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Abstract: In this paper a novel approach for H., controller design for linear parameterizable
controllers is presented. The approach uses the generalized Nyquist stability criterion to find the
parameters of linear parameterized controllers for Multi-Input Multi-Output (MIMO) systems.
The main advantage of the proposed approach is that the generalized plant does not have to
be diagonally dominant and that there is no need for a desired open-loop response function. By
constraining the Nyquist curve from certain parts in the frequency domain, controller parameters
that guarantee stability and performance of the closed-loop system can be found. The method is
successfully applied to two cases involving a double-mass-spring-damper system. In the first case
only controller parameters are optimized and in the second case both structural and controller

parameters are optimized.

1. INTRODUCTION

In recent years several developments have been made in
fixed-structure robust control synthesis. The main rea-
son for these developments is that classical optimal and
robust control design techniques lead to high order con-
trollers (e.g., see Zhou et al. [1996]). Due to the high
order of the controller, which makes tuning very difficult,
this type of controllers is typically not implemented in
industrial applications. Furthermore, often, the structure
of the controller is already known beforehand (e.g., PID
controllers). For that reason, low-order and fixed-structure
robust control techniques were designed and developed
in e.g., Hol [2006]. The main problem that arises when
constraining the structure and order of the controller is
that the optimization problem is no longer convex and
sometimes considered as NP-hard, see Nemirovskii [1993].

Several approaches for fixed-structure robust controller de-
sign exist. In Safonov et al. [1994], bilinear matrix inequal-
ity techniques are used for robust controller synthesis and
in Apkarian and Noll [2006] nonsmooth cost functions are
minimized for H., controller synthesis. The latter method
can both be used with frequency domain representations
as well as with state-space domain parameterizations of
the unknown controller. Another approach is presented
by Galdos et al. [2010], Karimi and Galdos [2010], where
robust controllers are designed using the (generalized)
Nyquist stability criterion. The approach taken in the lat-
ter references is to represent the Ho, robust performance
condition as a set of linear or convex constraints with
respect to the controller parameters. Furthermore, in Hast
et al. [2013] a convex-concave optimization procedure for
PID controller design is outlined, evolutionary algorithms
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are used in Popov and Werner [2006] and randomized
algorithms are used in Maruta et al. [2009] to find fixed-
structure robust controllers that satisfy H,.,-norm specifi-
cations.

In this paper, a novel approach for H., controller design
is presented, which follows a paradigm similar to Galdos
et al. [2010], Karimi and Galdos [2010]. The main idea is to
find the parameters of linearly parameterized controllers
such that the Nyquist diagram of the determinant of a
certain MIMO frequency response function does not encir-
cle the origin. By using the generalized Nyquist stability
criterion and by using robust control theory (e.g., Skoges-
tad and Postlethwaite [2006]), conditions can be formu-
lated for both stability and performance. The controller is
parameterized such that a diagonal structure is obtained
with only the controller parameters on the diagonal. To
prevent the Nyquist plot from encircling the critical point,
(multilinear) constraints are formulated in the frequency
domain.

The outlined approach also allows for structural parameter
optimization. That is, by extracting structural parameters
from the plant, the diagonal controller structure can be ex-
tended with these parameters. Extracting the parameters
can be done by using LFT techniques (see e.g., [Redheffer,
1960, Zhou and Doyle, 1998]). The approach to optimize
the controller parameters extended with the structural
parameters remains unchanged, such that both structural
and controller parameters can be simultaneously opti-
mized. The property to design controlled systems more
efficiently in an integrated manner (see e.g., Camino et al.
[2003]) is very appealing.

The approach presented in this paper differs from Galdos
et al. [2010], Karimi and Galdos [2010] in the sense that
it does not requires a diagonally dominant plant or a
decoupling procedure of the plant in the controller design
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Fig. 1. Generalized plant with linear parameterized con-
troller.

process. Moreover, in Galdos et al. [2010], Karimi and
Galdos [2010] a desired open-loop transfer function is
required in order to find the Ho, controller, whereas in
our approach this is not required.

