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Abstract:

This paper provides a novel solution to the problem of tuning linear output feedback model
predictive control (MPC). A systematic tuning method that allows to obtain all the parameters
of an unconstrained output feedback MPC based on disturbance model and observer is presented.
It is shown that such tuning can be translated to a frequency domain control design problem,
which can be solved using existing techniques. Experimental results on a quadrotor reference
tracking problem show the effectiveness of the proposed MPC tuning method.
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1. INTRODUCTION

Although model based predictive control theory promises
the solution to many industrial control challenges such
as control of multivariable systems and constraint han-
dling, the most recent model predictive control (MPC)
formulations tend to have a very complex structure with
several parameters to be tuned, see [3] for a survey. One
of the main limitations of MPC is that it requires full
knowledge of the plant states, and one of the most common
approaches is to use an observer to estimate them [9]. With
this approach two new problems arise: first, the complexity
and number of tuning parameters of MPC, such as cost
function weights and prediction horizons, are increased by
the observer parameters; second, it has been shown that
in the presence of perturbations, the closed-loop of ob-
server based state feedback controllers can show arbitrary
stability margins [10], thus affecting the robustness of the
closed-loop system.

The problem of robustness of output feedback MPC is still
an open research area where several approaches have been
investigated. Since the early implementations of MPC,
robustness against uncertainties has been achieved by
adding disturbance models to the nominal model of the
system to be controlled (see [12] for a survey). For example,
to remove an offset, the nominal model of the system to
be controlled can be augmented with an integrator. This
kind of approach has shown to improve MPC robustness
by removing offsets from the predictions, which are used
to compute the optimal control inputs in MPC [15]. If
there is some knowledge of the frequency characteristics of
the disturbances, more complex disturbance models can be
used, and complete tuning methods have been developed
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based on this idea [14]. The augmented model, i.e. the
nominal model with disturbance model, is then used both
in the observer and MPC formulation, and Loop Transfer
Recovery techniques have been used to obtain robustness
with respect to system/model mismatch [13]. One of the
disadvantages already mentioned is that the MPC tuning
effort is increased by the choice of disturbance model and
observer tuning. Furthermore, there are some authors that
have pointed out that this approach based on the ‘certainty
equivalence principle’ only takes uncertainty into account
indirectly [11].

In more recent approaches, set theory and modified ver-
sions of MPC are used to account for uncertainty directly,
see [16] and [11]. The estimation error is considered as
an unknown uncertainty but bounded by a pre-computed
invariant set, and a ‘tube-based’ robust MPC algorithm is
designed to explicitly deal with this bounded uncertainty.
Although results of these type of approaches are very
promising, the structure and tuning complexity of such
MPC formulations can be considerably large. This con-
trasts with the most recent extensions of classical control
theory to multivariable robust control, e.g. H,, control,
where the tuning of the controller is more intuitive for
practitioners based on frequency domain weights or loop-
shaping and modeled uncertainty can be explicitly taken
into account [8]. Nevertheless, multivariable modern ro-
bust control approaches do not offer the flexibility and
advantages of MPC such as feedforward, cost selection and
constraint handling [9].

The linear output feedback MPC tuning problem is to find
an MPC and observer match, such that desired closed-loop
performance and robustness margins can be obtained up
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to a useful degree. The main contribution of this paper is
a systematic method for solving the unconstrained linear
output feedback MPC tuning problem using frequency
domain design is proposed. The main characteristic of
this method is the ability to provide most of the MPC
parameters out of a frequency domain design problem, in
this way the complexity of the MPC tuning problem is
considerably reduced. As a result, the tuned disturbance
model and observer result in improved predictions that
make the proposed method specially suitable for predictive
control. The analysis of the inclusion of constraints with
the proposed method is left for future work. A quadrotor
reference tracking problem is used to show experimental
results obtained by implementing a tracking MPC formu-
lation with the proposed tuning method.

An unconstrained linear output feedback MPC formula-
tion based on disturbance model and observer will be
used, which is described in Section 2. Based on this MPC
formulation the tuning problem is defined in Section 3.
The principal results of this paper are also presented
in Section 3, where a frequency domain design problem
is introduced based on a continuous time model of the
system to be controlled. Discretization steps are discussed
and it is shown how to obtain the unconstrained linear
output feedback MPC formulation parameters out of the
frequency domain design, including a disturbance model
and observer that are used to improve predictions in MPC.
In Section 4 experimental results are shown, obtained by
applying the method to a quadrotor reference tracking
problem.

