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Abstract: Today’s supply networks have become more and more efficient but also complex and prone to 
strong disturbances that may generate blocking and starving effects. This study provides a risk analysis of 
supply networks based on a stochastic model of product flows subject to strong disturbances and 
threshold constraints. The main objective is to construct vulnerability indices from simulation of the 
multistage system, both in nominal conditions when an ARIMA model describes the system dynamics 
and in disturbed running conditions when one or several state variables are subject to saturation effects. 
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1. INTRODUCTION 

Globalization and new technologies increase the complexity 
of supply chains and as a consequence, expose them to risks. 
Owing to the fact that every component in a supply chain is 
prone to accidents, undesirable events may lead to important 
consequences or damages. The recent interest in supply chain 
risk management focuses on coordination between various 
members to protect the companies and the chain as a whole. 
C.Chopra and S.Sodhi (2004) consider that “failure anywhere 
can cause failure everywhere”. In fact, “individual risks are 
often interconnected. As a result, actions that mitigate one 
risk can end up exacerbating another”. They also show the 
interest of supply chain risk management by comparing the 
consequences of the fire at Royal Philips electronics plant, in 
the year 2000 on the Scandinavian mobile phone 
manufacturer Nokia Corp. and Telefon AB L.M Ericson. 
Under these circumstances, Nokia’s production suffered less 
than Ericson’s, which was disrupted for months. In a similar 
situation during the 1990s, the Yoplait Company increased its 
market share for fresh and ultra-fresh products in a 
spectacular way thanks to its ability to manage transportation 
crises caused by road strikes.  

The literature on supply chains distinguishes various types of 
risks and vulnerabilities and proposes different 
classifications. Demand with random and non-stationary 
evolution creates dangerous disturbances at upstream stages 
of supply chains. This phenomenon is known as the 
“bullwhip effect” (Lee et al., 1997, Towill, 2005). 
Conversely, disturbances on prices for raw material generate 
price variations from suppliers to producers and then from 
producers to customers. Amplification of disturbances in the 
downstream stages of a supply chain is known as “the reverse 
bullwhip effect” (Özelkan and Çakanyıldırım, 2009). 

This paper seeks to evaluate the vulnerability of supply 
chains both to internal and external disturbances. Supply 
chain dynamics and disturbance amplification or attenuation 

strongly depend on the ordering policy (Hennet, 2009, Choi 
2013). The ordering policy considered in this study is the 
“order up to” policy with respect to the inventory position. 
This policy has been shown to be optimal with respect to a 
model predictive approach (Hennet 2003). Then, in 
agreements with the findings of (Gilbert, 2005), we propose 
to use a time series representation of the supply chain in the 
form of an ARIMA (Auto Regressive Integrated Moving 
Average) model that propagates along the supply chain and 
makes possible to represent the bullwhip effect. The limits of 
validity of this model correspond to the hitting of positivity 
and capacity constraints as the result of strong disturbances 
on product flows. It is then possible to simulate the 
constrained system evolution and compute some vulnerability 
indices related to the frequency of constraints saturation.  

To develop this study, section II describes the concept of 
risks and tries to identify risks and vulnerabilities in supply 
chains. Then, section III presents the ARIMA time series 
representation and its behaviour in cases of strong 
disturbances.  Some vulnerability indices are then proposed 
to be computed from simulation of the constrained system 
trajectories. An illustrative example with one manufacturer 
and one retailer is described in section IV, and some 
concluding remarks are given in section V. 

II. SUPPLY CHAINS RISKS AND VULNERABILITIES  

A supply chain can be viewed as a “virtual systems subject to 
dynamic reconfigurations, through arrival or departure of 
partner enterprises.” (Hennet et al, 2008).  However, in spite 
of their resilience resulting from natural flexibility, supply 
chains are prone to risks related to political, social, natural, 
technological, organizational or economic aspects. They can 
downgrade the system performance or lead to material and 
immaterial damages. 

