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Instituto Universitario de Automática e Informática Industrial.
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Abstract: The total amount of UAVs civil applications is getting bigger and bigger. The cost
and the risks of the development phase of this systems has to be decreased in order to make them
affordable. It is required to minimize the number of hours of real flight, making use of simulation
tools and taking full advantage of the acquired data. Thus, obtaining a dynamic model that
tightly adjusts to the real flight behaviour of the aircraft gains in importance, in the way that
it will lead to precise simulation results and, therefore, to correctly designed control algorithms.
A model identification technique based on experimental data and Multi-Objective optimization
evolution algorithm, is presented here. This methodology makes profit of the possibility given
by this type of algorithm of facing different objetives at the same time, to take full advantage
of the experimental data and to get better adjusted models.

Keywords: Automated guided vehicles, Multiobjective optimizations, Identification,
Least-squares method.

1. INTRODUCTION

There exists an increasingly popular variety of applications
that justify the development of Unmanned Aerial Vehicles
(UAVs) in the civil aviation field. Tasks such as photogra-
phy for coastline control and beaches erosion tracing, fire
detection and control (Krüll et al., 2012), infrastructures
inspection, or measurement for agriculture (Xiang and
Tian, 2011) are just some of the possible applications. In
this new aeronautics field, a sufficiently low cost, which
suits companies requierments is the main objective.

There are several fronts that have to be attended for the
achievement of this aim. First, it is necessary to reduce
the cost of the aircraft itself. This brings therefore, a
completely new generation of tiny airplanes, which size is
the minimum necessary to house propulsion, sensorization
and control equipments.

Second, the integrated systems (sensors, actuators and
control units), have to be powerful enough to control the
fast dynamics of these vehicles and carry out, at the same
time, the mission for which they have been purchased. The
cost of such devices is becoming lower and lower, thanks to
the fast evolution experienced by the computer technology
in the last few years.

Finally, because of the characteristics of the product, the
cost of the development phase has become an important
percentage of the final price. It is required in this point to
minimize the number of hours of real flight, making use
of simulation tools and squeezing, as much as possible,
? This work has been partially funded by the Government of Spain
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already acquired data. Besides, it is in this phase in which
the hardware integrity is in bigger danger. Thus, obtaining
a dynamic model that tightly adjusts to the real flight
behaviour of the aircraft seems vital, in the way that it
will lead to precise simulation results and, therefore, to
correctly designed control algorithms.

In this article, a methodology based on Multi-Objective
(MO) optimization is presented and applied to a real
system. To present this methodolgy, flight data are used
instead of wind tunnel experiments, to identify the non-
dimensional derivatives of stability and control of an UAV.
Nevertheless, the technique exposed is not limited by the
data source, but the other way around, it is enhanced with
the quality and diversity of the performed experiments. As
an example of this, despite experiments in this article are
lacking measures relative to air, once available, they could
be added in a straightforward manner to the identification
process, with the obvious improvement of the obtained
results, but without any change on the methodology it-
self. Thus, the presented identification technique allows
the designer to test flight data from different types of
experiment and, thereby, to obtain models with acceptable
performances in several kinds of situation.

The article is devided in 5 sections. Section 2 introduces
the aircraft and the hardware used in the experiments,
along with the dynamic and aerodynamic models willing
to be identified. In section 3 the methodology used in
the identification will be shown and explained. Flight
tests are presented in section 4. Every experiment has
been performed twice so that a second set of values
could be obtained for validating results. Results from the
identification and the validation processes are also given
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Fig. 1. Interconnection between UAV devices and FCS

in section 4. Finally, some conclusions are commented in
section 5.

2. UAV TESTBENCH

2.1 Platform and Hardware

As the main component of the flight platform, a Kadett
2400 aircraft, manufactured by Graupner, may be found.
It houses all necessary devices for its control, not only
manually, but also in autonomous mode. During normal
flight, 3 control surfaces are provided: tail rudder, eleva-
tors and ailerons. As the unit of propulsion a brushless
engine of altern current is integrated, which is fed by two
LIPO batteries through a frequency variator. Alike the
servomotors, the variator is controlled by sending PWM
signals as commanding signals.

There exists a device bridge between the manual and the
autonomous states. The SSC (Servo Switch Controller) is
able to perform the commutation between different sources
of entrance. However, its principle property is allowing a
computer to measure and also to introduce deflections in
control surfaces (δ) and changes in the motor thrust (T ).

