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Abstract: Cube corners are used widely in position detecting devices. A cube corner is attached
to an object of interest. Then the position of the object is determined as the distance and two
angles of direction to the cube corner. Recent developments make it possible to use a cube corner
to detect the orientation of an object as well. However orientation cannot be measured directly,
instead it should be recovered from other data. The paper introduces a method of calculating
the orientation of a cube corner and shows that the method has an accuracy restricted by the
accuracy of direct measurements only. Hence it detects orientation angles of a cube corner up
to arc seconds.
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1. INTRODUCTION

Cube corners return any light ray hitting them in exactly
the opposite direction. This feature makes cube corners
used widely in position detecting devices. A cube corner
is attached to an object of interest. Then the position of
a cube corner is determined as the distance to the cube
corner and two angles of direction. Recent developments
allow determining not only the position but also the
orientation of a cube corner.

Provided a sufficient accuracy, applications of determining
orientation are rich and welcome. It suffices to mention
measuring hidden objects, controlling manipulations of
robots, directing spacecrafts towards docks and so on.
One of the problems bounding these applications is that
the parameters determining the position of an object are
measured directly, while the parameters determining the
orientation of an object need to be calculated from other
data.

To do this calculation, one should choose a set of pa-
rameters (angles) that will describe the orientation of an
object, then develop another set of parameters (measured
data) that depend on the parameters in the first set and
can be measured directly, and finally find a numerical
method that will recover the parameters in the first set
from the parameters in the second. The method should be
simple enough to admit unmanned usage and have a good
accuracy.

The paper concerns two approaches to detecting orienta-
tion. One approach can be found in Bridges et al. (2010). It
is based on viewing an image of the cube corner edges near
the apex obtained by the projection alone the optical axis.
The other approach is initiated in Matveev (2014). It again
uses the projection alone the optical axis but analyzes
an image of the entire light flow returned by the cube
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corner. We present a method of calculating orientation
angles developed for the second approach and show that
the method is simple, accurate and fast enough.

2. ORIENTATION VIA AN IMAGE OF THE CUBE
CORNER EDGES NEAR THE APEX

Bridges et al. (2010) describes the orientation of a cube
corner by three angles of rotation about the three axes of
a coordinate system defined as in Figure 1. The x axis of
the coordinate system is chosen alone the outer normal
to the cube corner entrance facet. The three reflecting
surfaces of the cube corner meet each other in three lines
of intersection. The xy plane is defined as passing though
the x axis and one of the intersection lines. The xy plane
contains the y axis, which is perpendicular to the x axis.
The z axis is perpendicular to both x and y axes.

x

y

z

O

Fig. 1. A coordinate system to use with P , Y , and R angles
of orientation
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Fig. 2. An image of the edges of a cube corner

The cube corner is first rotated about the y axis by the
pitch angle P . As a result of this rotation the coordinate
system zyz becomes a coordinate system x′y′z′ with y′ =
y. Then the cube corner is rotated about the z′ axis by the
yaw angle Y . As a result of this rotation the coordinate
system x′y′z′ becomes a coordinate system x′′y′′z′′ with
z′′ = z′. Finally, the cube corner retro reflector is rotated
about the x′′ axis by the roll angle R. The angles P , Y ,
and R determine the orientation of the cube corner.

To calculate the angles of rotation, Bridges et al. (2010)
uses an orientation camera capturing the image of light
intensities in the vicinity of the apex of the cube corner.
As the reflecting surfaces scatter light where they meet
each other, the image consist of three dark lines and looks
like Figure 2. The dark lines are images of the edges of the
cube corner and the point V is an image of the apex of
the cube corner. Slopes m1, m2, and m3 of the dark lines
are measured to obtain the angles P , Y , and R by solving
the following system of equations

m1 =
sin P cos Y/

√
2 − sin P sin Y cos R + cos P sin R

sin Y/
√

2 + cos Y cos R

m2 =
sin P cos Y/

√
2 − sin P sin Y cos(R + 120◦)

sin Y/
√

2 + cos Y cos(R + 120◦)
+

+
cos P sin(R + 120◦)

sin Y/
√

2 + cos Y cos(R + 120◦)

m3 =
sin P cos Y/

√
2 − sin P sin Y cos(R + 240◦)

sin Y/
√

2 + cos Y cos(R + 240◦)
+

+
cos P sin(R + 240◦)

sin Y/
√

2 + cos Y cos(R + 240◦)
.