2.1 On the definitions of risks 
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Risk is a very complex concept due to the complexity of the 
world in which we live, and due to the fact that it is a social 
construction grounded on a cultural dimension.  Risk is 
inevitable, and even crucial, in many sectors of today’s 
society. Several researchers from a wide range of disciplines 
have looked at risk in a number of different contexts and 
proposed different definitions of risk. This study follows a 
generic framework based on norm ISO/CE73 and contained 
in official documents such as (Circ , 2005). Risk is defined as 
the combination of the probability of an undesired event 
(accident) and its consequences (damages). Accident is 
defined as an unwanted event resulting from uncontrolled 
evolutions during the exploitation of equipment. It is the 
realization of a hazardous phenomenon combined with the 
presence of vulnerable targets exposed to the effects of these 
phenomena. This undesired event implies consequences for 
the people, the assets, the environment, or the system as a 
whole. Consequence or damage is the combination of the 
intensity of effects and vulnerability of targets (stakes) which 
are located in areas exposed to these effects. Ultimately, 
vulnerability of a target to an effect (or sensitivity) represents 
a factor of proportionality between the effects on a vulnerable 
element (or target) and the damages that it suffers (see Fig.1). 

 

Fig. 1 Some concepts and relations to define risks. 

2.2  Risks in supply networks 

Considering the supply chain as a virtual entity, risks seem to 
be in the nodes (supplier, manufacturers, distributor, retailer, 
transporter, etc) rather than in the network. In particular, 
Finch (2004) shows that while becoming a member of a 
supply chain, SMEs considerably increase their exposure to 
risk. However, Stevens (1989) considers that supply chain is 
“concerned with two distinct flows (material and 
information) through the organization”. This underlines the 
importance of flows in supply chain. In reality, we 
distinguish three types of flow connecting the various entities 
according to their directions of circulation: (1) flow of 
products (goods or services) from the suppliers towards the 
customers, (2) financial flow in the opposite direction and (3) 
the flow of information, in both directions. So, risks can 
exceed the limits of the organizations and can touch the 
network itself. Furthermore, information flows have a direct 
impact on the inventory control, production plans and 
delivery scheduling. We can give the example of “love bug” 
computer virus which caused billions of dollars estimated 
damages by infecting and shutting down e-mail at Pentagon, 
NASA, Ford and others (S.Chopra, and  S.Sodhi, 2004). 

2.3 What are the main sources of risks in supply networks? 

In order to apprehend and analyze supply chain risks, it is 
necessary to first identify and classify them. Due to the 
complexity and diversity of global supply chains, we 
distinguish variety of risks such as: long lead times, demand 
and supply uncertainty, seasonality, product variety, short life 
cycles of products, inventory disruption, poor quality or low 
yield at supply sources, machine failure, problems of 
information systems and data base, exchange rate risk, 
natural disaster, etc. many classifications and categories of 
risks coexist in the SCRM literature. Chopra and Sodhi 
(2004) suggest nine categories of risks and show its different 
sources and also indicate how to mitigate them. These 
categories are: disruptions, delays, systems, forecast, 
intellectual property, procurement, receivables, inventory and 
capacity. Mason-Jones and Towill (1998) identify risk 
sources related to supply chain. The five categories proposed 
by the authors are presented on Fig.2: environment, demand, 
supply, process and control. Similarly Jüttner (2005) 
classified risks based on supply chain basic constructs: 
environmental-risk, organizational risk and network risks. 

 

Fig.2 A typology of risks in supply networks 

4. Risk indicators 

For managing supply chain risks, many researchers have 
developed different strategies and models to mitigate supply 
chain disruptions (Tang, 2006). In the literature we 
distinguish a variety of methods to model the supply chain. 
There are the semi-formal models such as SCOR, and multi-
agent models, on the one hand and the analytical models 
based on mathematical expressions such as time series, on the 
other hand. The SCOR model generates complex data from 
various sources and allows modelling, diagnose and assess 
supply chains. It revolves around five principle processes: 
plan, source, manufacture, deliver, and return. Multi-agent 
models are mainly used to organize information flows in 
supply chains and improve the performance. In the recent 
years, several risk indicators have been generated by these 
approaches. However, the focus has been put on good 
practices, risk avoidance and risk management rather than on 
risk measurement. 

