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Abstract: In this paper, we introduce an Infinitesimal Perturbation Analysis (IPA) estimator
with jackknifing to estimate quantile sensitivities, and theoretically prove the two-fold jackknife
method reduces bias by eliminating the order 1/n bias in the original IPA estimator. Numerical
examples in finance on portfolio return and options pricing are presented to illustrate the
superiority of the new estimator over the original IPA estimator, especially for high and low
quantile levels. Antithetic variates are used to further reduce the variance.
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1. INTRODUCTION

Quantile and quantile-related performance measures play
an important role in many fields. For example, the quantile
known as Value-at-Risk is used to measure the risk of loss
of a portfolio in the finance industry. In the service indus-
try, quantiles are used to measure the service quality level.
The most common method for estimating the quantile uses
order statistics, introduced by Serfling (1980) and David
(1981).

Simulation optimization problems that contain quantiles
often require estimates of quantile sensitivities. The clas-
sical gradient estimation methods (cf. Fu (2006)) can be
applied in quantile sensitivity estimation. Hong (2009)
used Infinitesimal Perturbation Analysis (IPA) to provide
a batched estimator to estimate the quantile sensitivities.
Jiang and Fu (2013) presented an alternative more direct
derivation of the IPA estimators for both batched and un-
batched estimators. Fu, Hong and Hu (2010) applied con-
ditional Monte Carlo to derive a more general estimator
with a wider applicability and improved convergence rate.
Heidergott and Volk-Makarewicz (2010) used measure-
valued differentiation, i.e., the weak derivatives method,
in estimating quantile sensitivities for pricing options.

In this paper, we consider the IPA estimator and apply
jackknifing to reduce bias in quantile sensitivity estima-
tion, analogous to what was done for quantile estimation
by Seila (1982). A thorough review of the jackknife
method can be found in Miller (1974). The rest of the
paper is organized as follows. In section 2, we briefly review

? Guangxin Jiang and Chenglong Xu were supported by NSF of
China (11171256) and Shanghai Education Committee E-Research
Project E03004. Michael C. Fu was supported in part by the
National Science Foundation under Grants CMMI-0856256 and
EECS-0901543 and by the Air Force Office of Scientific Research
under Grant FA9550-10-1-0340.

the IPA estimator of quantile sensitivities. In section 3, the
jackknife method is applied to the IPA estimator, and we
provide a theoretical proof to show the reduction of the
bias from O(n−1) to O(n−2). In section 4, two numerical
examples are given to show the effectiveness of the new
jackknife estimator. Section 5 is the conclusion.

2. IPA ESTIMATOR

Let h(X(θ); θ) be a performance function, where X(θ) is a
vector of random variables defined on a given probability
space (Ω,F ,P) and θ ∈ Θ ⊂ R is a parameter. Let F (x; θ)
denote the distribution function of h(X(θ); θ), and let qα
denote the α-quantile of h(X(θ); θ) for any 0 < α < 1, i.e.,
F (qα; θ) = Pr{h(X(θ); θ) ≤ qα} = α. Then, the quantile
sensitivity is given by

q′α =
∂2F (qα; θ)

∂1F (qα; θ)
, (1)

where ∂1 and ∂2 denote the partial differentiation with
respect to the first and second argument of a function
respectively. This equation is quite similar to the defini-
tion of the classical IPA estimator (cf. Suri and Zazanis
(1988)). To present the IPA estimator for the quantile
sensitivity, the lth-order statistic from a set of i.i.d random
variables will be denoted using the subscript (l), i.e., for a
sample of size n, and h(X(θ); θ) will often be abbreviated
as simply h in following.

h(1) ≤ h(2) ≤ · · · ≤ h(dαne) ≤ · · · ≤ h(n), (2)

and let q̂nα , h(dαne) be the standard α-quantile estimator
for h, and p̂nα = dnαe/(n+ 1) be the corresponding
probability of q̂nα. Then (cf. Serfling (1980))

lim
n→∞

q̂nα = qα w.p.1,

lim
n→∞

p̂nα = α w.p.1. (3)
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Let dh/dθ denote the sample derivative obtained by taking
partial derivatives directly from the performance function
h. For example, h = θZ1 +Z2, dh/dθ = d(θZ1 + Z2)/dθ =
Z1. From sequence (2), the corresponding derivative se-
quence is given by

dh(1)

dθ
,
dh(2)

dθ
, . . . ,

dh(dαne)

dθ
, . . . ,

dh(n)

dθ
. (4)

