xT (s)ds

]T

η2(t) =
[
xT (t) (Eẋ(t))T

]T
Γ(t) =

[
xT (t) xT (t− τ

m
) xT (t− 2

τ

m
)

· · · xT (t− (m− 1)
τ

m
)
]T

Defining the extended state vector

ξ(t) =

[
xT (t) ΓT (t− τ

m
) (Eẋ(t))T

∫ t

t− τ
m

xT (s)ds

]T

As it is shown in Kchaou [2013], the derivative along the
trajectories of (1) satisfies that

V̇(x(t)) ≤
η∑

s=1

δsξ
T (t)Λsξ(t) (19)

If condition (13) is satisfied, the above inequality (19) is

negative definite and we get V̇(x(t)) ≤ 0.

From V̇(x(t)) ≤ 0 it follows that V(x(t)) ≤ V(ϕ(t)) and
therefore

x(t)TETP11Ex(t) ≤ V(x(t)) ≤ V(ϕ(t)) (20)

or

V(ϕ(t)) = ηT1 (ϕ(t))Pη1(ϕ(t)) +

∫ t

t− τ
m

ΓT (ϕ(s))QΓ(ϕ(s))ds

+
τ

m

∫ 0

− τ
m

∫ t

t+θ

ηT2 (ϕ(s))Zη2(ϕ(s))dsdθ

+
τ2

2m2

∫ 0

− τ
m

∫ 0

−θ

∫ t

t+α

ϕ̇T (s)ETWEϕ̇(s)dsdαdθ

(21)

Using lemmas 2-3, one can obtain

ηT1 (ϕ(t))Pη1(ϕ(t)) = ϕ(t)TETP11Eϕ(t)

+

∫ t

t− τ
m

ϕ(s)T dsP22

∫ t

t− τ
m

ϕ(s)ds

+ ϕ(t)TETP12

∫ t

t− τ
m

ϕ(s)ds+

∫ t

t− τ
m

ϕ(s)T dsPT
12Eϕ(t)

≤ (λmax(E
TP11E)

+
τ2

m2
λmax(P22) +

τ2

m2
λmax(P

T
12EETP12) + 1)∥ϕ∥2c

(22)
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∫ t

t− τ
m

ΓT (ϕ(s))QΓ(ϕ(s))ds ≤ τ

m
λmax(Q)∥Γ(ϕ)∥2c

τ

m

∫ 0

− τ
m

∫ t

t+θ

ηT2 (ϕ)Zη2(ϕ)dsdθ ≤ 1

2

τ3

m3
λmax(Z)∥η2∥2c

τ2

2m2

∫ 0

− τ
m

∫ 0

−θ

∫ t

t+α

ϕ̇T (s)ETWEϕ̇(s)dsdαdθ ≤

1

12

τ5

m5
λmax(E

TWE)∥ϕ̇∥2c
(23)

in which

∥η2(ϕ)∥2c = ∥ϕ∥2c + λmax(E
TE)∥ϕ̇∥2c = ∥ϕ∥2c + ∥ϕ̇∥2c

∥Γ(ϕ)∥2c = m∥ϕ∥2c
(24)

Hence, for all initial conditions satisfying (16), it follows
that x(t)TETP11Ex(t) ≤ V (x(t)) ≤ V (ϕ(t)) ≤ ϱ.

Remark 1. The delay partitioned technique is adopted in
this study, where the time delay is divided into m equal
segments. It is shown in Feng [2011] that the conditions
based on this approach will reduce their conservatism if the
number of segments increases. Moreover, a new augmented
Lyapunov-Krasovskii functional with triple integral term
has been introduced to contribute to conservatism reduc-
tion.