2. CONTROLLER STRUCTURE

In this Section, the main ingredients of the unconstrained
linear output feedback MPC formulation used in this paper
are presented. It is composed by an internal model, a cost
function and an observer. Since the goal of this paper is to
describe a continuous-time tuning method for a discrete
time algorithm, both continuous and discrete time models
will be used. Each of the MPC formulation ingredients are
described in detail below.

2.1 Internal Model

It will be assumed that a continuous time nominal model
is available that captures the main dynamics of the in-
put/output behavior of the system to be controlled. Fur-
thermore, this nominal model has to be a strictly proper
state space minimal realization of the form

Ty = Apnz, + Bou

where z,, € R, v € R™ and y € R! are state, input and
output vectors respectively with n > m and n > [. The
matrices A,, B, and C,, are the state transition, input
and output matrices respectively. For this model to be
used in the proposed MPC formulation, it needs to be
transformed to a discrete time form. By using the zero-
order hold (ZOH) discretization method, the discrete time
version of the system to be controlled becomes

Tn(k+1) = Apran (k) + Bpru(k) 9
y(k) = Cogn (k) @

where k denotes the discrete time variable. The matrices
Ak, Bnr and C,,i are the matrices of the nominal discrete
time state space model.

In order to account for disturbances, a standard distur-
bance model will be used [9], in which the continuous
time nominal model dynamics are augmented with the
disturbance model leading to an augmented model of the

form
i?d B 0 Ad Td - 0 u

y=1[Cn 0] {x"]

Zq

where 24 € R? is the disturbance state vector. The matrix
Ay is the disturbance model transition matrix and X is
the matrix that maps the effects of the disturbance states
to the nominal states. The discrete time augmented model
obtained by ZOH discretization has the form

e D)= [ 2] 28]

+| % @)

) = Co 0 221

where the matrices A4, and X, are the matrices of the
discrete time disturbance model. It is assumed that the
disturbance model matrices, either in the continuous or
discrete time form, are not known in advance and are part
of the MPC formulation tuning parameters, which will be
obtained with the proposed tuning method.

2.2 Cost Function

The cost function of the unconstrained linear MPC is
defined as

N —

VienU) =3 ()" Qua(i) + (i) Ru(i)) 5

Ju

+2,(N)" Pa, (N)

where N > 0 is the prediction horizon, U = (u(0), u(}r}, s
u(N — 1)) is the vector of stacked inputs and R = R* > 0,
Q =QT =0, P =PT = 0 are the input cost, stage
cost and final stage cost matrices respectively. The corre-

sponding optimization problem for the MPC formulation
is defined below.
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Fig. 1. Continuous time observer gain and disturbance model design as a standard tracking control problem.

man
U V(z,,U)

subject to : 6)
l’n(k —+ 1) = Ankxn(k) + kad(k) —+ Bnku(k)
rq(k +1) = Aagwa(k)

For this MPC formulation the final cost P is set to the
solution to the Ricatti equation corresponding to the
equivalent infinite horizon control problem for some given
@ and R, since it is well known that in the absence
of constraints, an MPC formulation with a final stage
cost equal to the solution of the infinite horizon control
problem, is equivalent to the well known Linear Quadratic
Regulator (LQR) for any prediction horizon N > 1 [1]. The
solution to the unconstrained MPC optimization problem
from Equation (6) can be obtained by solving a least
squares problem, see [9] for more details.

It is assumed that the stage cost @) and input cost R are
unknown and form part of the MPC formulation tuning
parameters and will be obtained by the proposed method.

2.3 Observer

A standard observer will be used in this MPC formulation
to estimate the states of the augmented model. This
observer is defined by the continuous time equations

- Cnfin)
Ld(ym - Cn‘%n)

where z,, and Z4 are the estimated nominal model states
and estimated disturbance model states respectively, v, is
the output measurement which might contain the effects
of noise and disturbances, L,, and L4 are the observer gain
matrices for the nominal and disturbance models respec-
tively. The reason why the observer has been introduced
in its continuous time form will be more clear in Section
3. For the moment it is assumed that the discrete time
counter part of the observer has the form

e D] - [ 2] (2] + [

(8)

where L, and Ly are the discrete time observer gain ma-
trices, which are used for the actual observer implementa-
tion. The observer gain matrices, either in the continuous
or discrete time form, are not known in advance and are
part of the MPC formulation tuning parameters which will
be obtained by the proposed tuning method.