Assume: (i) In a neighborhood of x = qα, F (x; θ) is con-
tinuously differentiable with respect to both the first argu-
ment and the second argument, and the density ∂1F (x; θ)
is strictly positive for each θ ∈ Θ; (ii) h(X(θ); θ) is differ-
entiable w.p.1 with respect to θ ∈ Θ. Generally, the c.d.f.
of h is difficult to obtain, whereas the IPA estimator of h
is easy. The relationship between the IPA estimator and
the partial derivatives of the c.d.f. is given by (Jiang and
Fu , 2013, Theorem 1)

ϕ(y; θ) := E

[
dh(X(θ); θ)

dθ

∣∣∣∣h(X(θ); θ) = y

]
= −∂2F (y; θ)

∂1F (y; θ)
,

(5)
which is slightly different from Suri and Zazanis (1988),
since the performance function here is more complicated.
Define the IPA estimator In := dh(dαne)/dθ for sample size
n. Since

E[In] = E[ϕ(q̂nα; θ)]→ E[qα; θ] = q′α as n→∞, (6)

we need to batch the IPA estimator, with the batched IPA
estimator corresponding to k independent batches given
by

q̂′
n,k

α =
1

k

k∑
i=1

In,i, (7)

where (In,i, i = 1, 2, . . . , k) are independent realizations of
the IPA estimator In.

3. JACKKNIFE METHOD FOR IPA ESTIMATOR

By Lemma 2 in Jiang and Fu (2013), if sup
n
E[I2n] < ∞,

the IPA estimator is asymptotically unbiased, i.e.,

E[In]→ q′α as n→∞. (8)

However, in practice, n is finite and the finite estimator is
biased, which can lead to simulation coverage probabilities
less than the theoretical average value for confidence
intervals. Especially in high and low quantile sensitivity
estimation, the accuracy of the estimator drops off quickly
when the probability level α is close to 1 or 0. The effects
of such bias are evident in the numerical results shown
in Fig.5 in Hong (2009). In this section, we introduce a
simple method, the two-fold jackknife method, which has
been used by Seila (1982) to estimate the quantile of the
waiting time in an M/M/1 queue, to reduce the bias in
estimating the quantile sensitivities.

Suppose there are n samples in the ith batch, and In,i is
the quantile sensitivity estimator. Let I1n,i and I2n,i be the
quantile sensitivity estimators computed from the first n/2
and second n/2 samples. The jackknife quantile sensitivity
estimator of the ith batch Jn,i is given by

Jn,i = 2In,i −
1

2
(I1n,i + I2n,i). (9)

We abbreviate Jn,i by Jn in the following; similarly for I1n,
I2n and In. If the expected value of the estimator has the
form

E[In] = q′α + C/n+O(n−2), (10)
for some constant C, then E[Jn] − q′α = O(n−2), where
An = O(Bn) as n → ∞ denotes limn→∞ sup |An/Bn| <
∞. However in our setting, C also depends on n, so the
classical approach cannot be used to prove that the jack-
knife method reduces bias, and an alternative approach
is required. To prove the main theorem, the following
two lemmas are needed. Lemma 3.1 provides the bias
representation of the quantile estimator, with the proof
provided in Appendix A.

Lemma 3.1. Let F−1(·, θ) be the inverse of the c.d.f of
h(X; θ). Suppose A is an open set which contains qα, and
for t ∈ A, f(t; θ) is twice continuously differentiable and
f(t; θ) > 0. Then,

E[q̂nα − qα] = (F−1)′(α; θ)(p̂nα − α)

+
p̂nα(1− p̂nα)

2(n+ 2)
(F−1)′′(p̂nα; θ) +O(n−2), (11)

Var[q̂nα − qα] =
p̂nα(1− p̂nα)

n+ 1

(
(F−1)(p̂nα; θ)

)2
+O(n−2).