Theorem 2. Consider the time delay singular system de-
scribed in (1). Given an integer m ≥ 1, and a posi-
tive scalars τ and ϱ, if there exist matrices S, G, P =[
P11 P12

∗ P22

]
> 0, R11 > 0, Z =

[
Z11 Z12

∗ Z22

]
> 0, W > 0,

Qkl (1 ≤ k ≤ l ≤ m), WF , WH such that (14) and the
following conditions hold:

Ξ11
s Ξ12 Ξ13

s Λ14

∗ Ξ22 Ξ23 Λ24

∗ ∗ Ξ33 P12

∗ ∗ ∗ Λ44

 < 0; s = 1, . . . , η (25)

1

ϱ
ū2
l WH

l IT5
∗ (I4GIT4 )(I4P11IT4 )(I4GIT4 )T

 ≥ 0;

l = 1, . . . , nu (26)

in which

Ξ11
s = sym

(
ETP12 −GAT − (WF )TMsB

T − (WH)TM−
s BT

)
− ETZ22E +Q11 +

τ2

m2

(
Z11 − ETWE

)
Ξ12
s =

(
−ETP12 + ETZ22E

)
I1

−
(
GAT

τ +AGT +BMsW
F +BM−

s WH
)
I2 +Q12I3

Ξ13
s = G−AGT −BMsW

F −BM−
s WH + ETP11

+ SRT +
τ2

m2
Z12

Ξ22 = −IT1 (ETZ22E)I1 − IT2 sym(GAτ )I2 + IT3 Q22I3 −Q
Ξ23 = IT2

(
G−AτG

T
)

Ξ33 = sym(G) +
τ2

m2
Z22 +

τ4

4m4
W

IT5 = [Inx1 0nx1,nx2 ]

R ∈ Rn×(n−r) is any matrix with full column and satisfies
ETR = 0.

Then, the system is regular, impulse free and asymptoti-
cally stable within set ε(ETP11E, ϱ) for all initial condi-
tions satisfying (16). In this case, local feedback gains Kj

are given by

K = WFG−T (27)

Proof :

Note that det(sE−
η∑

s=1

δsAs) = det(sET −
η∑

s=1

δsA
T
s ), then

the pair (E,

η∑
s=1

δsAs) is regular and impulse free if and

only if (ET ,

η∑
s=1

δsA
T
s ) is regular and impulse free.

Moreover, since

det
(
sE −

η∑
s=1

δsAs − e−τsAτ

)
= 0

and det
(
sET −

η∑
s=1

δsA
T
s − e−τsAT

τ

)
= 0 have the same

solution.
Hence, if we consider regularity, free of impulse and
stability conditions, system (12) is equivalent to system

Eẋ(t) =

η∑
s=1

δs[A
T
s x(t) +AT

τ x(t− τ)] (28)

Thus, we can replace As, Aτ with AT
s , AT

τ in (13).
Furthermore, if we fix G = G1 = G2 = G3, W

F = KGT

and WH = HGT , we obtain (25).
Note that if (25) is satisfied, then

Ξ33 = sym(G) +
τ2

m2
Z22 +

τ4

4m4
W < 0

which implies that G is non-singular.
Let H = [H1 H2]; H1 ∈ Rnu×nx1 , H2 ∈ Rnu×nx2 .

The set inclusion condition ε(ETP11E, ϱ) ⊂ L(H, ū) im-
plies that H2 = 0. Consequently, Constraint (15) is equiv-
alent to

ε(I4P11IT4 , ϱ) ⊂ L(H1, ū) (29)

where I4 = [Inx1
0nx1,nx2 ].

Denote H1l the lth row of H1.
On the one hand, ∀x(t) ∈ ε(I4P11IT4 , ϱ), the following
inequality

2ūl ≥ ūl(1 +
1

ρ
x(t)T (I4P11IT4 )x(t)) ≥ 2|H1lx(t)| (30)

implies that

|H1lx(t)| ≤ ūl (31)

On the other hand, inequality (30) can be rewritten as
follows:
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[
1 ±x(t)T

] [ūl H1l

∗ 1

ρ
ūl(I4P11IT4 )

][
1

±x(t)

]
≥ 0 (32)

which implies that

[
ūl H1l

∗ 1

ρ
ūl(I4P11IT4 )

]
≥ 0 (33)

Pre- and post-multiplying both sides of (33) by
√

1

ρ
ūl 0

0

√
ρ
1

ūl
I4GIT4

 and its transpose, we obtain (26).