As already stated, control actions are sent from the Flight
Control Station (FCS), constituted by a PC-104. Is this
unit the one housing the control algorithms, perform-
ing, therefore, all necessary tasks at each phase of the
flight. The loop is closed by the IG500N unit. This all-
in-one device, joins the efforts of a wide range of sensors,
such as accelerometers, giroscopes and magnetometers. Its
Kalman filter is capable of mixing the information com-
ming from those sensors in order to offer precise mesure-
ments of position, orientation, linear and angular speed,
and acceleration, in the 3 aircraft body-axes. This same
platform was presented in (Velasco et al. (2012), Velasco
et al. (2013) and Velasco (2013)) together with the results
of the first flight tests. The figure 1 shows the hardware
elements described here.

2.2 Aircraft Dynamic Model

Once the hardware platform has been introduced, a model
that approximately explains the behaviour of the real
process is going to be derived. In this case, the final model
will be used for simulation and design of control algorithms
for a UAV. This means obtaining the expressions that
relate the input variables: deflection in the control surfaces
and motor load; to a series of output signals: linear and
angular velocities, accelerations and position in 3D space.

As expressed in (Klein and Morelli, 2006), the seeking of
these expressions normally begins from the linear and the

angular momentum conservation principles, that can be
expressed as: ∑

ext

−→
F =

d

dt
(m
−→
V ) (1)

∑
ext

−→
M =

d

dt
(I−→ω ) (2)

Where
∑
ext

−→
F and

∑
ext

−→
M are the summ of external

forces and moments respectively, m and I are the mass

and the inertia tensor of the aircraft, and
−→
V and −→ω are

linear and angular velocity vectors. In particular 3 are the
types of external forces that affect to the behaviour of the
vehicle. They are: aerodynamic force (FA), force applied
by the motor (FT ) and the gravitational force (FG).
At the same time, only the aerodynamic force generates
aerodynamic torque (MA). Thereby, the equations 1 and
2 remain:

−→
FA +

−→
FT +

−→
FG = m

−→̇
V +−→ω ×

−→
V (3)

−−→
MA = I

−→̇
ω +−→ω × I−→ω (4)

The two previous equations are actually vectorial equa-
tions, so that, there is a total of 6 equations that cor-
respond to the 6 degrees of freedom of a rigid body in
the space. Deriving 3 and 4 the following expressions are
obtained:

qS

[
CX
CY
CZ

]
+

[ −g sin θ
g sinφ cos θ
g cosφ cos θ

]
+

[
T
0
0

]

= m

[
u̇
v̇
ẇ

]
+

[
p
q
r

]
×m

[
u
v
w

] (5)

qS

[
bCl
cCm
bCn

]
=

[
Ix 0 −Ixz
0 Iy 0
−Izx 0 Iz

][
ṗ
q̇
ṙ

]

+

[
p
q
r

]
×

[
Ix 0 −Ixz
0 Iy 0
−Izx 0 Iz

][
p
q
r

] (6)

Where u, v, and w are the components of the linear
velocity of the aircraft in its body axes (xb, yb, zb). In
the same way, p, q, and r are the 3 componentes of the
angular velocity. It is important to highlight the apparition
in the equations 5 and 6 of the variables Ci, that represent
the aerodynamic coefficients of each component of the
resultant aerodynamic force (X, Y, and Z) and torque
(L, N, and M). Such coefficients, are functions that relate
those components to some of the system variables. The
expressions that those coefficients adopt is of great interest
in this work and therefore, they will be studied in further
detail in section 2.3. Finally S, b, c are constructive
constants of the aeroplane and q is the dynamic pressure
of the air.

The aircraft orientation is usually denoted with the well
known Euler angles of roll φ, pitch θ, and yaw ψ, wich
express the rotation of a body from a global reference
system to the body-axes. The kinematic equations that
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relate angular velocities of the aircraft to the Euler angles
are:

[
p
q
r

]
=

[
1 0 − sin θ
0 cos θ sinφ cos θ
0 − sinφ cosφ cos θ

] φ̇θ̇
ψ̇

 (7)

Finally, equations 8 to 16 are the result of reordering
equations 5, 6, and 7, so that they can be directly used
on the calculation of the simulation output values. Such
values will be the same as those coming from the unit
IG500N in real flights.