Remark By (11), it is easy to show that the two-fold
jackknife method reduces bias in quantile estimation. Let
the quantile estimator q̂nα represent the estimator derived

from n samples, q̂
n/2
α,1 and q̂

n/2
α,2 represent the estimators

derived from the first and second n/2 samples. Then it is

easy to prove E[2q̂nα − 1/2(q̂
n/2
α,1 + q̂

n/2
α,2 )] − qα = O(n−2).

Seila (1982) considers the two-fold jackknife estimator in
regenerative processes rather than i.i.d random variables,
so the bias representation in our setting cannot be written
as (11).

By Lemma 3.1, we can derive the bias representation for
the quantile sensitivity estimator given in Lemma 3.2. The
proof of this lemma is provided in Appendix B.

Lemma 3.2. In addition to the conditions of Lemma 3.1,
assume ϕ(t; θ) is twice differentiable with respect to t and
|∂1ϕ(t; θ)| ≤M and |∂21ϕ(t; θ)| ≤M for M > 0. Then,

E[In]− q′α = ∂1ϕ(qα; θ)

(
(F−1)′(α; θ)(p̂nα − α)

+
p̂nα(1− p̂nα)

2(n+ 2)
(F−1)′′(p̂nα; θ)

)
+
∂21ϕ(q̃α; θ)

2
E[(q̂nα − qα)2]

+O(n−2),
(12)

where q̃α is between qα and E[q̂nα].

Based on Lemma 3.1 and Lemma 3.2, Theorem 3.3 gives
the bias of the jackknife estimator, with the proof provided
in Appendix C.

Theorem 3.3. In addition to the conditions of Lemma 3.1,
if ϕ(t; θ) is thrice differentiable with respect to t, and

|∂(i)1 ϕ(t; θ)| ≤ M, i = 1, 2, 3 for some M > 0, then E[Jn]
is O(n−2) for nα/2 an integer, where Jn is the two-fold
jackknife estimator defined by (9).

Remark (i) By Theorem 3.3, even though the coefficient
of term 1/n in equation (10) is not constant, we can still
prove that the jackknife method can eliminate the order
1/n term. (ii) The integrality condition can be used to
determine the minimum batch size, i.e., nα/2 should be an
integer. For example, for α = 0.91, the minimum n is 200.
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(iii) All the conditions in Theorem 3.3 are quite common
and almost the same as in Hong (2009) and Jiang and Fu
(2013), which means the jackknife method is valid as long
as the original estimator works in estimating the quantile
sensitivities.

4. NUMERICAL EXPERIMENT

In this section, we use two numerical examples to test our
results. The first example is the portfolio return model in
Hong (2009), and we compare the bias reduction effect
with his results. The second example is the α-quantile of
an option.

4.1 Portfolio Return

It is well known that the jackknife method may inflate the
variance of the estimator. In this example, we introduce
antithetic variates to reduce the variance of the estimator.
For details of the antithetic variates method, refer to
Glasserman (2004). In this example, when we generate m
random vectors by X = F−1(U), correspondingly we can

generate another m random vectors by X̃ = F−1(1− U).

Let XAV = X/2 + X̃/2 be the new random vector. Note
that the antithetic estimator uses approximately twice the
effort required to generate original estimator, so when
we compare these two estimators, we should compare n
replications of the antithetic estimator with 2n replications
of the original estimator.

Consider a portfolio of three assets. The returns of the
assets are denoted by X1, X2 and X3. The portfolio return
is

h(X; θ) = θ1X1 + θ2X2 + θ3X3,

where θ1, θ2 and θ3 are weights of the corresponding assets
in this portfolio. Assume that X = (X1, X2, X3) follows a
multivariate normal distribution with mean vector µ =
(0.06, 0.15, 0.25) and variance covariance matrix

Σ =

(
0.02

0.10
0.22

)(
1 −0.3 −0.2

−0.3 1 0.2
−0.2 0.2 1

)(
0.02

0.10
0.22

)
.