3. TUNING METHOD

In the previous section, the unconstrained linear output
feedback formulation has been introduced. For this formu-
lation it is known that for a prediction horizon N > 1 the
MPC is equivalent to a discrete LQR. controller and there-
fore is stabilizing given that the system is controllable,
observable, R = RT = 0,Q =QT = 0and P = PT =0
[1]. Therefore, in this Section the main focus will be in
obtaining the tuning parameters given by the discrete time
disturbance model matrices Agr, Xi, observer gains Ly,
L, stage cost @ and input cost R.

8.1 Problem Definition

Consider the unconstrained output feedback MPC formu-
lation from Equations (5), (6) and (8), and the system to
be controlled from Equation (4). In closed loop they form
what will be defined as the Actual Feedback Loop transfer
function ® 4p(2).

The output feedback MPC tuning problem is to find ap-
propriate disturbance model matrices Agqr, Xg, observer
gains Ly, Lak, stage cost @ and input cost R such that the
the Actual Feedback Loop (AFL) discrete transfer func-
tion ®4pr(2) approximates a (stable) Desired Feedback
Loop (DFL) discrete transfer function ®ppr,(z).

3.2 Observer Gains and Disturbance Model

To solve the unconstrained output feedback MPC tuning
problem, we start with the continuous time observer de-
sign. The main result of this paper is to show that the
design of the observer gains and disturbance model matri-
ces simplifies to a standard tracking control problem, and
that the resulting disturbance model and observer improve
the MPC predictions. The simplification can be shown
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easily by noticing that the block diagram of the observer
transfer between y,,, and C,Z,, defined in Equation 7 can
be rearranged as a standard tracking control problem as
shown in Figure 1, where the effect of u has been omitted
in the tracking control problem from Figure 1, since u
can be regarded for this observer tracking control problem
as a measured bounded known disturbance given by the
state feedback controller block, i.e. the MPC. The effect
of u does not compromise the stability of the observer in
closed loop with the MPC due to the separation principle.

As it can be observed from Figure 1, the observer gains,
disturbance model matrices and states altogether form a
complete dynamic compensator block

J(s) =X (slg— Ag) " La+ L, (9)
where I; is an identity matrix of suitable dimension.

Define W(s) = C, (sI, — A,)"", the observer gains and
disturbance model design problem in the continuous time
domain can be defined as finding a dynamic compensator
J(s) such that the closed loop

Oprr(s) = =[I+ \Il(s)J(s)]_1 U(s)J(s) (10)

meets the desired stability-robustness and performance
specifications. The Desired Feedback Loop (DFL) ®ppr(s)
can then be defined by shaping the transfer between y,, (s)
and ¢(s). In the next Subsection it will be shown how
to recover the DFL stability-robustness and performance
properties in the overall Actual Feedback Loop (AFL)

(I)AFL(Z)-

Note that since it was assumed that the system in Equa-
tion (1) is a minimal realization, i.e. [4,,C,] detectable,
it implies that there exists a J(s) which will make the
continuous time Desired Feedback Loop ®prr(s) stable.
Furthermore, the dynamic compensator J(s) can be syn-
thesized using any of the available multivariable robust
control techniques such as weighted sensitivity or loop-
shaping [8], and modeled uncertainty can also be included
in the design.

Once a suitable dynamic compensator J(s) has been
found, it can be discretized to obtain J(z) and with it
the discrete disturbance model matrices Agr, X5 and
discrete observer gains L, Lgx. The resulting disturbance
model and observer improve the predictions made with
the augmented model, as it is shown in Section 4. Finally,
the discrete time observer from Equation (8) can be built
using J(z) and Equation (2). Discretization of J(s) is not
restricted to the ZOH method, since J(z) does not have
to be strictly proper.

3.8 Cost Function Weights

Due to the equivalence of the unconstrained linear MPC
formulation of this paper with the LQR controller, it is
possible to leverage all the theory and methods developed
for the LQR controller, such as the Loop Transfer Recovery
(LTR) theory which was developed in the continuous
time by [6] and [7], and in the discrete time by [5], in

which it is shown that if the system in Equation (2) is
square, minimum phase, det(Chpx, Bni) # 0, the stage cost
Q = CEkC’nk and the input cost R — 0, then for the
unconstrained linear output feedback MPC formulation

(@AFL(Z)‘)(I)DFL(Z)- (11)

The LTR theory shows that the convergance of the Actual
Feedback Loop to the Desired Feedback Loop gets closer
as R is reduced towards zero. In the discrete time case and
under the given assumptions, the recovery of the Desired
Feedback Loop can be made perfect if R = 0 [5]. In
practice the choice of R = 0 is relaxed to R = pl,,, where
p is a small value.