4. Vulnerability indicators 

Conceptually, vulnerability can be defined as a risk 
increasing factor.  Mason-Jones and Towill (1998) define it 
as "an exposure to serious disturbance arising from supply 
chain risks and affecting the supply chain's ability to 
effectively serve the end customer market". Jüttner et al 

Control risks 

Risk external to 
the chain 

Risk internal to the firm 
external to the chain 

Demand risks Supply risks Environmental Risks 

Supply chain risks 

Risk internal to 
the chain 

Process 
risks 

Intensity Vulnerability 

RISK 

Probability 

Damages 

Is a Combination of Is a Combination of 

Accident 

Occurrence 
 Assessment 

Is a Combination of 

Lead To

Dangerous 
Phenomenon Realization of 

Dangerous 
Phenomenon 

Effects 

Producing 

Leading to  

Stake

Undergoes
Is Exposed to 

Sensibility 
Assessment

GravitIs a measure of 

Is a measure 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8934



 
 

     

 

(2003) suggest the following definition: “the propensity of 
risk sources and risk drivers to outweigh risk mitigating 
strategies, thus causing adverse supply chain consequences”. 

The random and non-stationary nature of demand can cause 
disturbances on order quantities and even dangerous 
fluctuations in the upstream stages of a supply chain, known 
as Bullwhip effect. Bullwhip effect is a phenomenon in 
which the variation of demand produces larger variations in 
upstream orders and inventory (Gilbert, 2005). Importance of 
the Bullwhip effect can be considered as a symptom of 
vulnerability for a supply chain. 

Risk assessment requires building indicators of vulnerability 
related to the identified risks. These indicators can be 
measured in a quantitative manner (frequency, percentage, 
ratio, compared variation, etc.), or qualitative way 
(measurements based on judgment or perception). 

 In the literature, very few indicators of vulnerability in the 
supply chains were proposed. Based on the organic 
decomposition of the supply chain into its basic constructs 
we can distinguish the internal indicators for a firm such as 
costs, added value, flexibility, quality and lead times, and 
indicators external to the firm and internal to the chain related 
to supply and demand lead times, flow variability, network 
complexity, organization and contracts. Most vulnerability 
indicators considered in this study have been constructed 
from performance indicators. The main assumption is that 
supply chain vulnerability becomes high when one or several 
performance indicators reach their critical level. 

III.  HOW TO MODEL A SUPPLY NETWORK 

In order to study the behaviour of a supply network, it is 
necessary to first select a modelling paradigm and then to 
specialize it to the studied system and phenomenon, before 
identification and validation on real data. In the case of 
supply networks, modelling is the key to system resilience. 
An accurate model is required to characterize and quantify 
the system dynamics, understand and predict its evolution 
under some critical conditions, to drive the system into safe 
and efficient running conditions. 

3.1  Time series 

Time series represent analytically the discrete-time evolution 
of variables. They allow describing and analyzing a system, 
to represent its past evolution and predict its future behaviour 
by using mathematical expressions. Classically, a time series 
representation of a process starts by identifying its stationary 
part, which can be represented by an ARMA (Auto 
Regressive Moving Average) model (Box and Jenkins, 1976) 
with generic form (1): 

( ) ( )t tB z B a       (1) 

where B is the backward shift operator applied to input series 

 ta  and output series  tz . In the SISO (Single Input Single 

Output) version of model (1), ( )B  and ( )B are 

polynomials in B, while in the MIMO (Multi Input Multi 
Output) version, they are polynomial matrices. In this study, 
the considered models are of the SISO type.  By definition, 
an ARMA(p,q) model is a model given by formula (1), in 

which the autoregressive polynomial in B, ( )B , has order p 

and the moving average polynomial ( )B , has order q. 