With θ = (θ1, θ2, θ3) = (0.2, 0.3, 0.5), we wish to estimate
the quantile sensitivity with respect to θ3. Since the dis-
tribution of h(X; θ) is also a normal distribution, we can
obtain the analytical solution of the quantile sensitivity
with respect to θ3, which is used only for evaluating the
quality of the simulated estimates. Using the same batch
size n = 200 and the same number of batches k = 200
as in Hong (2009), the results are based on 1000 repli-
cations. We compare simulation bias, probability cover-
age, and mean square error (MSE) for four estimators:
the original IPA estimator (nojack-nonantithetic in the
figure), jackknife IPA estimator (jack-nonantithetic), an-
tithetic IPA estimator (nojack+antithetic) and jackknife
with antithetic IPA estimator (jack+antithetic).

Fig. 1 shows that the jackknife method reduces bias
greatly and improves the simulation coverage probabilities
significantly for high and low quantile levels, bringing the
coverage quite close to the theoretical level of 90%.

Fig. 1. Bias and coverage probabilities (Ex.1)
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Fig. 2. MSE of estimates (Ex.1)
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Although jackknifing reduces bias, it increases the variance
of the estimator, so as shown in the figure, overall MSE
increases except on the extremes. Antithetic variates helps
reducing the gap. Although the jackknifing with antithetic
IPA estimator has slightly larger MSE than the original
IPA estimator, it reduces the bias at the extremes dramat-
ically and improves the coverage probabilities significantly.

4.2 European Call Options

This example considers quantile sensitivities of European
call options. The underlying asset of the option is driven
by geometric Brownian motion (GBM)

dSt = rStdt+ σStdWt, (13)

where r is a constant interest rate and σ is a constant
volatility. Defining x+ = max(x, 0), the payoff function is

V = e−rT (ST −K)+, (14)

where T is the maturity of this option and K is the strike
price. For GBM, an explicit expression for the asset price
is available, given by

St = S0e
(r− 1

2σ
2)T+σ

√
TZ , (15)
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where Z is a standard normal random variable and S0 is
the initial price of the asset.

The IPA estimator dV/dθ is found by differentiating (14),

dV

dθ
=

[
d

dθ

(
e−rT

)]
(ST −K)

+

+1{ST ≥ K}e−rT
d

dθ
(ST −K) . (16)

If we are interested in the sensitivity of the α-quantile of V
with respect to the initial stock price S0, the IPA estimator
is given by exp(−rT )ST /S01{ST ≥ K}, and the true value
of the quantile sensitivity of V is given by

e−rT
SαT
S0

1{SαT ≥ K}, (17)

where SαT = S0 exp
(

(r − 1
2σ

2)T + σ
√
Tzα

)
, and zα is the

α-quantile of the standard normal distribution. In the
numerical experiments, S0 = 100, K = 100, r = 0.02,
σ = 0.1, T = 1, the batch size is n = 200, the number
of batches is k = 200, and the results are based on 1000
independent replications. Since low quantile sensitivities
are 0, we are interested in the high quantile sensitivities,
and the results are shown in Fig. 3 and Table 1.

Fig. 3. Bias and coverage probabilities (Ex.2)
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The top panel in Fig. 3 shows the jackknife method
provides significant bias reduction, as the bias is almost
reduced to 0 (when α < 0.95). In the bottom panel, the
jackknifed IPA estimator basically achieves the theoretical
coverage level of 90%, whereas the original estimator shows
poor coverage probability due to the bias in estimation.
For this problem, Table 1 indicates that unlike the last
example, the bias dominates the MSE, so the reduction of
bias also decreases the overall MSE substantially.