Force equations:

u̇ = rv − qw +
qS

m
CX(δ)− g sin θ +

T

m
(8)

v̇ = pw − ru+
qS

m
CY (δ) + g cos θ sinφ (9)

ẇ = qu− pv +
qS

m
CZ(δ) + g cos θ cosφ (10)

Torque equations:

ṗ− Ixz
Ix
ṙ =

qSb

Ix
Cl(δ)−

Iz − Iy
Ix

qr +
Ixz
Ix
qp (11)

q̇ =
qSc

Iy
Cm(δ)− Ix − Iz

Iy
pr − Ixz

Iy
(p2 − r2) (12)

ṙ − Ixz
Iz
ṗ =

qSb

Iz
Cn(δ)− Iy − Ix

Iz
pq − Ixz

Iz
qr (13)

Kinematic equations:

φ̇ = p+ tan θ(q sinφ+ r cosφ) (14)

θ̇ = q cosφ− r sinφ (15)

ψ̇ =
q sinφ+ r cosφ

cos θ
(16)

2.3 Aircraft Aerodynamic Model

It was said in 2.2 that aerodynamic forces and torques were
related to some of the system variables through a series of
functions that were called aerodynamic coefficients. In this
section the structure used in the present article for those
functions will be stated and, likewise, the parameters to
be identified will be highlighted.

In (Klein and Morelli, 2006) detailed information on how
to proceed to obtain the dependencies of aerodynamic
coefficients with other system variables is provided. First,
if we assume a scenario in which the aircraft is generally
in steady flight conditions, and it only performs short
maneuvers that take it off from this state, we can truncate
the Taylor series expansion to keep only the first or second
order terms. Furthermore, under this assumption of small
perturbations, and based on the symmetry of the vehicle,
it can be assumed that 1) the symmetrical (longitudinal)
variables u, w and q do not affect asymmetrical (lateral)
force and torques Y, L and N; and similarly, 2) asymmetric
(lateral) variables v, p and r do not affect the symmetrical
(longitudinal) forces and torque X, Z and M.

Equations from (17) to (22) show the approximation of
the aerodynamic equations that have been adopted for this
article.

Longitudinal aerodynamic models:

CD(t) =CD0 + CDV

1

V0
∆V (t) + CDα

∆α(t)

+CDα2 ∆α(t)2 + CDq

c

2V0
q(t) + CDδe

∆δe(t)
(17)

CL(t) =CL0 + CLV

1

V0
∆V (t) + CLα∆α(t)

+CLα2 ∆α(t)2 + CLα̇

c

2V0
α̇(t) + CLq

c

2V0
q(t)

+CLδe
∆δe(t)

(18)

Cm(t) =Cm0 + CmV

1

V0
∆V (t) + Cmα

∆α(t)

+Cmα2 ∆α(t)2 + Cmα̇

c

2V0
α̇(t)

+Cmq

c

2V0
q(t) + Cmδe

∆δe(t)

(19)

Lateral aerodynamic models:

CY (t) =CY0 + CYβ
∆β(t) + CYp

b

2V0
p(t)

+CYr

b

2V0
r(t) + CYδal

∆δal(t) + CYδr
∆δr(t)

(20)

Cl(t) =Cl0 + Clβ∆β(t) + Clp

b

2V0
p(t)

+Clr

b

2V0
r(t) + Clδal

∆δal(t) + Clδr
∆δr(t)

(21)

Cn(t) =Cn0 + Cnβ∆β(t) + Cnp

b

2V0
p(t)

+Cnr

b

2V0
r(t) + Cnδal

∆δal(t) + Cnδr
∆δr(t)

(22)

Where α and β are the angle of attack and of sideslip
respectively and V is the airspeed. In particular, V0 is the
airspeed measured at the steady state of flight, before a
maneuver begins. Theese variables are velocity dependent
and they can be calculated as follows:

α = arctan
(w
u

)
; β = arcsin

( v
V

)
(23)

V = |
−→
V | =

√
u2 + v2 + w2 (24)

Besides, CL and CD are the Lift and Drag coefficients and
their relation with CX and CZ is:

CL(t) =− CZ(t) cos (α(t)) + CX(t) sin (α(t)) (25)

CD(t) =− CX(t) cos (α(t))− CZ(t) sin (α(t)) (26)

Thus, the aerodynamic model identification is based on
extracting the polynomial constants of the equations 17
to 22 (marked in bold) from the flight data and by means
of the dynamic model. Those constants are called non-
dimmensional derivatives of stability and control.

3. AERODYNAMIC MODEL IDENTIFICATION

3.1 Previous calculations

It is easy to understand that there is no sensor capable of
measuring aerodynamic coefficients directly. Thus, before
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performing the optimization it is necessary to calculate
the actual value of the aerodynamic coefficients during the
flight. The dynamic model equations will be used for that
purpose.