Stationarity is characterized by the fact that the roots in B of 
( ) 0B  lie strictly outside the unit circle of the complex 

plane. In the nonstationary case, the unity (1+0i) is a solution 
of ( ) 0B  with multiplicity r. Then, by defining the 

integrated series: (1 )r
t tz B z  , equation (1) can be re-

written in the stationary ARIMA form: 

( ) ( )t tB z B a        (2) 

with ( ) (1 ) ( )rB B B    , also written ( ) ( )rB B     with 

by definition, 1 B   . 
 
3.2 Supply chain modelling with ARIMA 
 
Consider a supply chain dedicated to production and sale of 
products. This is a multi-stage system in which each 
intermediate manufacturing stage is located in a particular 
firm, requires input products from one or several firms and 
delivers manufactured products to other firms. All the firms 
involved in the different manufacturing and logistics stages 
constitute a network with flow and information arcs 
connecting the nodes. 
One of the basic requirements for a supply chain model is its 
ability to represent random fluctuations of demand and their 
propagation upward the supply chain. 
 
3.2.1 The Demand Process 
Consider a discrete time representation of a demand process 
defined by a series of values over elementary time intervals 
with unit time duration. Assuming that demand at periods 
k  forms a stationary time series with mean value d, it 
can be represented by the following ARMA model: 

( )( ) ( )k kB d d B w          (3)  

where kw  is a white noise characterized by the following 

moments:
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Model (3) can also be written as the output of a linear filter: 

( )k kd d B w  with
1

( )
( ) 1

( )
i

i
i

B
B B

B

 






         (4)         

3.2.2  The downward stage of the chain 
Consider the last stage of the chain. It involves the customers, 
through the current value of demand, dk , given by (3) or (4), 
the retailer, through his inventory level at successive periods 
k-1 and k and past orders to his supplier: Ok-L, …, Ok-1. The 
value of lead time L, assumed to be constant, depends on the 
supply and transportation of final products.  

The inventory balance equation describing the last stage of 
the supply chain is written: 

1k k k L kI I O d        (5) 

where  Ik is the inventory at the end of period k and Ok-L the 
order placed at the end of period k-L and expected in period 
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k. The last stage model can then be completely determined by 
the choice of the retailer ordering policy.  
The ordering policy considered in this study is the “order up 
to” policy with respect to the inventory position. This policy 
has been shown to be optimal with respect to a model 
predictive approach (Hennet 2003): 

1 11
ˆ ˆ

k k k k Lk k k L kO S d d I O O            (6) 

In equation (6), the order level 
kO  is computed using 

conditional expectations of demand dk+j computed at period k, 
denoted ˆ

k j kd 
for j=1,…,L.  

Equation (3) can be used to compute the sequence of 

predictions 1
ˆ ˆ( , , )k k k L kd d  , using the division of 

polynomials in the form (see e.g. Kučera, 1979): 
( ) ( ) ( ) ( )p

p pB B Q B B R B      (7) 

with deg( ( )) 1pQ B p  , to obtain from (3): 

ˆ( )( ) ( )( )p kk p kB d d R B d d      for 1, ,p L   (8) 

Gilbert (2005) has shown that under the assumptions of an 
ARMA(p,q) model of demand (3), constant lead-times for all 
the products, and order up-to policies (6), the sequence of 
inventories {Ik} and the sequence of orders, {Ok} can be 
represented by ARIMA models. (9) and (10).  

)(
111

)(
11

)( )1()1( I
LkL

I
k

I
kk SI      (9) 

Φሺܤሻ׏ఋሺܱ௞ െ ݀ሻ ൌ ΘሺOሻሺܤሻݓ௞
ሺைሻ     (10) 

where ),max()( lqpq O    and a noise series ሺݓ௞
ሺைሻሻ 

multiple of the noise series ሺݓ௞ሻ of the demand process. 
 
3.2.3  A dynamic model for each stage of the chain 
If we neglect saturation effects, the time series ARIMA 
representation property is valid at all the stages of the supply 
chain. A key result for multistage supply chains under the 
“order up to” policy is then that the bullwhip effect at any 
stage s of a supply chain depends on the total of lead times 
from stage s down to final stage 1 and not on the number of 
stages (Gilbert 2005). An indicator of the supply chain 
bullwhip effect can thus be obtained from the sum of lead 
times and the parameters of the ARIMA models. 
 