Table 1. MSE of estimates (×10−6)

α 0.7 0.75 0.8 0.85 0.9

No jackknife 1.07 1.23 1.42 2.15 3.20
jackknife 0.65 0.68 0.76 0.99 1.34

α 0.95 0.96 0.97 0.98 0.99

No jackknife 8.52 14.3 19.0 40.2 144.1
jackknife 2.40 2.61 3.68 5.76 13.5

5. CONCLUDING REMARKS

In this paper, we have presented a new IPA estimator
for quantile sensitivity estimation using jackknifing, which
provably reduces bias by eliminating the order O(n−1)
bias in the original IPA estimator. The jackknife method
is easy to apply and does not rely on special conditions.
Two numerical experiments in finance are presented to
illustrate the effectiveness of the jackknife method. The
numerical results demonstrate that the jackknife method
reduces bias significantly and improves the performance of
the IPA estimator, especially for high and low quantile lev-
els. Antithetic variates was shown to reduce the additional
variance introduced by using jackknifing.

The framework in this paper cannot be directly applied
to steady-state performance measures, since there is no
Taylor series expansion for the quantile in dependent se-
quences such as the steady-state waiting time of a G/G/1
queue. However, this framework can be used for other
derivative estimation methods, including the score func-
tion/likelihood ratio method and smoothed perturbation
analysis, which are fruitful avenues for future research.

REFERENCES

Bahadur, R. R. (1966). A note on quantiles in large
samples. The Annals of Mathematical Statistics, 37,
577–580.

David, H. (1981). Order Statistics, 2nd ed. Wiley, New
York.

Fu, M. C. (2006). Gradient estimation. S. G. Henderson,
B. L. Nelson, eds. Handbooks in Operations Research
and Management Science: Simulation, Chap. 19. Else-
vier, Amsterdam, 575-616.

Fu, M. C., Hong, L. J., and Hu, J. Q. (2010). Conditional
Monte Carlo estimation of quantile sensitivities. Man-
agement Science, 55, 2019-2027.

Glasserman, P. (2004). Monte Carlo Simulation in Finan-
cial Engineering. Springer, New York.

Hong, L. J. (2009). Estimating quantile sensitivities.
Operations Research, 57, 118-130.

Heidergott, B. and Volk-Makarewicz, W. (2012). Sensi-
tivity analysis of quantiles. AENORM, 2012, 26-31.
http://www.aenorm.nl/editions/?edt=3&art=18

Jiang, G. and Fu, M. C. (2013). Technical Note: On
estimating quantile sensitivities via infinitesimal pertur-
bation analysis. Unpublished, submitted for publication.

Miller, R. G. (1974). The jackknife: A review. Biometrika,
61, 1-16.

Serfling, R. J. (1980). Approximation Theorems of Math-
ematical Statistics. Wiley, New York.

Seila, A. F. (1982). A batching approach to quantile
estimation in regenerative simulations. Management
Science, 28, 573–581.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10466



Suri, R. and Zazanis, M. A. 1988. Perturbation analysis
gives strongly consistent sensitivity estimates for the
M/G/1 queue. Management Science, 34, 39–64.

Appendix A. PROOF OF LEMMA 3.1

Since f(t; θ) is thrice continuously differentiable and
f(t; θ) > 0,

(F−1)′(p̂nα; θ) =
1

f(F−1(p̂nα; θ); θ)
,

(F−1)′′(p̂nα; θ) = − f
′(F−1(p̂nα; θ); θ)

f3(F−1(p̂nα; θ); θ)
,

(F−1)′′′(p̂nα; θ) =
3f ′(F−1(p̂nα; θ); θ)

f5(F−1(p̂nα; θ); θ)

− f ′′(F−1(p̂nα; θ); θ)f(F−1(p̂nα; θ); θ)

f5(F−1(p̂nα; θ); θ)
,

(F−1)′′′′(p̂nα; θ) =
8f ′′(F−1(p̂nα; θ); θ)f(F−1(p̂nα; θ); θ)

f7(F−1(p̂nα; θ); θ)

− f ′′′(F−1(p̂nα; θ); θ)f2(F−1(p̂nα; θ); θ)

f7(F−1(p̂nα; θ); θ)

− f ′′(F−1(p̂nα; θ); θ)f ′(F−1(p̂nα; θ); θ)f(F−1(p̂nα; θ); θ)

f7(F−1(p̂nα; θ); θ)

− 15f ′(F−1(p̂nα; θ); θ)

f7(F−1(p̂nα; θ); θ)
.