Equations 27 to 32 describe the methodology used to
obtain the values taken by the aerodynamic coefficients
at the time instants in which measurements are available.
These equations are easily deduced from the first principles
model presented in 2.2 (Klein and Morelli, 2006).

CX(t) =
1

q(t)S
(max(t)− T (t)) (27)

CY (t) =
may(t)

q(t)S
(28)

CZ(t) =
maz(t)

q(t)S
(29)

Cl(t) =

1

q(t)Sb
[Ixṗ(t)− Ixz (p(t)q(t) + ṙ(t))

+ (Iz − Iy) q(t)r(t)]
(30)

Cm(t) =

1

q(t)Sc
[Iy q̇(t) + (Ix − Iz) p(t)r(t)

+Ixz
(
p(t)2 − r(t)2

)
]

(31)

Cn(t) =

1

q(t)Sb
[Iz ṙ(t)− Ixz (ṗ(t)− q(t)r(t))
+ (Iy − Ix) p(t)q(t)]

(32)

Refer to equations 25 and 26 for the calculation of CL(t)
and CD(t) respectevely.

3.2 Multi-Objective Optimization

In engineering problems, it is a common issue to deal
with situations that require the optimization of multiple
objectives that include, in addition, physical constraints,
operational constraints and nonlinearities. Due to this fact,
addressing these problems from the standpoint of classical
optimization could be insufficient.

Any multiobjective optimization problem (MOP) can be
stated as:

min
θ∈R

J(θ) = [J1(θ), J2(θ), . . . , Jm(θ)] (33)

Where θ is the solution that minimazes the m cost func-
tions Ji at the same time. Generally, it will not be possible
to find a solution that satisfies all requirements at the same
time, so the optimizer will have to provide the amount of
solutions which are not improved by any other in all the
objectives at the same time. That set of solutions is the
Pareto set and their value in the objectives space is the
Pareto front.

Multiobjective techniques applied to model identification
have achieved great results in many cases, as shown in
(Rodriguez-Vazquez and Fleming (1998), Herrero et al.
(2007) and Yousefi et al. (2008)).

In our case, elevators deflection and motor thrust vari-
ations, generate changes in longitudinal variables and, in
the same way, ailerons and rudder deflections do likewise in
lateral ones. Therefore, longitudinal and lateral coefficient
models can be identified from different kind of experi-
ments. As an example, if a CD modeled is obtained by

optimizing an elevators test, the model performance on a
motor experiment data will be deacreased, and viceversa.
Therefore, an identification that takes both experiments in
account at the same time, may be stated as a biobjective
optimization problem.

If the Mean Square Error (MSE) is used as performance
index of the identification process, two cost functions can
be defined for each aerodynamic coefficient. Equations 34
and 35 are the two cost functions to minimize for obtaining
any of the longitudinal models.

J1 =
1

Nelevator

Nelevator∑
i=1

(
Cj(ti)− Ĉj(ti)

)2
∀j ∈ {D,L,m}

(34)

J2 =
1

Nmotor

Nmotor∑
i=1

(
Cj(ti)− Ĉj(ti)

)2
∀j ∈ {D,L,m}

(35)

where Ĉj(ti) is the model approximation of the Cj value at
the instant ti and Nelevator and Nmotor are the number of
samples of each kind of experiment. Similar cost functions
can be defined for the three lateral models.

Then, if, Cl(t) is to be modeled by using one ailerons
experiment and one rudder experiment, the identification
problem from this MO point of view should be stated as:

min
θ∈R6

[
1

Nailerons

Nailerons∑
i=1

(
Cl(ti)− Ĉl(ti, θ)

)2
,

1

Nrudder

Nrudder∑
i=1

(
Cl(ti)− Ĉl(ti, θ)

)2]
: θ =

[
Cl0 , Clβ , Clp , Clr , Clδal , Clδr

]
(36)

To solve the MOP stated above, any Multi-Objective
optimizer can be used. In this work, the sp-MODE 1

algorithm has been chosen (Reynoso-Meza et al., 2010).

4. RESULTS

4.1 Flight Tests

In section 2.3 short maneuvers from a steady state flight
are mentioned. In aeronautics, an airplane in steady flight
is an aircraft which is maintaining constant heading and
altitude, at a constant speed also and with leveled wings
orientation (zero roll angle). At that point, the pilot does
not need to make any correction on control surfaces or
motor to maintain this steady flight.