3.3 Vulnerability indicators 
 
Due to the ability of the ARMA to represent the fluctuations 
of flows and inventories in supply networks, it seems 
interesting to construct indicators for assessing the 
vulnerabilities of the system, such as the bullwhip effect, the 
low-demand indicator, the starving indicator and the over-
cost indicator. 
 
3.3.1 Bullwhip effect indicators 
Random variations in supply chains have a cumulative effect 
known as “Bullwhip Effect”. Random variations on lead 
times (production time or supply time) in the MRP method 
and uncertainties on predictions of orders, generate the 
bullwhip effect and have a significant impact on the system 
performance. 

Lee et al (1997) have identified four causes for the bullwhip 
effect: demand signal processing, rationing game, order 
batching and price variation. 
Under the ARMA model (9), (10), of a supply chain driven 
by the order up to policy, the ratios of standard deviations 
corresponding to the "bullwhip" effect are given by the 
following expressions (Gilbert,2005):  

 Bullwhip effect related to the Inventory: 
KI ൌ  ሾ 1 ൅ ሺ1 ൅ ψଵሻଶ ൅ ሺ1 ൅ ψଵ ൅ ψଶሻଶ ൅ … ൅
  1൅ ψ1൅ ψ2൅ …൅ ψLെ1212       (11) 

 Bullwhip effect related to the Order: 

KO ൌ  1 ൅  Ԅ ൅  Ԅଶ ൅  Ԅଷ ൅ ڮ ൅ ԄL ൌ  
ଵ – மLశభ

ଵ – ம
     (12) 

These expressions clearly show that the bullwhip effect 
depends on the total lead time L and not on the number of 
stages in a supply chain. 
 
3.3.2 Order index 
When issuing a command, a company may face three 
possible cases, two of which are sources of risk. The first one 
is the case when the command computed by the 
unconstrained model is negative, meaning that the retailer 
would like to sell back some products that he has previously 
ordered. The second case is when the retailer wants to order a 
quantity greater than what the supplier possesses or can 
deliver. Assuming that  ߗ௞ is the actual order and  തܱ is the 
available capacity at the supplier’s, the order and order index 
 :௞ are linked as followsܫܱ

ቐ
௞ߗ ൌ ௞ܫܱ ݀݊ܽ  0 ൌ െ1 ݂݅   ܱ௞ ൏ 0  
௞ߗ ൌ ܱ௞  ܽ݊݀ ܱܫ௞ ൌ 0 ݂݅ 0 ൑ ܱ௞ ൑

௞ߗ ൌ ܱ௞തതതത  ܽ݊݀ ܱܫ௞ ൌ 1 ݂݅ ܱ௞ ൐ തܱ
തܱ     (13) 

 
3.3.3 Inventory level index  
Classically demand ݀୩ is supposed known before order Ω୩ is 
placed. Then, demand ݀୩ is delivered from the stock. The 
inventory level may characterize two critical cases. The first 
one is when it is negative, representing the case when 
demand   ݀௞ is greater than the quantity available in stock, kI

. In this case, the excess demand is backordered.  The second 
critical case is relative to the storage capacity that cannot be 
exceeded. Assuming that ܬ௞ represents the current stock and 
that ܫ ҧ is the storage capacity, the current stock ܬ௞ and stock 
indicator ܫܫ௞ are determined as follows:  

ቐ
௞ܬ ൌ ௞ܫܫ ݀݊ܽ  0 ൌ െ1 ݂݅   ܫ௞ ൏ 0  
௞ܬ ൌ ௞ܫܫ ݀݊ܽ  ௞ܫ ൌ 0 ݂݅ 0 ൑ ௞ܫ ൑

௞ܬ ൌ ௞ഥܫ ௞ܫܫ ݀݊ܽ   ൌ ௞ܫ ݂݅ 1 ൐ ܫ ҧ
ܫ ҧ     (14) 

 
Inventory level and order indices reveal the system 
vulnerability to strong external disturbances. They will now 
be used to construct several vulnerability indicators, namely 
the delay indicator, the over-cost indicator and the 
nervousness indicator. 
 
