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Abstract: Descriptor systems provide the natural framework for the study of a wide variety
of physical, electrical, mechanical, economical and social systems. In this paper, the response
of a Linear Time Invariant (LTI), descriptor system in discrete-time over a finite time interval
is examined, whose coefficient matrix on the right hand side of the descriptor equation has
been perturbed by a constant matrix. The response of the perturbed system is explicitly
computed using a modified version of the well known Weierstrass canonical form and a simplified
approximation formula is derived. A numerical example illustrates the findings.
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1. INTRODUCTION

In the literature of system and control theory, linear time
invariant descriptor (also known as generalized state space
or differential-algebraic) systems play a key role in the
dynamic behavior and modeling process of different type
of physical, electrical, mechanical, economical and social
systems. In the last four decades, the development of
theoretical and numerical methods that can be directly
applied to the descriptor systems have been the subject
of a large number of research projects and many different
mathematical directions have been taken.

In this paper, the Linear Time Invariant (LTI) discrete-
time descriptor system of the form

Exk+1 = Axk +Buk, k = 0, 1, 2, . . . , L (1)
is considered to be the nominal (or base) system, where
E,A ∈ Rn×n and B ∈ Rn×m. The vectors xk and uk
are respectively the state (descriptor) and input vector
sequences of the system described by (1).

If E is a singular matrix, that is if rankE = r < n,
the system (1) may be non – causal depending on the
index of the matrix E. A well known result (see Dai
[1989]), which provides a characterization of the causality
of (1), states that the system (1) is causal if and only if
deg |λE −A| = rankE.

Practically speaking, when the system (1) is causal, its
state can be decomposed into two parts corresponding to
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a pure state space system and set of algebraic constraints
(see for instance Lewis [1986], Dai [1989]). Under the
assumption of causality and regularity, with appropriate
choice of initial conditions, equation (1) is uniquely solv-
able in a forward fashion for k ∈ N.

However, the non causal case is also of particular interest
when it comes to applications such as economical models
(see Luenberger [1977]), the solution of discrete time
Riccati equation (see Bender and Laub [1987]), or systems
where the variable k is spatial rather than temporal. In
this case the usual approach (see for instance Luenberger
[1977], Lewis [1984], Dai [1989]) is to consider the response
of (1) over a finite time interval that is k = 0, 1, 2, . . . , L
for some fixed L ∈ N, given admissible initial and terminal
conditions x0, xL along with the input uk for every k in
the above interval.

For the purposes of this paper, it will be assumed that the
matrix pencil λE −A is regular, i.e. that the determinant
|λE −A| is not identically zero. Furthermore, it will be
assumed that the matrix pencil λE−A has no eigenvalues
on the unit circle.

We are particularly interested in the state response of the
perturbed version of (1)

Exk+1 = (A+ ∆A)xk +Buk, (2)

where ∆A ∈ Rn×n is the unstructured perturbation
of the matrix A. Following a similar approach to Qiu
and Davison [1992], Fang and Chang [1993], Fang et al.
[1994] and Lin et al. [2003], we are only concerned with
the perturbation of A. This can be justified by the fact
that the matrix E usually a “structure” rather than a
“parameter matrix”. Furthermore, as shown in Qiu and
Davison [1992], under certain assumptions, a perturbation
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problem where both E,A are subject to variations, can
be be transformed to an equivalent one where only the
matrix A is perturbed. Finally, (see Nye [1985], Pantelous
et al. [2011]) we shall assume that the matrices E,A have
already been appropriately scaled, thus it is reasonable to
assume that the magnitude of the perturbation is small
compared to unity, that is ‖∆A‖ = O(ε) for ε→ 0.

The relationship between (1) and (2) is of considerable
high importance in numerical analysis and theory of uncer-
tainties since it evaluates the derived accuracy of any par-
ticular method used to construct the solution of the nom-
inal system, see Nye [1985] and Pantelous et al. [2011]).