The paper is divided into several sections. In Section 2,
the problem is formulated and conditions for stability
and performance are formulated. Then, in Section 3, the
constraints are formulated and the optimization problem
is outlined. The method is demonstrated in Section 4 on a
double-mass-spring-damper system in which two cases are
considered. In the first case, the objective is to find the
controller parameters that satisfy a performance specifica-
tion and in the second case both structural and controller
parameters are sought that satisfy the performance speci-
fication. Finally, the paper is concluded in Section 5.

2. PROBLEM FORMULATION

In this section the approach to develop an efficient fre-
quency domain based controller synthesis method is for-
mulated. The formulation is started by defining the gen-
eralized plant and linear controller parameterization, after
which conditions for nominal stability and performance are
stipulated.

We consider the following partitioning of the generalized

plant
z _ Pll(S) Plg(s) w (1)
y le(s) P22(8) ul|’
~—————
P(s)
with z € R", w € R, y € R®, and v € R®. The

transfer functions Pj1(s), Pi2(s), Pa1(s) and Psa(s) have
corresponding dimensions and are all assumed to be stable.
The controller parameters are real scalars, i.e., §; € R.
With these definitions the controller is defined as

01 0

u= Y. (2)

The plant and controller structure as defined in (1) and (2)

for a PID controller can be obtained as follows. Let a PID
controller be given by

Ki KdS

K =K,+— . 3

pp(s) = Kp + — s i1 (3)

Then, a diagonal structure with the controller parameters

as in Fig. 2 is obtained in a straightforward manner,
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Fig. 2. Linear parameterization of a PID controller.

assuming 7T is given. Notice that such a structure can
also be obtained from, among others, notch filters, low-
pass and high-pass filters and lead-lag compensators (see
e.g., van Solingen and van Wingerden [2014]).

The goal is now to find an H., controller that achieves
performance, i.e., when ||Ty.||cc < 1, where T, is given
by

Tw:(s) = Fi(P,K) = P11 + P12 K(I — Pyo K) ™' Py.

For a freely-parameterized controller K, this problem is
convex (Zhou et al. [1996]), but leads to a solution having
the same order as the generalized plant, which is typically
not desired in practical applications. On the other hand,
for a fixed-structure controller, the problem is no longer
convex, and advanced and sophisticated optimization rou-
tines are required to find the optimal controller (see
e.g., Hol [2006], Apkarian and Noll [2006]).

In order to find an H., controller, consider the follow-
ing approach, assuming a stable! generalized plant P(s)
and given the frequency response data of P(s) denoted
by P(jw). By making use of the generalized Nyquist sta-
bility criterion of MacFarlane and Postlethwaite [1977] we
formulate two conditions.

Stability The closed-loop system in Fig. 1 is asymptoti-
cally stable if for a given stable generalized plant P(jw),
the Nyquist plot of

01 0

det | I —

Py(jw) |, Vw, (4)

0 Om,

does not encircle the origin;

Performance The closed-loop system in Fig. 3 has per-
formance if ||Ty:||co < 1. This is achieved if for a given
stable generalized plant P(jw), the Nyquist plot of

Ap(jw)| 0
01 0

det | I — P(jw) |, Vw, Ap(jw),

0 .
0 Om

(5)
does not encircle the origin for Ap € C"»*"= and
[Ap(s)leo < 1.

1 In this paper only stable generalized plants are considered, however
the method can be extended to include unstable generalized plants.
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Fig. 3. Configuration for performance

Note that the system in Fig. 3 is obtained by including
in Fig. 1 a perturbation block Ap(jw) in feedback with
the exogenous input w and exogenous output z. The
performance condition (5) can be deduced from robust
control theory (e.g., refer to Skogestad and Postlethwaite
[2006]) and is omitted for brevity.

Now the task at hand is to find the controller parameters 6
such that the Nyquist curve satisfies the condition in (4)
for stability and the condition in (5) for performance.

3. FEASIBILITY PROBLEM

In the previous section, the conditions for closed-loop
stability and performance are given. In this section the
stability (4) and performance condition (5) are formulated
into a feasibility problem. It is shown how the constraints
of the feasibility problem are related to the controller
parameters.