(A.1)
Since f(t; θ) is continuous for t ∈ A, F−1(y; θ) is con-
tinuous in a neighborhood of y = α. Furthermore, since
|p̂nα − α| ≤ 1/(n + 1), we can guarantee p̂nα ∈ A for
large n. Then (F−1)(i)(p̂nα; θ); θ), i = 1, 2, 3, 4, exist and are
bounded for large n. By equation (4.6.3) in David (1981),

E[q̂nα] = F−1(p̂nα; θ) +
p̂nα(1− p̂nα)

2(n+ 2)
(F−1)′′(p̂nα; θ)

+
p̂nα(1− p̂nα)

(n+ 2)2

(
(
1

2
− p̂nα)(F−1)′′′(p̂nα; θ)

+
1

8
p̂nα(1− p̂nα)(F−1)

′′′′
(p̂nα; θ)

)
+ o(n−2)

= F−1(p̂nα; θ) +
p̂nα(1− p̂nα)

2(n+ 2)
(F−1)′′(p̂nα; θ) +O(n−2).

(A.2)
Then,

E[q̂nα − qα] = F−1(p̂nα; θ)− F−1(α; θ)

+
p̂nα(1− p̂nα)

2(n+ 2)
(F−1)′′(p̂nα; θ) +O(n−2)

= (F−1)′(α; θ)(p̂nα − α) +
(F−1)′′(α̃; θ)

2
(p̂nα − α)2

+
p̂nα(1− p̂nα)

2(n+ 2)
(F−1)′′(p̂nα; θ) +O(n−2)

= (F−1)′(α; θ)(p̂nα − α) +
p̂nα(1− p̂nα)

2(n+ 2)
(F−1)′′(p̂nα; θ)

+O(n−2).
(A.3)

The second equality applies a Taylor series expansion,
where α̃ is between α and p̂nα. The third equality holds
since (p̂nα−α)2 ≤ 1/(n+ 1)2; hence (F−1)′′(α; θ)(p̂nα−α)2

is O(n−2). Similarly, we can also prove

Var[q̂nα − qα] =
p̂nα(1− p̂nα)

n+ 1

(
(F−1)(p̂nα; θ)

)2
+O(n−2).

(A.4)

Appendix B. PROOF OF LEMMA 3.2

By Theorem 1 in Jiang and Fu (2013), E[In] = E[ϕ(q̂nα; θ)]
and q′α = ϕ(qα; θ). Because ϕ(t; θ) is twice differentiable
with respect to t,

E[In]− q′α = E[ϕ(q̂nα; θ)− ϕ(qα; θ)]

= ∂1ϕ(qα; θ)E [q̂nα − qα] +
∂21ϕ(q̃α, θ)

2
E
[
(q̂nα − qα)2

]
= ∂1ϕ(qα; θ)

(
(F−1)′(α; θ)(p̂nα − α)

+
p̂nα(1− p̂nα)

2(n+ 2)
(F−1)′′(p̂nα; θ) +O(n−2)

)
+
∂21ϕ(q̃α, θ)

2
E
[
(q̂nα − qα)2

]
= ∂1ϕ(qα; θ)

(
(F−1)′(α; θ)(p̂nα − α)

+
p̂nα(1− p̂nα)

2(n+ 2)
(F−1)′′(p̂nα; θ)

)
+
∂21ϕ(q̃α, θ)

2
E
[
(q̂nα − qα)2

]
+O(n−2). (B.1)

The second equality is a Taylor series expansion, where
q̃α is between qα and E[q̂nα] . The third equality holds
by Lemma 3.1, and the fourth equality holds because
∂1ϕ(qα; θ) is bounded.

Appendix C. PROOF OF THEOREM 3.3

Since Jn,i = 2In,i − 1/2(I1n,i + I2n,i),

E[Jn]− q′α = 2E[In,i − q′α]− 1

2
(E[I1n,i − q′α] + E[I2n,i − q′α])

= 2

{
∂1ϕ(qα; θ)

(
(F−1)′(α; θ)(p̂nα − α)

+
p̂nα(1− p̂nα)

2(n+ 2)
(F−1)′′(p̂nα; θ)

)
+
∂21ϕ(q̃α; θ)

2
E[(q̂nα − qα)2] +O(n−2)

}
.