In what follows, unless otherwise stated, the norm ‖.‖ will
denote the matrix 2 - norm. By sp(.) and ρ(.), we shall
denote the spectrum and spectral radius of the matrix in
the brackets respectively.

2. COMPUTATION OF THE STATE RESPONSE

In this section, the preliminary results for the computation
of the state response of the perturbed system (2) will
be considered using elements of matrix pencil theory. As
it will be clear later, a slightly modified version of the
classical Weierstrass canonical form of the matrix pencil
λE −A corresponding to the unperturbed system (1) will
be used eventually.

Since the pencil λE − A has been assumed to be regular,
we have the following types of elementary divisors:

• Elementary divisors of the form(λ− a)
π, a ∈ C,

called finite elementary divisors, and
• Finite elementary divisors of the “dual” pencil E −
λ̂A, of the form λ̂q, which give rise to the infinite
elementary divisors of λE −A.

Denote also the m×m identity matrix by Im, the m×m
nilpotent matrix with ones on the super-diagonal and zeros
elsewhere by Nm (index of nilpotency m), and the m×m
Jordan block aIm +Nm corresponding to eigenvalue a by
Jm (a).

Then, the Weierstrass form λEw−Aw of the regular pencil
λE −A is defined by

λEw −Aw =

[
λIp − Jp 0

0 λNq − Iq

]
, (3)

where the matrix λIp − Jp consists of blocks of the form

λIp − Jp =

 λIp1 − Jp1 (a1) · · · 0
...

. . .
...

0 · · · λIpv − Jpv (av)

 ,
(4)

corresponding to the finite elementary divisors of λE−A,
of the form (λ− a1)

p1 , . . . , (λ− aν)
pν , where

∑ν
j=1 pj = p.

The second block λNq − Iq corresponds to the infinite
elementary divisors λ̂q1 , . . . , λ̂qσ , where

∑σ
j=1 qj = q, of

λE −A and consists of blocks of the form

λNq − Iq =

 λNq1 − Iq1 · · · 0
...

. . .
...

0 · · · λNqσ − Iqσ

 . (5)

In this respect, there exist P,Q square invertible matrices
transforming the pencil λE−A to its Weierstrass canonical
form (see for instance Gantmacher [1959]), that is

PEQ =

[
Ip 0
0 Nq

]
, PAQ =

[
Jp 0
0 Iq

]
, (6)

for Ip, Jp, Nq and Iq, where

Ip =

 Ip1 · · · 0
...

. . .
...

0 · · · Ipv

 , Jp =

 Jp1(a1) · · · 0
...

. . .
...

0 · · · Jpv (av)

 ,
Nq =

Nq1 · · · 0
...

. . .
...

0 · · · Nqσ

 , and Iq =

 Iq1 · · · 0
...

. . .
...

0 · · · Iqσ


Note that

∑ν
j=1 pj = p and

∑σ
j=1 qj = q, where p+ q = n.

With the following lemma, a very useful, modified version
of (6) is derived.
Lemma 1. Given a regular matrix pencil λE−A, with no
eigenvalues on the unit circle, there exist square invertible
matrices U, V such that

UEV =

[
Iµ 0
0 JB

]
, UAV =

[
JF 0
0 In−µ

]
, (7)

where JF ∈ Rµ×µ, JB ∈ R(n−µ)×(n−µ) are in Jordan
canonical form and satisfy ρ(JF ) < 1 and ρ(JB) < 1.

Proof. In the standard decomposition (6), we rearrange
the blocks Jµ, using an appropriate permutation similarity
matrix S to obtain

SJpS
−1 =

[
JF 0
0 J̄B

]
,

such that ∀ai ∈ sp(JF ), |ai| < 1, while ∀ai ∈ sp(J̄B),
|ai| > 1. Thus, ρ(JF ) ≤ 1 and J̄B is invertible and
ρ(J̄−1B ) < 1.