3.3.4 Low-demand indicator  
The Low-demand indicator can be calculated as follows: 

൞

ሻܦሺܫܮ ൌ  
ଵ

஽
∑ maxሺെܱܫ௞ , 0ሻ஽

௞ୀଵ

ሺ݇ሻܫܮ ൌ ሺ݇ܫܮ  െ 1ሻ ൅
ଵ

஽
ሺmaxሺെܱܫ௞ , 0ሻ െ maxሺെܱܫ௞ି஽ , 0ሻሻ

݇ ݎ݋݂ ൐ .ܦ

 (15) 
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The case when the index ܱܫ௞=-1 means that, for a given 
stage, the buyer (retailer) would like to sell back some 
products. It can be explained by the insufficiency in the 
demand (consumer) side.  
 
3.3.5 Starving indicator  
The value ܱܫ௞=1 represents the case when the retailer would 
like to order more than the available capacity per time 
interval at the retailer’s. To describe this situation from the 
retailer’s viewpoint, this index is called a starving indicator. 
In a dual manner, it represents an insufficient capacity for the 
supplier. 

൞

ሻܦሺܫܵ ൌ  
ଵ

஽
∑ maxሺܱܫ௞ , 0ሻ஽

௞ୀଵ

ሺ݇ሻܫܵ ൌ ሺ݇ܫܵ  െ 1ሻ ൅
ଵ

஽
ሺmaxሺܱܫ௞ , 0ሻ െ maxሺܱܫ௞ି஽ , 0ሻሻ

݇ ݎ݋݂ ൐ .ܦ

   (16) 

 
3.3.6 Delay indicator 
A possible indicator of the delay for the considered stage of 
the supply chain is the experimental probability of  
backorder. It can be constructed from the sequence of 
inventory level indices over a time duration of D times the 
elementary time interval: 

ە
ۖ
۔

ۖ
ۓ ሻܦሺܫܦ ൌ  

1
ܦ

෍ , ௞ܫܫሺെ ݔܽ݉ 0ሻ

஽

௞ୀଵ

                                            ሺ17ሻ

ሺ݇ሻܫܦ ൌ ሺ݇ܫܦ െ 1ሻ ൅
1
ܦ

ሺ݉ܽݔ ሺെܫܫ௞ , 0ሻ െ , ௞ି஽ܫܫሺെ ݔܽ݉ 0ሻሻ

݇ ݎ݋݂ ൐ .ܦ

  

 ሺ݇ሻ represents the experimental probability to haveܫܦ  
backorders during the time interval  1   k k D  . If the 

indicator value is near to 1, it means that the quality of 
service is low. This is also a vulnerability indicator relatively 
to next stage of the supply chain, which may suffer from 
starving conditions and look for other suppliers. 
 
3.3.7 Over-cost Indicator 
When demand is satisfied, either immediately or after some 
delay, over-costs may be caused by the violation of positivity 
and capacity constraints on stock and order.  
The inventory capacity saturation indicator may be computed 
by formula (18): 

൞

ሻܦሺܥܫ ൌ  
ଵ

஽
∑ maxሺܫܫ௞ , 0ሻ஽

௞ୀଵ

ሺ݇ሻܥܫ ൌ ሺ݇ܥܫ  െ 1ሻ ൅
ଵ

஽
ሺmaxሺܫܫ௞ , 0ሻ െ maxሺܫܫ௞ି஽ , 0ሻሻ;

݇ ݎ݋݂ ൐ ܦ

   (18) 

The over-cost indicator can then be computed by summation 
of the all the cost indicators: ܫܥሺ݇ሻ ൌ ሺ݇ሻܫܮ ൅ ሺ݇ሻܫܵ ൅ ሺ݇ሻܥܫ  ൅
)ሺ݇ሻ . Noting that maxܫܦ   ,0) max( ,0)k k kII II II    and 

max( ,0) max( ,0)k k kOI OI OI   , this indicator is recursively 

computed by: 