The LTR convergance theorem assumptions mentioned
before might seem very restrictive, but many authors from
the LTR theory have shown that the technique can still
be used with non-square systems [17]. They have also
shown that even if the system is non-minimum phase,
convergance is still obtained at least for the frequencies
below the effects of the non-minimum phase zeros. In
general the LTR theory indicate that even if some of the
assumptions are not met, recovery is often obtained over
a useful degree for Q = CL, C,,x and R = pl,, [9].

4. EXPERIMENTAL RESULTS

A quadrotor XY reference tracking problem is used to
test the MPC tuning method presented in this paper. The
setup consists of a AR Drone v1.0 quadrotor platform.
The quadrotor is set to fly at a fixed altitude following
a desired trajectory in the XY plane, where there are
internal control loops that allow to control the pitch 6
and the roll ¥ angles of the quadrotor. The input vector

is then u = [ua,uw]T, both are normalized to lie in the
range [—1,1]. ug and u, actuate the pitch and roll of the
quadrotor, causing movements in y and x axis respectively.
The output vector zmeqs = [m,z‘,y,y}T corresponds to
measurements of the position and velocity in the x —
axis, and position and velocity in the y — axis. These
measurements are obtained from the inertial sensors and
are provided by the AR Drone platform (see [18] for
details). The positions are measured in meters [m] and
the velocities in meter per second [m/s]. Note that for
this example it was decided to change the notation of the
output vector to z rather than y in order to avoid confusion
with the position in the y — axis, the same for the state
vector which is now defined as w instead of z to avoid
confusion with the position in the x — axis.

4.1 Simplified Quadrotor Model

To obtained a fairly simple model of the quadrotor, a series
of step functions were applied to it on each of its inputs,
ug and uy. It was observed that dynamics from ug to y
and those of uy to & are close to those of second order
models, with the form

K, (u)

5\2 S
(2) +2(2)+1
w w
in which the gain of the system varies with the magnitude
of the input. Such non-linearity was modeled as static

G(s,u,&,w) =

(12)
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Fig. 2. Quadrotor control-oriented model.

nonlinear gains in the input channels. Additionally, the
quadrotor presented some coupling between ug and &, and
between u, and gy, however their magnitude was very
small and such couplings were treated as disturbances.
Therefore, we consider the models

1 x
ﬂ - *G(S7Ug7§9,0.)9), -
S Uqy

(13)
ug

1
= ;G(S, Unp, 57,/)7 ww)
Finally we can use the model structure shown in Figure
2, were w denotes the state vector and B(u) the input
dependent non-linear gain.

4.2 MPC formulation

The resulting control-oriented model is non-linear as
shown in Figure 2. The corresponding observer design
problem remains linear because its design does not depend
on the (scheduled) input matrix B(u) and the compensator
J(s) can still be synthesized using linear techniques. For
this application, the observer design problem is solved us-
ing H,, loop-shaping techniques. The open-loop observer
transfer T(s) = Ceas (s, — A) ™' J(s) was shaped using
the procedure described by McFarlane and Glover (see [§]
for details), aiming to achieve an ideal open-loop transfer
wp/s for all the singular values of Y(s), where wg is the
desired observer open-loop bandwidth.

The MPC formulation for this application is a reference
tracking formulation designed to leverage the feedforward
capabilities of MPC. The cost function is modified to
penalize deviations of the x and y positions around their
desired references and to penalize the change of the inputs
Awu with respect to the previous inputs. The cost function
used in this MPC formulation is

N—

Vien0) = 3 (ex() Ques(i) + Buli)" RAUE) "

,_.

+e.(N) P.e.(N)

where e (i) = Zeontroi(i) — zref () is the output tracking
error defined as the difference between the controlled

output vector zcontrot = Ceontrol * W = [x,y]T and the
desired reference vector z..y. In this case the stage cost
Q. = I, is an identity matrix, since the cost already

penalizes the output. Note that P, has little influence on
the solution since from equation (14) it is expected that for
large N, e,(N) — 0. Thus, the final cost is chosen P, = I,
this also avoids the computation of a Ricatti equation on
each sample time due to the variation of B(u).