Now, let M be a square invertible matrix, such that
MJ̄−1B M−1 = J̃B , where J̃B is in Jordan canonical form.
If we set

U = diag[Iµ,MJ̄−1B , Iq] diag[S, Iq]Q,

V = P diag[S−1, Iq] diag[Iµ,M
−1, Iq],

it is easy to verify that (7) holds for

JB =

[
J̃B 0
0 N

]
.

Taking into account the definitions of J̃B and N , it is
trivial to verify that ρ(JB) < 1. �

Using the above result we set accordingly

UB =

[
BF
BB

]
,

[
yk
zk

]
= V −1xk. (8)

With the above notation and the assumption of absence
of unitary eigenvalues on λE − A, the descriptor system
(1) can be decomposed into a forward and a backward
subsystem

yk+1 = JF yk +BFuk (9)
JBzk+1 = zk +BBuk. (10)

In view of the above decomposition, it is natural to treat
the problem as a two point boundary condition problem
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over the finite time interval [0, L]. The subsystem corre-
sponding to (9) expresses the propagation of the initial
conditions y0 in the forward direction, while (10) reflects
the propagation of the final conditions zL backwards. No-
tice that both forward and backward transition matrices
JF ,JB , are by construction Schur stable.

Following an approach similar to that of Dai [1989], the
following result can be derived,
Lemma 2. The responses of subsystems (9) and (10) are
respectively

yk = JkF y0 +

k−1∑
i=0

Jk−i−1F BFui (11)

and

zk = JL−kB zL −
L−k−1∑
i=0

J iBBFuk+i, (12)

where the initial conditions, y0 and zL, can be arbitrarily
chosen. Furthermore, the overall state response of (1) is
given by

xk = V1

(
JkF y0 +

k−1∑
i=0

Jk−i−1F BFui

)

+ V2

(
JL−kB zL −

L−k−1∑
i=0

J iBBFuk+i

)
, (13)

where V1, V2 are block columns of the matrix V of appro-
priate dimensions.

Proof. Equation (9) is essentially an ordinary state space
system, so after some simple algebraic calculations, it gives
rise to a response of the form (11). On the other hand for
equation (10), the formula (12) is derived by propagating
backwardly the final condition zL; see also Dai [1989]. The
overall response (13) is then easily given in the view of (8).
�

We now focus on the computation of the response of the
perturbed equation (2). Let us assume that

U∆AV =

[
∆11 ∆12

∆21 ∆22

]
, (14)

where the dimensions of ∆ij in the above partitioning
are in accordance to the ones of the matrices in the
decomposition (7).

Applying the decomposition (7) into the perturbed de-
scriptor system (2), the following two coupled subsystems
derive:

yk+1 = (JF + ∆11)yk + ∆12zk +BFuk (15)

JBzk+1 = ∆21yk + (I + ∆22)zk +BBuk (16)
In view of the above decomposition, the following result is
derived.
Lemma 3. The response of (15) is given by

yk = (JF + ∆11)ky0

+

k−1∑
i=0

(JF + ∆11)k−i−1 (∆12zi +BFui) . (17)

Assuming that (I+ ∆22) is invertible, the response of (16)
is given respectively by

zk =
[
(I + ∆22)−1JB

]L−k
zL

−
L−k−1∑
j=0

[
(I + ∆22)−1JB

]j
(∆21yk+j +BBuk+j) . (18)

Proof. The response formulas (15) and (16) derive
straightforwardly from (11) and (12) respectively, if we
consider the term ∆12zk +BFuk in (15) as the input term
BFuk in (9) and the term (I + ∆22)zk + BBuk in (16) as
the input term BFuk in (10), accordingly. �

Practically speaking, now the new challenge with both
equations (17) and (18), is raised by the fact that the
two responses are given in an implicit, coupled form, and
consequently their solution can not be calculated only
in terms of the boundary conditions and their inputs.
Fortunately enough, this difficulty is disappearing with the
proposed approximations and eventually two interesting
formulas for the computation of the response are obtained
as it will present in the next section.