−
{
∂1ϕ(qα; θ)

(
(F−1)′(α; θ)(p̂n/2α − α)

+
p̂
n/2
α (1− p̂n/2α )

2(n/2 + 2)
(F−1)′′(p̂n/2α ; θ)

)

+
1

4
∂21ϕ(q̃1α; θ)E[(q̂

n/2
α,1 − qα)2]

+
1

4
∂21ϕ(q̃2α; θ)E[(q̂

n/2
α,2 − qα)2]

}
−O(n−2)

=

{
∂1ϕ(qα; θ)(F−1)′(α; θ)

(
2(p̂nα − α)− (p̂n/2α − α)

)}
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+

{
∂1ϕ(qα; θ)

(
p̂nα(1− p̂nα)

(n+ 2)
(F−1)′′(p̂nα; θ)

− p̂
n/2
α (1− p̂n/2α )

2(n/2 + 2)
(F−1)′′(p̂n/2α ; θ)

)}

+

{
∂21ϕ(q̃α; θ)E[(q̂nα − qα)2]

−1

4

(
∂21ϕ(q̃1α; θ)E[(q̂

n/2
α,1 − qα)2]

+ ∂21ϕ(q̃2α; θ)E[(q̂
n/2
α,2 − qα)2]

)}
+O(n−2), (C.1)

where q̂
n/2
α,1 and q̂

n/2
α,1 are the quantile sensitivity estimators

computed from the first n/2 and second n/2 samples.
If dnα/2e is an integer, dnαe is also an integer, and

p̂
n/2
α = nα/(n + 2) and p̂nα = nα/(n + 1). Now, consider

the first term (in the first braces) on the left hand side of
the third equality in equation (C.1):

f1 : = ∂1ϕ(qα; θ)(F−1)′(α; θ)
(

2(p̂nα − α)− (p̂n/2α − α)
)

= ∂1ϕ(qα; θ)(F−1)′(α; θ)

(
2nα

n+ 1
− nα

n+ 2
− α

)
= ∂1ϕ(qα; θ)(F−1)′(α; θ)

(
−2α

(n+ 1)(n+ 2)

)
= O(n−2).

(C.2)
The third equality holds since ∂1ϕ(qα; θ) and (F−1)′(α; θ)
are both bounded.

Consider the second term (in the second braces) on the
left hand side of the third equality in equation (C.1):

f2 := ∂1ϕ(qα; θ)

(
p̂nα(1− p̂nα)

(n+ 2)
(F−1)′′(p̂nα; θ)

− p̂
n/2
α (1− p̂n/2α )

2(n/2 + 2)
(F−1)′′(p̂n/2α ; θ)

)

= ∂1ϕ(qα; θ)

(
p̂nα(1− p̂nα)

(n+ 2)
(F−1)′′(p̂nα; θ)

− p̂
n
α(1− p̂nα)

(n+ 2)
(F−1)′′(p̂n/2α ; θ) +

p̂nα(1− p̂nα)

(n+ 2)
(F−1)′′(p̂n/2α ; θ)

− p̂
n/2
α (1− p̂n/2α )

2(n/2 + 2)
(F−1)′′(p̂n/2α ; θ)

)

= ∂1ϕ(qα; θ)
p̂nα(1− p̂nα)

(n+ 2)

(
(F−1)′′(p̂nα; θ)− (F−1)′′(p̂n/2α ; θ)

)
+(F−1)′′(p̂n/2α ; θ)

(
p̂nα(1− p̂nα)

(n+ 2)
− p̂

n/2
α (1− p̂n/2α )

2(n/2 + 2)

)

= ∂1ϕ(qα; θ)
p̂nα(1− p̂nα)

(n+ 2)(
(F−1)′′′(p̂n/2α ; θ)(p̂nα − p̂n/2α ) + o(n−1)

)
+(F−1)′′(p̂n/2α ; θ)

(
nα(n+ 1− nα)

(n+ 1)2(n+ 2)
− nα(n+ 2− nα)

(n+ 2)2(n+ 4)

)

= ∂1ϕ(qα; θ)
p̂nα(1− p̂nα)

(n+ 2)(
(F−1)′′′(p̂n/2α ; θ)(

nα

(n+ 1)(n+ 2)
) + o(n−1)

)
+(F−1)′′(p̂n/2α ; θ)

(
3n3(α− 4α2) + 9n2(α− 7α2) + 6nα

(n+ 1)2(n+ 2)2(n+ 4)

)
= O(n−2).