Hence, inequality (26) guarantees (15).
This completes the proof.

Note that (25) and (14) are strict LMI with respect to

variables S, G, P =

[
P11 P12

∗ P22

]
> 0, R11 > 0, Z =[

Z11 Z12

∗ Z22

]
> 0, W > 0, Qkl (1 ≤ k ≤ l ≤ m), WF and

WH while, (26) are not. We need to use the standard cone
complementarity numerical approach El Ghaoui [1997] to
solve the matrix inequalities in theorem 2 .
It is clear that if

1

ϱ
WH

l I5

∗
[
(I4GIT4 )T + (I4GIT4 )

−(I4P11IT4 )−1

]
 ≥ 0; l = 1, . . . , nu (34)

Then the inequalities (26) of theorem 2 are satisfied.

By introducing new variable X11, the original conditions
(26) can be represented as

1

ϱ
WH

l I5
∗ (I4GIT4 )T + (I4GIT4 )−X11

 ≥ 0; l = 1, . . . , nu (35)

X11 = (I4P11IT4 )−1 (36)

Now, using a cone complementarity problem, we suggest
the following minimization problem involving LMI condi-
tions instead of the original non-convex feasibility problem
of Theorem 2.

min
S1

Tr((I4P11IT4 )X11) subject to (14) -(25)-(35), and

[
X11 I
I I4P11IT4

]
≥ 0 (37)

where

S1 = {S,G, P =

[
P11 P12

∗ P22

]
> 0, R11 > 0,

Z =

[
Z11 Z12

∗ Z22

]
> 0,W > 0, Qkl,W

F ,WH}

4. NUMERICAL EXAMPLE

Consider the following time delay singular linear system
with actuator saturation:

Eẋ(t) = Ax(t) +Aτx(t− τ(t)) +Bsat(u(t), ū) (38)

where

E =

[
1 0 0
0 1 0
0 0 0

]
, A =

[
0 1 0
0 0 1
−1 −0.2 −0.8

]

Aτ =

[
0 0 0.8
0 0 0
0 0 0

]
, B =

[
1
0
0

]
For the simulation purpose, we set ϱ = 65, τ = 0.25,
m = 3 and ū = 1. Using LMI TOOLBOX of MATLAB
Gahinet [1995], yields the following feasible solution of
the optimization problem (37).

H = [−0.1656 −0.0587 0 ]

K = [−0.7737 −0.0732 0.1091 ]

The inclusion of the ellipsoid inside the polyhedral set
(ε(ETP11E, ϱ) ⊂ L(H, ū) are shown in Fig. 1.

−5 0 5
−40

−30

−20

−10

0

10

20

30

40

x
1

x 2

Fig. 1. The inclusion of the ellipsoid inside the polyhedral
set (ε(ETP11E, ϱ) ⊂ L(H, ū))

From (16), the closed loop system is regular, impulse free
and stable for all initial conditions satisfying

28.8524∥ϕ∥2c + 0.0542∥ϕ̇∥2c ≤ ϱ (39)

Now, we consider initial conditions ϕ(t) = [0.7,−1.5,−0.6]
∀t ∈ [−0.25, 0]. Fig. 2 shows Response of the state x(t)
under saturated control u(t).

5. CONCLUSION

In this paper, we have studied the stabilization problem
for time-delay singular linear systems with actuator sat-
uration. An improved version of delay-dependent method
has been developed for guaranteeing this class of systems
to be admissible under actuator saturation. This method is
based on augmented Lyapunov Krasovskii functional and
by employing the delay partitioning technique. The delay-
dependent result is in terms of matrix inequalities and an
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Fig. 2. Response of the state x(t) under saturated control
u(t)

effective minimization problem involving LMI conditions,
adopting the idea of a so-called cone complementarity
problem, is developed to solve these matrix inequalities.
A numerical example has been provided to illustrate the
effectiveness of the proposed design approach.
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