3.1 Determinant expression

From the determinant conditions in (4) and (5) it can
be shown that the determinant expression has a structure
which is multilinear in the controller parameters. That is,
consider the case of (m = 2) controller parameters and the
following partitioning of Paa(s)

PV (jw) P“”(gw)]

Pos(jw) =
20 PB0 Gy PR G

where Pz(é) € C. Then, the determinant expression of (4)
can be written as

Q0. jw) = 1 = P (jw)0r — P33 (juw)b
+ (PR 0P w) = P () P () ) 010
(6)

From the above expression it can be seen that there are
no self-multiplications and is in fact bilinear in the con-
troller parameters 6. Due to the determinant, a multilinear
expression is obtained for higher number of controller
parameters.

The previous case can be extended to also include
performance. In condition (5) it is stated, that for
all |Ap(s)]leo <1, the Nyquist plot should not encircle
the origin. Hence, for the performance condition of (5),
an expression Qa (6, jw) similar to (6) can be obtained
by evaluating (5). The expression then obtained also in-
volves terms with Pi1(jw), Pi2(jw), P21(jw) and Ap(jw).
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Fig. 4. Nyquist diagram for Q(6,jw) (stability)

and Qa(0,jw) (performance). The colors indicate
which of the constraints I;(jw) and l2(jw) hold for
which part of the Nyquist plots.

Likewise, the expression for Qa (6, jw) is multilinear in the
controller parameters 6.

3.2 Constraints

To prevent the Nyquist plot from encircling the origin,
the determinant expressions Q(6, jw) and Qa(,jw) are
constrained from some parts in the Nyquist diagram. This
is schematically shown in Fig. 4, in which the Nyquist
curves Q(6, jw) and Qa (6, jw) of a loop transfer function
is shown. In the figure the loop transfers are such that
the Nyquist plot does not encircle the origin. Hence, both
the stability condition (4) and performance condition (5)
are satisfied. To obtain a loop transfer function of which
the Nyquist curve does not encircle the origin, the con-
straints 13 (jw) and la(jw) are introduced (see Fig. 4).
The constraint {4 (jw) < Qa(0, jw) is such that Qa (6, jw)
for higher frequencies is constrained from the origin. The
constraint lz2(jw) > Qa(f,jw) is introduced such that
encirclement of the origin is also avoided for lower frequen-
cies. In the remainder of this paper we will use Qa (6, jw)
to refer to the determinant of the loop transfer function
including the performance Ap(jw).

The previously mentioned constraints are lines in the
Nyquist diagram with a certain slope « and offset ¢, i.e.,

Im(jw) = aRe(jw) + ¢, (7)
where Re(-) and Im(-) denote the real and imaginary
parts, respectively. Then, if one wants to have the Nyquist
curve QA (0, jw) below this line, this can be achieved by

plugging the real and imaginary parts of the determi-
nant Qa (¢, jw) into (7) to obtain

10, jw) =Im(Qa(0, jw)) — aRe(Qa (0, jw)) —c < 0. (8)
A similar expression is found if one wants to constrain the
determinant above a line.

3.8 Feasibility problem

The determinant denoted by Qa(6,jw) is, among oth-
ers, determined by the performance Ap(jw), which is
described by the infinite set of complex numbers satis-
fying ||Ap(s)]lee < 1. To avoid having an infinite number
of constraints, the performance Ap(jw) is realized by ng
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points randomly drawn from the infinite set. Now, denote a
realization of the performance Ap(jw) by Ap(jw) and the
determinant determined by Ap(jw) by Q4 (6, jw). Then,
performance for Q5 (6, jw), subject to the constraint in (8),
can be written as a large feasibility test.

Feasibility problem

Find 6 such that (0, jw) <0 Vw,Ap(jw).  (9)

Notice that the feasibility problem (9) can be constructed
as in Fig. 4, such that a line constraint can be assigned
per frequency w.

4. RESULTS

In this section, the approach outlined in Section 2 and Sec-
tion 3 is applied to find a controller for a double-mass-
spring damper system. Two cases are considered, i.e.,

(1) Find the controller parameters for an upper bound
on the sensitivity function;

(2) Find the controller parameters and a structural pa-
rameter for an upper bound on the sensitivity func-
tion.