Consider the third term (in the third braces) on the left-
hand side of the third equality in equation (C.1):

f3 := ∂21ϕ(q̃α; θ)E[(q̂nα − qα)2]−1

2
∂21ϕ(q̃1α; θ)E[(q̂

n/2
α,1 − qα)2]

=

{
∂21ϕ(q̃α; θ)E[(q̂nα − qα)2]−1

2
∂21ϕ(q̃1α; θ)E[(q̂

n/2
α,1 −qα)2]

}
+

1

2

{
∂21ϕ(q̃α; θ)E[(q̂

n/2
α,1 −qα)2]−∂21ϕ(q̃1α; θ)E[(q̂

n/2
α,1 −qα)2]

}
.

(C.3)

For the first term of equation (C.3), since |∂21ϕ(q̃α; θ)| ≤
M ,

g1 := ∂21ϕ(q̃α; θ)E[(q̂nα − qα)2]−1

2
∂21ϕ(q̃α; θ)E[(q̂

n/2
α,1 − qα)2]

≤M
∣∣∣∣E [(q̂nα − qα)2

]
− 1

2
E
[
(q̂
n/2
α,1 − qα)2

]∣∣∣∣
= M

∣∣∣(E [q̂nα − qα])
2

+ Var [q̂nα − qα]

−1

2

(
E
[
q̂
n/2
α,1 − qα

])2
− 1

2
Var

[
q̂
n/2
α,1 − qα

]∣∣∣∣ .
Since (E [q̂nα − qα])

2
and

(
E
[
q̂
n/2
α − qα

])2
are bothO(n−2),

by Lemma 3.1,

Var [q̂nα − qα]− 1

2
Var

[
q̂
n/2
α,1 − qα

]
=
nα(n+ 1− nα)

(n+ 1)3
− nα(n+ 2− nα)

(n+ 2)3
+O(n−2)

= O(n−2).

Therefore g1 is O(n−2). Now consider the second term of
equation (C.3):

g2 := ∂21ϕ(q̃α; θ)E[(q̂
n/2
α,1 − qα)2]− ∂21ϕ(q̃1α; θ)E[(q̂

n/2
α,1 − qα)2]

=
(
∂31ϕ(q̃1α; θ)(q̃α − q̃1α) + o(q̃α − q̃1α)

)
E
[
(q̂n/2α − qα)2

]
.

(C.4)

Since q̃α is between qα and E[In], |E[In] − q̃α| ≤
|E[In] − qα| = O(n−1), so |E[In,1] − q̃1α| is O(n−1). Then∣∣E[In]− q̃1α

∣∣ =
∣∣E[In]− qα + qα − E[In,1] + E[In,1]− q̃1α

∣∣ ≤
|E[In]− qα|+ |E[In,1]− qα|+

∣∣E[In,1]− q̃1α
∣∣ = O(n−1), so∣∣q̃α − q̃1α∣∣ ≤ |E[In]− q̃α|+ |E[In]− q̃1α| = O(n−1). (C.5)

Because E
[
(q̂
n/2
α − qα)2

]
is O(n−1), by equation (C.5), g2

is O(n−2), then f3 = g1 + g2 is O(n−2). Similarly, f4 :={
∂21ϕ(q̃α; θ)E[(q̂nα − qα)2]− 1

2∂
2
1ϕ(q̃2α; θ)E[(q̂

n/2
α,2 − qα)2]

}
is

also O(n−2). Since f1, f2, f3 and f4 are all O(n−2), E[Jn]−
q′α = f1 + f2 + f3/2 + f4/2 +O(n−2) = O(n−2).
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