(1)

A problem associated with system (1) is that it is essen-
tially a system of three variables. The matter is that to
make determining orientation an industrial application,
one needs a method of numerical solution of system (1)
that converges and provides an approximate solution of
high accuracy. But how to find such a method? Attempts
to solve system (1) by a numerical method in Matlab fail,
and due to system (1) has three variables it is hard for a
human even to realize (visualize) why it happens.

As a result another approach to determining the orien-
tation of a cube corner is proposed in this paper. It is
based on Matveev (2014), which advises to determine the
orientation of an object not by an image of three lines
in the vicinity of the apex of a cube corner but by an
image of the entire light flow returned by a cube corner. By
default the proposed approach recovers the dark lines dis-
cussed earlier, but also admits other orientation detecting
opportunities. Below in this paper we explore in detail a
realization of these opportunities that turns out especially
useful as a computation technique.

3. ORIENTATION VIA AN IMAGE OF THE ENTIRE
LIGHT FLOW RETURNED BY A CUBE CORNER

Let us realize what is the light flow returned by a cube
corner. We will analyze the form of this flow in the plane
of the entrance facet. Consider the (hypothetical) light ray
hitting exactly the apex of the cube corner and reflecting
in exactly the opposite direction. If the cube corner is
not rotated, this ray gets in and out the entrance facet
in its center of symmetry A (see Figure 3). In this case the
intersection of the returned light flow and the entrance
facet is the regular hexagon obtained by the intersection
of the entrance facet with itself rotated by 180◦

The form of the returned light in the plane of the entrance
facet of a rotated cube corner is found by a similar way. If
the cube corner is rotated, the point where the ray hitting
the apex gets in and out the entrance facet moves from its
center of symmetry A to some other point B. Respectively,
the form of the returned light flow through the entrance
facet will become the intersection of the entrance facet
with the itself rotated by 180◦ and shifted so that its center
of symmetry moves to the point A′ symmetric to the point
A with respect to B, see Figure 3.

It is easy to see that the form of the light returned by a
cube corner in the plane of its entrance facet is defined
by two angles (see Figure 4). The angle θ defines how
much the normal to the entrance facet of the cube corner is
deviated from its initial position. In other words, the angle
θ is the angle between the initial and deviated normals to

Fig. 3. Building the form of the light flow in the plane of
the entrance facet of a cube corner
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Fig. 4. A scheme of defining the angles of orientation φ, θ,
and γ

the entrance facet. The other angle φ defines in which side
the normal is deviated from its initial position. Note that
the angle φ varies from 0 to 360◦.

One more angle should be added to the angles θ and φ to
complete the definition of orientation. We denote this extra
angle by γ and assume that γ determines the rotation of
the cube corner about the direction given by the normal
to the entrance facet. We also assume that the rotation
happens before the normal is deviated. Note that this
choice of γ is in fact motivated by the constructions done in
Figure 3, because building the form of the returned light,
the angle γ defined as above influences only the angle φ
which becomes the angle φ + γ.

To obtain an image of the light flow in the plane of the
photosensitive array it suffices to project the form of the
light flow in the plane of the entrance facet alone the
optical axis. Given the image, it is, of course, still possible
to proceed exactly as in Bridges et al. (2010). One just
needs to divide all edges of the image into two groups,
the edges in any group not having common points. After
that finding the intersection points of the lines given by
the edges in each group (points C,D,E, and C ′, D′, E′ in
Figure 3) leads to a pattern of three lines (lines CC ′, DD′,
and EE′ in Figure 3) similar to the one shown in Figure 2.
Respectively, a similar pattern brings similar problems.