In order to obtain data that can be employed in adjusting
the aerodynamic parameters, the designed experiments
simulate such short maneuvers. Thus, starting always at
a steady state flight, each system input has been excited
separately and, after that excitation, the aircraft has been
left to evolve naturally, until the pilot deemed it appro-
priate and safe to recover the aircraft. Each experiment
1 Available in http://www.mathworks.es/matlabcentral/
fileexchange/39215-multi-objective-differential-evolution-algorithm-
with-spherical-pruning
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Fig. 2. Flight Test: longitudinal variables evolution in an
elevators test

has been performed twice, in order to count with different
data sets for the adjustment and the validation. It should
be noted finally, that in the absence of any sensor capable
of measuring airspeed, all maneuvers described below have
been carried out against the wind. This restriction was
imposed to the pilot in order to reduce variability between
tests.

The flight plan provided to the pilot before beginning the
experiments was:

(1) Stable flight:
(a) Adjust ailerons and rudder. Leveled wings.
(b) Set the motor load around 50%.
(c) Adjust elevators until the altitude gets constant

without touching the control stick.
(2) Elevators up and down trying to copy a positive plus

negative step sequence.
(3) Repeat step 1.
(4) Ailerons side to side in the appropriate frequency to

avoid extreme rotations. First in one direction and
then in the opposite one.

(5) Repeat step 1.
(6) Tail rudder side to side. First in one direction and

then in the oposite one.
(7) Repeat step 1.
(8) Positive and negative steps in motor load. Sequence:

50%-100%-50%-0%-50%
(9) Repeat the whole process a second time.

Figures 2 and 3 show the evolution of the so called longitu-
dinal and lateral variables during an elevators and ailerons
excitation test respectively. As it can be seen, when a
longitudinal input is excited, the rest of the longitudinal
variables are excited too, which finally produces variations
in the symmetrical aerodynamic coefficients. This same
behaviour can be observed for the asymmetrical variables.
All theese variations can be collected and used to calculate
the aerodynamic derivatives of stability and control.
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Fig. 3. Flight Test: lateral variables evolution in an ailerons
test

4.2 Optimization Results

Figure 4 shows the lateral models Pareto front found
by the algorithm after the programmed optimization. As
supposed, the better an experiment is fitted by a model,
the greater error it gets for a second test. That is why the
person in charge of identifying the aircraft model cannot
be satisfied by using just one test, but should face the
model to different experiments data.

Besides, confronting experiments in a multiobjective opti-
mization, instead of using all of them as one in a mono-
objective minimization, gives the main following advan-
tages:

• Using multiobjective optimization involves the se-
lection of a solution among others, which gives the
designer the power of defining the importance of
each experiment basing that definition on his require-
ments.

• The resultant Pareto front shows how good the dif-
ferent models are for each experiment. Thanks to
that, the designer may get an idea of how good the
collected data is and thereby, decide which are the
requirements that he should ask for to the final model.

• It is possible to add as many objectives as wanted
in the identification process. This means that con-
fronting tests of the same kind is also possible, what
could be a good practice for variability reducing.

For example, if the Cl coefficient is taken into account, it
can be observed that the ailerons test gets a much better
approximation than the rudder one. This fact, which can
be deduced from the values that the square error takes,
is also logical, since the ailerons are pricesely thought
to introduce a moment in the X axis. In this case, the
designer should probably prefer models which fit better
this type of experiments over the ones that do a better job
with rudder tests.
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Fig. 5. Cl Validation results

The green point on figure 4 is the elected model for
each of the lateral aerodynamic coefficients. It represents
a solution of compromise between a situation in which
the ailerons deflection is modified and a situation in
which that modification is suffered by the tail rudder.
This fact can be checked in figure 5. That graph shows
the approximation to Cl (calculated with (30)) given by
the chosen model for validation data. Two more models,
identified by usig the classical least squares techinque, are
also included in figure 5. Those two models represent the
best approximation, in terms of MSE, for the ailerons and
the elevators experiments separately (see Velasco (2013)).
As can be deduced from the figure, the MO solution (green
curve) represents a good intermediate approximation in
both situations.

5. CONCLUSION

A methodolgy for the identification of UAVs aerodynamic
models has been presented. Besides a demonstration of
its application in a real system has been carried out
with satistying results. The technique presented gives
the already stated advantages in the data analysis and
the identification process, since it involves a phase of
decission by the designer. This phase allows then, the
study of several models and the election of the one that fits
better with the designer needs. In addition, confronting
experiments offers information about the difficulties of
finding a model that fits different flight conditions at
the same time, which improves the understanding of the
system. This technique may also give information about
the importance of a particular kind of experiment in the
identification of the model. All theese advantages lead
to better models that may save time and money when
designing autonomous aircraft control algotihms.
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