The corresponding optimization problem is subject to
the nominal model dynamics plus the disturbance model
dynamics resulting from the observer design problem, as

Open Loop

Closed Loop
Predictions

[| Estimates

Y-position [m]
/
R 4
\
'i’

Measurements
= = = Nominal Model + Kalman Filter
Augmented Model + Proposed Observer| |

I I " . 1 . 1 . . . .
260 270 280 290 300 310 320 330 340 350 360
Time [s]

Fig. 3. Comparison between Kalman Filter/Nominal
Model and Proposed Observer/Augmented Model.

described in Section 3. Note that the output matrix used
in the observer C),cqs differs from the one used in the
MPC optimization problem Cyptr0- The resulting control
is implemented in a receding horizon form (see [9]), such
that the optimization problem is solved at every sampling
period T’s, returning an optimized vector AU,p:. Then the
optimal input applied at time k is

AUk)opt = [Lms Omy oy O] AUt (15)

u(k) = u(k — 1) + Au(k)opt- (16)

At each sampling period, the input matrix is scheduled
with respect to the previous input B (u(k — 1)) to account
for the static non-linearity in both the observer and the
MPC formulation. B(u) is assume not to change in the
receding horizon to compute the MPC output on each
sampling time, otherwise the computation time would
increase considerably. This simplification was used due to
the time restrictions of the sampling period, which for this
application is Ts = 60ms and the control algorithm takes
around 5ms to compute.

4.8 Tuning

The tuning procedure was done using the measurement
data obtained from the identification process. The observer
open-loop bandwidth wp was then tuned iteratively, we

X-position [m]

.
0 5 10 15 20 25 30 35 40
Time [s]

Reference
= = = Measured

Y-position [m]

.
0 5 10 15 20 25 30 35 40
Time [s]

Fig. 4. Output responses to third order set-points.
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designed the observer starting with a low value, then it was
simulated using the measured data and wp was increased
gradually until the output of the observer Z tracked the
measurements z,e.qs With keeping a balance in the trade-
off between performance and noise rejection. The final
bandwidth value used was wg = 0.9 [rad/s].

A comparison of predictions obtained using the nominal
model and a standard Kalman Filter, versus the proposed
augmented model and observer is shown in Figure 3. The
black line in Figure 3 marks the time at which the observer
loops are open and predictions are obtained using both
approaches. It can be observed that the usage of the tuned
disturbance model and observer gain (J(s)), lead to more
accurate predictions, effectively compensating mismatches
between the real plant and the nominal model.

Finally, to recover approximately this performance of the
observer in the overall MPC implementation, an input
cost of R = pl, with p = 0.001 was chosen. The
obtained parameters were tested initially with simulations
performed in closed-loop with the nominal model.

4.4 Results

The closed loop tests consisted on following a set of points
in the XY plane one after the other. From one point to
the next one, third order set-point motion profiles were
designed. The MPC algorithm was fed with the third order
set-point profile 50 samples in advance (prediction horizon
N = 50), in both the x — azis and y — axis. The results
of one of the closed-loop tests are shown in Figure 4.
From Figure 4 one can see that the system can follow the
desired trajectories, more satisfactorily in the x — axis.
The quadcopter is able to follow the desired trajectory,
however it can be noticed that tracking in the XY plane
shows some deviations at certain points. This comes from
the fact that the proposed simplified quadrotor model
accounts for non-linearities only at the input channels.
Even though the disturbance model compensates for some
of the mismatches, the real system presents much more
complex non-linear behavior. The focus was on simplifying
the tuning procedure to obtain suitable observer and
disturbance model parameters, and despite uncertainty in
the modeling was not explicitly taken into account, yet the
MPC showed robust behavior during all the experiments.

5. CONCLUSION

A complete output feedback MPC tuning method was
introduced that considerably reduces the tuning effort of
an unconstrained linear output feedback MPC formulation
by translating the MPC tuning problem into a frequency
domain tracking problem. It was shown that a desired
feedback loop can be designed in the observer such that
it reflects stability against disturbances. It was also shown
that the proposed disturbance model and observer improve
the predictions used in MPC. The desired feedback loop
can be obtained by making use of H, control techniques
and under certain conditions the desired feedback loop can
be perfectly recovered.

The main goal of the experiments was to show that the
tuning effort of the output feedback MPC for such a com-
plex system can be reduced to a frequency domain design

problem. Further theoretical analysis of the loop recovery
in presence of constraints and other MPC formulations,
remains as future work for research.
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