The two cases are outlined in Section 4.1 and Section 4.2.
4.1 Case 1: Double-mass-spring-damper system

The double-mass-spring-damper system can be modelled
by means of two masses m; and msy connected through
a spring k and a damper d, as illustrated in Fig. 5. The
system has the applied force F' as input and the measured
position o as output. A PD controller acts on the posi-
tion 29 of the second mass mqy. The transfer function from
the force input F' to the measured position x5 of mass mo
is given by
Gls) = T2 _ ; ds+k .
F mimest+ (m1 +me)ds® + (mq + ma)ks?
A first-order Padé approximation is used to include a time
delay of Ty = 0.1s. The output of the system y = xq is
connected to a PD controller given by
1 s

PDE) = Ko 5ots+1 T Kegots 41
In order to maintain a diagonal control structure with only
the controller parameters on the diagonal, the fractions
in (10) are absorbed into the plant. Then, a bound is put
on the sensitivity function by means of a second-order
performance weight as in Skogestad and Postlethwaite
[2006]

(10)

5% /M7 + 2Bpwp + wh
2+ 20, Awp + (Apwp)?’
where 8, = 0.3, M, = 2, A, = 1-1073 and wp =
0.1. The complete interconnection structure of the sys-
tem with the PD controller and performance weight is
shown in Fig. 6, where also the perturbation Ap is in-

cluded. In this example the parameter values were taken
asm; =mo =k=1and d = 0.05.

Wp(s) =

Since the complexity of this problem is relatively low (only
two controller parameters need to be found), a grid search
of the controller parameters is carried out. For a number
of combinations of K, and Kg4, the stability of the closed-
loop system is evaluated and the H,,-norm is computed.
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Fig. 5. Example case 1: double-mass-spring-damper
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Fig. 6. Configuration of the plant and controller for the
double-mass-spring damper system.

Ky

Fig. 7. Results of the grid search of K, and Ky for the
controlled double-mass-spring-damper system. The
light grey area represents controller parameter com-
binations resulting in an unstable closed-loop system,
the grey area are combinations which yield a stable
closed-loop system and the dark grey area are the
solutions with H..-norm lower than 1.

The results of this analysis are shown in Fig. 7. It can be
observed that there is not an obvious solution to obtain
an Hso-norm lower than 1, making it an interesting prob-
lem to evaluate the proposed controller design method.

The feasibility problem in (9) is then turned into an
optimization problem as follows. Since the generalized
plant is stable, the Nyquist curve should not encircle
the origin. From some trial-and-error combinations of K,
and Ky a general idea of the Nyquist curve was obtained
(similar to Fig. 4). With this knowledge, two constraints
in the Nyquist diagram are formulated, i.e.,
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Table 1. Optimization results

Description HZin Hmax Success [%)]
Nyquist optim. (ng = 10) 0.935  9.280 72
Nyquist optim. (ng = 25) 0.934 1.021 96
Nyquist optim. (ng = 50) 0.935  0.968 100
Nyquist optim. (ng = 100) 0.940  0.952 100
Nyquist optim. (ng = 250) 0.940  0.942 100

0.5
0F
3
§ —0.5
E
—1}
—1.5%
—2.5 —1.5 —0.5 0.5 1.5
Re(Q(jw))

Fig. 8. Resulting Nyquist plots of Q(f,jw) (black)
and Qa(0,jw) (light grey and dark grey) for the
double-mass-spring-damper system. The line colors
of the constraints are matched with Qa(0,jw) to
indicate where they hold.

Im(Qa(jw)) + 0.2Re(Qa (jw)) — 0.001 < 0 for w < 0.16,
—Im(Qa(jw)) — 5Re(Qa(jw)) +0.001 < 0 for w > 0.20.

The performance Ap(jw) is for each w realized by ng
points randomly sampled on the unit circle using a uniform
distribution. We consider N = 400 complex frequencies on
a logarithmic scale in the interval [0.1,10] rad/s. The op-
timization problem is solved with the MATLAB fmincon
function (for which an interior-point optimization algo-
rithm was selected). The optimization procedure is carried
out for 100 Monte Carlo simulations? with random initial
controller parameters and the parameters are bounded
by K, € [0,1] and K, € [0,0.3]. The objective function 3
of the optimization procedure is chosen as

min K + K. (11)

The results obtained using fmincon are listed in Ta-
ble 1, from which it can be seen that for increasing nq
the success rate increases (i.e., better realized Ap(jw)
yield || Twz(jw)|leo < 1). The Nyquist diagram of the plant
with controller (for ngy = 250) giving the minimum cost
(for which ||Twsllec = 0.9296, K, = 0.0479 and Ky =
0.1454) is shown in Fig. 8, where it can be seen that the
performance circles do not encircle the origin (indicated
by +).