So the next thing to do is to think of what to measure
in the polygon being the image of a cube corner. Below
we propose a set of data to measure that accounts for
the advantages of the orientation angles φ, θ, and γ
schematically defined by Figure 3. Namely, as we deal
with the polygonal form of the light flow returned by a
cube corner, it is rather natural to measure the distances
from the center of gravity of the image to its edges xp and
yp, and the angle γp, say, between the lower edge and the
horizontal direction.

Let us obtain the dependence of the distances xp and yp on
the angles φ, θ, and γ. Consider Figure 5, which is again
done in the plane of the entrance facet of a cube corner.
The line segment r joins the the center of symmetry of
the entrance facet A with the point B where the light
ray hitting the apex of a cube corner meets the entrance

facet. We have r = l tan θn where l is the distance from
the apex of the cube corner to the entrance facet and
θn = arcsin(sin θ/n) with n being the refraction index of
the cube corner. The distance x from the point B to the
lower edge of the retro reflector is given be the equation
x = d − r cos(φ + γ) where d = l/

√
2. Thus we find that

x = d − l cos(φ + γ) tan θn.

Repeating the same for one of the other edges we have the
following system of equations

x = d − l cos(φ + γ) tan θn,
y = d − l cos(120◦ − φ − γ) tan θn.

(2)

Now recall that equations (2) hold in the plane of the
entrance edge, but we measure the distances xp and yp

in the plane of the photosensitive array. Hence we have
xp = x p(φ+ γ, θ) and yp = y p(120◦−φ− γ, θ), where the
function

p(φ, θ) =
√

cos2 φ + sin2 φ cos2 θ ∙

sin arccos
sin φ cos φ(cos2 θ − 1)

√
sin2 φ + cos2 φ cos2 θ

√
cos2 φ + sin2 φ cos2 θ

accounts for the projection alone the optical axis.

As a result, we write
xp

p(φ + γ, θ)
= d − l cos(φ + γ) tan θn,

yp

p(120◦ − φ − γ, θ)
= d − l cos(120◦ − φ − γ) tan θn.

(3)

It is also easy to see that the angle γp between the lower
edge of the image of the cube corner and the horizontal
direction is expressed as

γp = arctan(tan(φ + γ) cos θ) − φ. (4)

Equations (3) and (4) constitute the entire system that
expresses the dependencies of the measured values xp,
yp, and γp on the angles φ, θ, and γ determining the
orientation of a cube corner. It is easy to see that the
system of equations (3) and (4) essentially differs from

φ

θ

Fig. 5. The definition and computation of the distance x

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9699



φ

θ

Fig. 6. A plot of the function X(φ, θ)

system (1): introducing the angle ψ = φ + γ reduces it to
system (3) on the angles ψ and θ and the separate formula

γ = γp + ψ − arctan(tan(ψ) cos θ). (5)

expressing the dependence of the angle γ on the angles ψ
and θ.

Thus to determine the orientation of a cube corner it
suffices now to solve system (3) of two variables. How
difficult is to do it? To answer this question let us assume
γ = 0 to exclude γ, γp, ψ, and formulae (4),(5) from our
consideration and introduce the function

X(φ, θ) = (d − l cos φ tan θn)p(φ, θ)

where l = 12.1 and n = 1.51.

Then system (3) becomes the system

xp = X(φ, θ),
yp = X(120◦ − φ, θ). (6)

Due to the symmetry of the entrance facet of a cube corner
we may assume without loss of generality that the angle φ
varies from 0◦ to 60◦. Another consideration allows us to
limit the values of the angle θ. As the light ray must pass
the entrance facet, it is reasonable to think that the angle
θ also varies from 0◦ to 60◦.