3. APPROXIMATE RESPONSE

In this section we elaborate an approximate response
formula for the decomposition of the perturbed descriptor
system (2).
Lemma 4. The forward response of equation (15) is given
by

yk = (JF + ∆11)ky0 +

k−1∑
i=0

F (k − i− 1, L− i)zL

−
k−1∑
i=0

L−i−1∑
j=0

F (k − i− 1, j) (∆21yi+j +BBui+j) (19)

+

k−1∑
i=0

(JF + ∆11)k−i−1BFui,

where
F (i, j) = (JF + ∆11)i∆12

[
(I + ∆22)−1JB

]j
. (20)

The backward response of equation (16) is given by

zk =
[
(I + ∆22)−1JB

]L−k
zL +−

L−k−1∑
j=0

B(j, k + j)y0

−
L−k−1∑
j=0

k+j−1∑
i=0

B(j, k + j − i− 1) (∆12zi +BFui)

(21)

−
L−k−1∑
j=0

[
(I + ∆22)−1JB

]j
BBuk+j ,

where
B(i, j) =

[
(I + ∆22)−1JB

]i
∆21(JF + ∆11)j . (22)

Proof. Equation (19) is obtained by substituting (18) into
(17), while (21) can be obtained by applying the reverse
substitution. �

In view of the discussion so far, and particularly in the
introduction, we assume that ‖∆A‖ = O(ε), for ε → 0,
thus since ∥∥∥∥[∆11 ∆12

∆21 ∆22

]∥∥∥∥ ≤ ‖U‖ ‖∆A‖ ‖V ‖
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it reasonable to assume that the ‖∆ij‖ = O(ε). Now, since
ε � 1, it follows that‖∆ij‖ < 1 so the matrix (I + ∆22)
is invertible (see for instance lemma 2.1, Demmel [1997])
and

(I + ∆22)−1 =

∞∑
i=0

(−∆22)i, (23)

hence ∥∥(I + ∆22)−1 − (I −∆22)
∥∥ = O(ε2). (24)

Now, since ε � 1, we can neglect second order terms and
apply the following approximation

(I + ∆22)−1 ≈ I −∆22. (25)

Similar approximations can be considered for the matrices
F (i, j) and B(i, j). Thus, the following lemma derives as
a consequence of these approximations.
Lemma 5. For every i, j ∈ N, the following two expressions
hold: ∥∥∥F (i, j)− J iF∆12J

j
B

∥∥∥ = O(ε2), (26)

and ∥∥∥B(i, j)− J iB∆21J
j
F

∥∥∥ = O(ε2). (27)

Proof. If i = j = 0, then F (0, 0)−∆12 = 0, so (26) holds
trivially. Let at least one of the indices i, j be greater than
0. Taking into account the definition of F (i, j) which has
been derived from the expressions (20) and (23), it is easy
to see that

F (i, j) = (JF + ∆11)i∆12

[
(I + ∆22)−1JB

]j
= J iF∆12J

j
B +R(i, j),

where R(i, j) consists of terms, involving multiplicatively
at least one of the matrices ∆11,∆12 along with the matrix
∆12. Hence, since ‖∆ij‖ = O(ε), we get∥∥∥F (i, j)− J iF∆12J

j
B

∥∥∥ = ‖R(i, j)‖ = O(ε2).