ە
ۖ
۔

ۖ
ۓ ሻܦሺܫܥ ൌ  

ଵ

஽
∑ ሺ|ܫܫ௞|஽

௞ୀଵ ൅ ௞|ሻܫܱ|

ሺ݇ሻܫܥ ൌ ሺ݇ܫܥ  െ 1ሻ ൅
ଵ

஽
ሺ|ܫܫ௞| െ |ܫܫ௞ି஽|ሻ

൅
ଵ

஽
ሺ|ܱܫ௞| െ |ܱܫ௞ି஽|ሻ; ݇  ݎ݋݂     ൐ ܦ

                (19) 

If the over-cost indicator is frequently greater than a certain 
threshold, it means that the supply chain is not efficient and 
that its production and/or inventory capacity must be revised. 
 

IV EXAMPLE AND CASE STUDY 

In this section, we model a simple supply chain with one 
supplier and one retailer. This system incorporates a non-
stationary demand with a random walk.  It is generated by 
Monte-Carlo generation with the following model: 
݀௞ ൌ ܸሺ݇ሻ ൅  ௞           (21)ݓ
and {ݓ௞ } is the white noise ( E(wk)=0 and E(wk

2)=). 
The average demand profile in (21) is as follows: 
V (1: 300) = 20, V (301: 700) = 30, V (701: 1000) = 10. 
The non-stationary average value, V (k) in (21) is not 
supposed to be known by the retailer. He needs to predict it 
from its past and current values.   
The demand model estimated by the retailer is supposed to 
take the form: 

1 20.5 0.5k k k kd d d         (22) 

and {ߝ௞ } is a Gaussian white noise ( E(ߝ௞)=0 and E(ߝ௞
2)=η). 

The delivery time is assumed fixed and known: L=3.   From 
model (20), it is easy to derive predictions ˆ

k j kd 
for j=1, 2, 3: 

11

12

13

ˆ 0.5 0.5

ˆ 0.75 0.25

ˆ 0.625 0.375

k kk k

k kk k

k kk k

d d d

d d d

d d d







  

  


 

   (23) 

The ordering policy is the order up to policy with authorized 
backorders. It is defined by: 

1 21 2 3
ˆ ˆ ˆ

k k k kk k k k k kO S d d d I O O          . (24) 

The order Ok is selected to lift up the inventory level to S, 
while covering the expected demand over L periods, taking 
into account the orders at times k-1 and k-2.In this example, 
we chose the value 20S  . 
The system will now be simulated in two stages. In the first 
stage, the system dynamics are simulated without taking into 
account the constraints of positivity and capacity on 
inventory and order levels.  These constraints are then 
introduced in the second stage, and vulnerabilities indicators 
are computed from the constrained model, to study the risk of 
reaching critical levels for the stock or the order. The 
dynamics of the unconstrained system are defined by 
relations (5), (22), (24) and shown on Fig.3 

 
 

 

Fig. 3 Simulation of the unconstrained system 
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It can be observed that in the unconstrained case, the 
inventory level fluctuates around the level of reference.   
To represent reality more accurately, constraints and 
saturation functions on inventory and order levels are then 
integrated into the ARIMA models. At each step of the 

simulation, the values of kO  and kI  are respectively replaced 

by their actual values k  and kJ  and the dynamic equations 

are run step by step. The constrained evolution of the 
inventory level is represented on Fig. 4 

 

Fig. 4 Simulation of the constrained system 

Simulation of the constrained system indicates that the 
system frequently hits the constraints. The corresponding 
vulnerability indicators are displayed on Fig.5. 

 

 

Fig. 5 Simulation of vulnerability indicators 

The evolution of vulnerability indicators and more 
specifically the cost indicator in the situations of average, 
high and low demand, indicate that the system is more 
vulnerable in high demand conditions. In fact, its inventory 
and ordering capacities are better adapted to an average 
demand per period between 10 and 20 per period. 