2 In each Monte Carlo simulation the ng performance Ap’s are
redrawn on the unit circle.

3 Remark that the objective function is not necessary. We could
equally well have opted for a feasibility problem of finding K and K4
that satisfies the performance condition. Further remark that the
objective function can be chosen differently.
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Fig. 9. Example case 2: double-mass-damper with addi-
tional external force input Fj.
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Fig. 10. Configuration of the plant and controller for the
double-mass-damper system.

4.2 Case 2: Double-mass-damper system

In the second case a double-mass-damper system is con-
sidered. The spring k is removed from the system in Fig. 5
and an external force Fj is subjected to both masses
(see Fig. 9). The dynamics for the modified system G*(s)
are given by

x| ds+k mas+d —mas || F
T2 | mymasd + (my + ma)ds? d mis || Fy

Note that by taking

Fk = k*(Il — .IQ), (12)
and setting k* = k, the systems in Fig. 5 and Fig. 9 are
identical. If F}, is chosen as in (12), it can be regarded as
adding stiffness to the system. Thus, by absorbing z; — x2
into the plant, £* becomes an additional parameter which
can be optimized.

As with the previous case, a PD controller is used. In
order to avoid trivial solutions (i.e., from k* going to
infinity), the performance weight W),(s) of the previous
case is modified to

Wy (s) = Wp(s)

y §% + 205 Arwpy + (Ajwp)?
s2/(M73)? + 205wp + (wg)?

where 8, = 0.7, My = 1.9, Ay = 0.9 and wp = 1. The
modification can be regarded as putting a constraint on
the resonance frequency of the system. With the modified
performance weight W, the generalized plant is then
depicted in Fig. 10. Similar to the previous case, a grid
search of the three controller parameters is carried out in

order to visualize the solution space. The results are shown
in Fig. 11.

Now the proposed method is applied to this case to find
the controller parameters K,, K4 and k* that satisfy the
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Fig. 11. Results of the grid search of K,, K4 and k* for
the double-mass-damper system. The volume within
the light grey contour lines indicate the parameter
combinations resulting in a stable closed-loop system
and the volume within the dark grey contour lines are
combinations which yield a stable closed-loop system
with Ho-norm lower than 1.

performance condition (5). The performance Ap(jw) is
realized by ngy = 50 points randomly sampled on the unit
circle and the following constraints are applied

—Im(Qa(jw)) + 0.7Re(Qa (jw)) + 0.001 < 0 for w < 0.39,

Im(QAa (jw)) + 0.001 < 0 for 0.51 < w < 0.54.
Then, 100 Monte Carlo simulations for random ini-
tial points were performed, the parameters are bounded
by K, € [0,1], K4 € [0,0.3], k* € [0,2.5], and the objective
function is chosen as

min K + K + (k*)*.

The solution with the lowest objective function has con-
troller parameters K, = 0.0461, Kq = 0.1031, £* = 0.1145,
and || Twz|lcc = 0.9217. Due to space constraints the result-
ing Nyquist curve is not shown.

5. CONCLUSIONS

A new method to design linear parameterizable robust
controllers is proposed. The method exploits the gener-
alized Nyquist stability criterion. Both stability and per-
formance conditions are formulated, which can be fulfilled
by introducing constraints in the Nyquist diagram. Using
the constraints a multilinear feasibility problem can be
formulated, after which the controller parameters satis-
fying the conditions can be found. The method allows
the controller parameters to be extended with structural
parameters such that an integrated design procedure of
plant and controller is possible. The method is successfully
demonstrated on two examples where in the first controller
parameters are optimized and in the second both struc-
tural and controller parameters are optimized.

4 Again the objective function can be chosen differently.
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