Equation (27) follows similarly.�

In view of equations (26) and (27), if we choose to
neglect the second order terms, we can adopt the following
approximations

F (i, j) ≈ J iF∆12J
j
B , (28)

B(i, j) ≈ J iB∆21J
j
F . (29)

Furthermore, it can be easily verified that ‖F (i, j)∆21‖ =
O(ε2) and ‖B(i, j)∆12‖ = O(ε2), so we can apply the
approximations

F (i, j)∆21 ≈ 0, B(i, j)∆12 ≈ 0. (30)

Taking into account the whole discussion so far, we can
state here our main result.
Theorem 6. If ‖∆ij‖ = O(ε), for ε→ 0 and i, j = 1, 2, the
approximate response of (2) is given by

x̂k = V1ŷk + V2ẑk (31)
where

ŷk = (JF + ∆11)ky0 +

k−1∑
i=0

Jk−i−1F ∆12J
L−i
B zL (32)

−
k−1∑
i=0

L−i−1∑
j=0

Jk−i−1F ∆12J
j
BBBui+j

+

k−1∑
i=0

(JF + ∆11)k−i−1BFui

and

ẑk = [(I −∆22)JB ]
L−k

zL −
L−k−1∑
j=0

JjB∆21J
k+j
F y0

−
L−k−1∑
j=0

k+j−1∑
i=0

JjB∆21J
k+j−i−1
F BFui

−
L−k−1∑
j=0

[(I −∆22)JB ]
j
BBuk+j (33)

where V1, V2 are block columns of appropriate dimensions
of the transformation matrix V in (7).

Proof. The approximate forward and backward responses
ŷk, ẑk in (32) and (33) follow by taking into account (25),
(28), (29) and (30) combined with (19) and (21). It is clear
that

‖ŷk − yk‖ = O(ε2), ‖ẑk − zk‖ = O(ε2), (34)
hence we can write

ŷk ≈ yk, ẑk ≈ zk.

The entire approximate response x̂k, which is expressed
in the original coordinate system, can be recovered using
transformation (8). �

At this part of the section, with the following example we
illustrate the main findings of this paper.
Example 7. Consider the LTI descriptor system (2) with

E =


12.6 −4.32 6. 10.44 3.24
7.8 0.72 9. 2.76 −0.84

17.04 −7.2 14.4 24. 8.04
4.44 −2.88 2.4 7.56 3.
0.84 5.76 13.2 −2.52 −3.84

 ,

A =


22.62 −8.4 2.16 13.62 7.32
14.34 −5.4 −7.86 −4.62 1.08
22.68 −2.64 51.96 36.6 7.32
20.46 −8.16 5.88 11.58 6.6
−6.3 3.84 1.56 −12.06 −5.52

 ,

B =


−6.6
−9.48
14.04
0.6
−6.48

 ,

and the perturbation matrix is given by

∆A = 10−2 ×


−0.8 0.9 0.8 0.2 0.
0.7 −0.5 −0.7 0.7 0.4
−1. −0.7 −0.9 −0.5 1.
−0.4 0.1 0.4 0.1 0.7

1. 0.1 −1. 0.5 −0.8

 .

Applying the decomposition (7), we obtain
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U =


0.5693 −1.073 −0.3348 0.4568 0.7946
−0.2852 −0.01720 −0.05354 0.2500 −0.1537
0.4688 −0.7158 −0.09896 0.2256 0.4302
0.2295 −0.2240 −0.1644 0.3421 0.1656
0.2126 −0.2581 −0.01831 −0.1020 0.1179

 ,

V =


0.1190 −0.3514 −0.2216 0.3333 0.5556
0.6940 −0.8433 −0.4335 1.306 2.648
0.08571 0.1405 0.4127 −0.3000 −1.000
−0.3857 −0.1405 −0.4266 0 1.000

1.000 0 1.000 1.000 0

 ,

JF =

(
0.5 1
0 0.5

)
, JB =

(
0.33333 0 0

0 0 0
0 0 0

)
,

(
BF
BB

)
=


−3.15973

2.4395
−0.349468
−2.56728
−0.0383349

 .