Now let us explore how the functions X(φ, θ) and X(120◦−
φ, θ) look like. Figure 6 shows a plot of the function
z = X(φ, θ) and the plane z = xp = X(10◦, 20◦) in the
slightly extended range −15◦ ≤ φ ≤ 75◦ and −15◦ ≤
θ ≤ 75◦. It is easy to see that the set of points (φ, θ)
where xp = X(φ, θ) is an almost straight curve emanating
alone the line θ = 20◦. Moreover we note that for every
−15◦ ≤ α ≤ 75◦ the line φ = α meets this curve only once
and it follows from xp = X(α, θα) that xp < X(α, θ) for
all θ < θα and xp > X(α, θ) for all θ > θα.

From these observations we find that to trace the curve
xp = X(φ, θ) in a region of interest it suffices to use the
bisection method alone lines φ = α with appropriate values
of α and the initial values of θ being equal to −15◦ and

φ

θ

Fig. 7. A plot of the function X(120◦ − φ, θ)

75◦. Now look at Figure 7 showing a plot of the function
z = X(120◦ − φ, θ) and the plane z = yp = X(120◦ −
10◦, 20◦) = X(110◦, 20◦) again in the range −15◦ ≤ φ ≤
75◦ and −15◦ ≤ φ ≤ 75◦.

We see that the curve yp = X(120◦ − φ, θ) in Figure 7 is
of a bit more complex form, however this time we will be
interested mainly of the signs of the values yp −X(120◦ −
φ, θ) alone the curve xp = X(φ, θ). To make things clearer
both curves xp = X(φ, θ) and yp = X(120◦ − φ, θ)
are shown together in Figure 8. We find from Figures 7
and 8 that the curve xp = X(φ, θ) meets the curve yp =
X(120◦−φ, θ) only once at the solution (φ, θ) = (10◦, 20◦)
of system (6), for other points we have yp < X(120◦−φ, θ)
for all φ < 10◦ and yp > X(120◦ − φ, θ) for all φ > 10◦.

φ

θ

Fig. 8. A plot of the curves xp = X(φ, θ) (blue) and
yp = X(120◦ − φ, θ) (red)
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Fig. 9. A plot of the function Δ(φ, θ)

Thus we find that the solution (10◦, 20◦) again can be
captured by applying the bisection method alone the curve
xp = X(φ, θ) with the initial values of φ being equal to
−15◦ and 75◦. The appearance of the surfices z = X(φ, θ)
and z = X(120◦ − φ, θ) in Figures 6 and 7 advises
that the solution of system (6) can be archived in the
same simple manner not only for xp = X(10◦, 20◦) and
yp = X(110◦, 20◦) but also for all possible values xp and
yp.

Let us try to give an estimation of the accuracy of
the described above method of calculating the angles of
orientation φ and θ. As the bisection methods gives any
prescribed approximation, the accuracy of calculating φ
and θ is, in fact, depend on, first, how do the distances xp

and yp react on small changes of the angles φ and θ and,
second, what is the accuracy of measuring xp and yp we
are able to provide with the existing level of technology.

Consider the function

Δ(φ, θ) =
√

Δx(φ, θ)2 + Δy(φ, θ)2

where
Δx(φ, θ) = X(φ, θ + 1′′) − X(φ, θ),

Δy(φ, θ) = X(120◦ − φ, θ + 1′′) − X(120◦ − φ, θ).

The function Δ(φ, θ) estimates the changes in the values
of the distances xp and yp caused by the increase of one
arc second in the value of θ. A plot of the function Δ(φ, θ)
is shown on Figure 9.

It is easy to see that the mean value of Δ(φ, θ) over the
region 0◦ ≤ φ ≤ 60◦ and 0◦ ≤ θ ≤ 60◦ in Figure 9 is about
5 ∙ 10−5. Now recall that we use l = 12.1 in the function
X(φ, θ) what means that so is the distance from the apex
of the cube corner to its entrance facet. It is natural to
think that l is expressed in millimeters (mm), so the value
5 ∙ 10−5 also means 5 ∙ 10−5 mm.