V  CONCLUSIONS 

Supply networks are facing the important challenge of 
adjusting the size of their manufacturing capacity and product 
storage, especially when demand and supply are subject to 
strong and unpredicted variations. In such conditions, how to 
mitigate supply chain risks without eroding profits? Risk 
analysis has become a key issue to manage supply chains and 
supply networks. Firstly, it is necessary to identify the risks 
in the system, then to model their possible impacts on the 
system, taking into account the constraints on production and 
storage for each firm and their effects on the products and 
value chains. The recursive nature of ARMA allows to model 

supply chains at each manufacturing stage as an elementary 
node and iterating the process to represent the whole 
network.  In this paper, it has been proposed to add positivity 
and capacity constraints to this model,  to simulate the system 
under strongly disturbed conditions, and to measure 
vulnerabilities indicators to assess the internal effects of 
strong external disturbances.  Application of this 
methodology on a simple example has shown the relevance 
of the approach and its possible use in managerial decision 
support systems.  

REFERENCES 

Box, G.E.P, Jenkins, G.M. 1976, Time series analysis: 
forecasting and control. San Francisco: Holden-Day. 

Choi T.M. 2014, Multi-period risk minimization purchasing 
models for fashion products with interest rate, budget, 
and profit target considerations, Annals Oper. Res, DOI 
10.1007/s10479-013-1453-x. 

Chopra S., Sodhi M. Managing risk to Avoid Supply Chain 
Breakdown. MIT Sloan Management Review. 2004, Vol. 
46, Is.1, pp. 53-62. 

Finch, P. Supply chain risk management. Supply Chain 
Management. 2004, Vol. 9, n°2, pp. 183–196. 

Gilbert, K. 2005, An ARIMA supply chain model. 
Management Science. Vol. 51, n°2, pp. 305–310. 

Hennet, J.C. 2003, A bimodal scheme for multi-stage 
production and inventory control. Automatica. Vol. 39, 
pp. 793-805. 

Hennet, J.C. 2009, A Globally Optimal Local Inventory 
Control Policy for Multistage Supply Chains. Int. J. 
Prod. Research,Vol. 47, 2, 435-453. 

Hennet, J.C., Mercantini, J.M., Demongodin, I. 2008. Toward 
an integration of risk analysis in supply chain 
assessment. Proc. I3M-EMSS. pp. 255-260. 

ISO-IEC guide, 2002. http://www.iso.org. .  
Juttner U. 2005, Supply Chain Risk Management. Int. J. 

Logistics Management. Vol. 16, 1, pp. 120-141. . 
Jüttner U., Peck H., Christopher M., 2003. Supply chain risk 

management: Outlining an agenda for future research. 
Int. J. logistic research and appl., Vol. 6. 

Kučera V., Discrete Linear Control – The Polynomial 
Equation Approach, John Wiley and sons, 1979. 

Lee, H.L., Padmanabhan, V., Whang, S. Information 
distortion in a supply chain: the bullwhip effect. 
Management Science. 1997, Vol. 43, 4, pp. 546–558. 

Mason-Jones R., D.R. Towill. 1998. Time compression in the 
supply chain: information management is the vital 
ingredient. Logistics Info. Mgt 11(2): 93-104.  

Özelkan, E. C., Çakanyıldırım M. 2009, Reverse bullwhip 
effect in pricing. European J. Operational Research, pp. 
pp.302–312. 

Stevens, G. C.  1989, Integrating the Supply Chain, Int. J. 
Phys. Distribution & Logistics Mgt, Vol. 19 (8), pp.3-8. 

Tang, C.S. 2006, Perspectives in supply chain risk 
management, Int. J. Production Economics, 103, pp. 
451–488 

Towill, D.R. 8, 2005, The impact of business policy on 
bullwhip induced risk in supply chain management, Int. 
J. Phys. Distribution & Logistics Mgt, Vol. 35, pp. 555-
575. 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8938