According to (7) the perturbation matrix can be decom-
posed into the following four submatrices,

∆11 = 10−2 ×
(
−0.0461645 −0.966604

0.143594 0.189139

)
,

∆12 = 10−2 ×
(
−1.25155 0.403384 2.6623
0.396645 −0.0452686 −0.703222

)
,

∆21 = 10−3 ×

(
1.11215 −5.12927
1.76967 −3.04589
−0.266996 −1.80678

)
,

and

∆22 = 10−3 ×

(−5.61819 2.89327 14.3386
−1.72403 2.98434 8.29726
−2.73531 0.293767 5.01235

)
.

For the input uk = (0.9)k sin(0.3k), and the initial and ter-
minal conditions y0 = (0 0)

T , z50 = (0 0 0)
T respectively,

and L = 50, the state response of (2) can be approximated
by (33). The approximate response x̂k of the perturbed
system (2) can be compared with the response xk of the
unperturbed system (1).

In figures 1 - 5 we compare the approximate response x̂ik
of the perturbed system (2) to the response xik of the
unperturbed system (1), for i = 1, 2, . . . , 5. The results
are in accordance to our results

0 10 20 30 40 50
−1

−0.5

0

0.5

x1k
x̂1k

Fig. 1. Approximate perturbed x̂1k vs. unperturbed x1k

0 10 20 30 40 50

−2

0

2

x2k
x̂2k

Fig. 2. Approximate perturbed x̂2k vs. unperturbed x2k

0 10 20 30 40 50

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
x3k
x̂3k

Fig. 3. Approximate perturbed x̂3k vs. unperturbed x3k

0 10 20 30 40 50

−1.5

−1

−0.5

0

0.5

x4k
x̂4k

Fig. 4. Approximate perturbed x̂4k vs. unperturbed x4k

0 10 20 30 40 50
−2

−1

0

1

2

3 x5k
x̂5k

Fig. 5. Approximate perturbed x̂5k vs. unperturbed x5k

Finally, figure 6 shows the norm of the difference x̂k − xk.
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0
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1.5

2

·10−2

‖x̂k − xk‖

Fig. 6. Norm of the difference x̂k − xk

We would like to stress out that in the above plots the
comparison is made between the approximate response
given by formula (31) and the unperturbed response (13).
The norm of the difference x̂k−xk, is as expected of order
10−2. This should be contrasted to result of relations (34)
according to which the approximation error should be of
order 10−4. Such a comparison would probably be more
appropriate, but the computation of the exact perturbed
response using the result of Lemma 4 is quite complex in
view of the coupling between the forward and backward
subsystems.

4. CONCLUSIONS - FURTHER RESEARCH
DIRECTIONS

In this paper, an approximate formula for the computation
of the state response of a LTI descriptor system is calcu-
lated, whose coefficient matrix A is subject to a relatively
small perturbation ∆A. The approximation formula is
derived using a modified version of the well known Weier-
strass decomposition. Using this particular decomposition
we obtain a separation of the descriptor variable space into
two subspaces, corresponding to forward and backward
subsystems with stable transition matrices. In this setting,
the approximation formula is obtained by making certain
assumptions on the magnitude of the perturbation matrix.
This process is of considerable importance in numerical
analysis since it has a direct bearing upon the accuracy
of any particular method used to construct the solution of
the base system.

As directions for further research in the subject, the
following topics will be considered

• Investigation of the perturbation problem for the
more general class of possibly singular linear descrip-
tor systems with consistent and non-consistent initial
conditions. In this case, a modified version of the
Kronecker canonical form could be employed.
• Comparison of the results of the present paper to
those derived using the Drazin inverse approach for
the solution of the base system. In the literature
of descriptor (regular and singular) systems, both
Drazin inverse and matrix pencil theory approaches
have been extensively used for the solution of such
kind of systems. Inevitably, a comparison between
these two methods has its own merit.
• Finally, fuhrer numerical aspects should be consid-
ered. Orthogonal transformations, used in the com-

putation of the generalized Schur form of the matrix
pencil, would result in a decomposition that is more
appropriate for the study of the error produced by
the perturbation ∆A. Such an approach is expected to
provide more accurate error bounds for the perturbed
response.
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