Assuming that the pixel size of the photosensitive array
is 0.02 mm and linear values are measured up to 0.03
of the pixel size, we conclude that we can register linear
displacements up to 0.03 × 0.02 mm = 6 ∙ 10−4 mm, and,

hence, the angles of orientations φ and θ up to 10 arc
seconds. This is an existing level of measurements. As
the technology improves, the measurements up to one arc
second do not seem to be unreachable.

Note that an estimation of the accuracy of calculating the
angle γ is obtained in a similar way. Really, consider the
function

Δγ(γ) = arctan(tan(10◦ + γ + 1′′) cos 20◦)
− arctan(tan(10◦ + γ) cos 20◦)

obtained from equation (4) and expressing the change in
the value of γp caused by the increase of one arc second in
the value of γ when φ = 10◦ and θ = 20◦. A plot of the
function Δγ(φ, θ) is shown on Figure 10. It is clear from
Figure 10 that to detect the change of one arc second in
γ it is enough to register a change of a similar value in
γp. Dukarevich and Dukarevich (2009) shows that this is
possible already in the existing level of technology.

Finally let us estimate the cost of calculating φ and θ. The
proposed method is essentially the double bisection first
alone lines φ = α and then alone the curve xp = X(φ, θ).
In both cases the initial range is about 100◦ (from −15◦

to 75◦) and the final range is one arc second or 1/3600◦.
So the cost of calculating φ and θ up to one arc second by
the proposed method is

(log2(100 ∙ 3600))2 ≈ 340

iterations, what is confirmed by test calculations.

4. CONCLUSION

A cube corner is generally felt as small as a point, but, if
one can measure its orientation, this point is a point with
a coordinate system. The coordinate system is naturally
given by the edges of the cube corner being the intersection
of the reflecting facets. So, in fact, given a point, one knows
also a coordinate system at this point and, hence, is also
aware of the space around this point. Let us imagine what
this knowledge brings.

φ

θ

Fig. 10. A plot of the function Δγ(φ, θ)
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Fig. 11. Measuring hidden objects
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θ

Fig. 12. Positioning

One possible application is proposed by Bridges et al.
(2010). It is measuring of hidden or inaccessible surfaces.
We just propose a bit more elegant device for this purpose,
which is shown on Figure 11. The idea of the device is that
if you know where the head of the device (cube corner)
resides and a coordinate system attached to the head, then
you also know where the foot of the device is placed on a
hidden measured surface.

The next suggesting itself application is positioning. For
example Figure 12 shows controlling the end of a rotating
drill with a single cube corner. Other possible areas of
this application cover various input devices like mouses,
joysticks, trackers and so on. Knowing orientation adds
these devices an ability to provide much more information
simultaneously.

A big group of applications deals with vehicles. In these
applications the coordinate system attached to a cube
corner is used for controlling vehicles in the space sur-
rounding the cube corner. High accuracy computing of
this coordinate system allows a spacecraft to dock itself
or join with another spacecraft by means of a single cube
corner. Similar applications are possible for airplanes, see
Figure 13.

φ

θ

Fig. 13. Docking

φ

θ

Fig. 14. Road making

Finally, recall that cube corners are, in fact, already used
in road making. They are so called cat’s eyes. However,
cat’s eyes are used only to help a human driver to see
the path the vehicle follows. Knowing the orientation of
the cat’s eyes on the road allows a car to follow the road
without a human. Really, suppose an autopilot sees one
cat’s eye. Hence, it knows where the wayside is.

Then one axis of the coordinate system of a cat’s eye may
point to the next cat’s eye. The rotation of the cat’s eye
about this axis may code the distance to the next cat’s eye.
Knowing both the direction to the next cat’s eye and the
distance to it, the autopilot is able to find the next cat’s
eye and drive the vehicle toward it to repeat the same
operations once again, see Figure 14.
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