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Abstract: This paper investigates model predictive control (MPC) of a sea wave energy
converter(WEC). A novel objective function is adopted in the MPC design, which brings
obvious benefits: First, the quadratic program (QP) derived from this objective function
can be easily convexified, which facilitates the employment of existing efficient optimization
algorithms. Second, this novel design can trade off the energy extraction, the energy consumed
by the actuator and safe operation. The effectiveness of this MPC strategy is demonstrated by

numerical simulations.

1. INTRODUCTION

A sea wave energy converter (WEC) is a device used to
harvest sea wave energy. Extracting the maximum possible
time average power from WECs, while reducing the risk
of device damage and at the same time minimizing the
device cost, involves a combination of good fundamental
engineering design of a device and effective control of its
operation. In this paper, we investigate the control aspect
of WECs. In particular, we focus on a typical type of
WEC:sS, called point absorbers, whose dimensions are small
compared with the wave length of incoming waves.

Various control methods have been explored to improve
energy extraction, such as impedance matching by tuning
the dynamical parameters of the devices Budal et al.
(1982); Nolan et al. (2005), and latching control by locking
the body at some moments to keep the velocity in phase
with the excitation force Eidsmoen (1996); Falnes (2002b);
Korde (2002); Babarit and Clément (2006).

More recent works Cretel et al. (2011); Hals et al. (2011);
Brekken (2011); Li et al. (2012); Fusco and Ringwood
(2013) show that maximizing energy extraction while
maintaining the safe operation of WEC is essentially a con-
strained optimization problem and the concept of model
predictive control (MPC), can be potentially employed as
the WEC control strategy. MPC is an online optimization
technique, which requires a fast optimization algorithm,
especially when it is applied to mechanical systems, e.g.
Li et al. (2010). Conventionally, the optimization is for-
mulated as a convex quadratic programme (QP), so that
efficient optimization algorithms such as the interior point
method and the active set method can be employed. How-
ever, the optimization associated with the WEC control
may not be guaranteed to be convex as shown later in
this paper. This problem impedes the implementation of
these efficient algorithms. In this paper we show how to
overcome this problem by adopting a novel cost function.
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Fig. 1. Schematic diagram of the point absorber

The point absorber studied in this paper is illustrated
in Fig. 1. On the sea surface is a float, below which
hydraulic cylinders are vertically installed. The cylinder is
attached at the bottom to the seabed. The heave motion
of the float drives the piston inside the hydraulic cylinders
to produce a liquid flow. The liquid drives hydraulic
motors attached to a synchronous generator. From here,
the power reaches the grid via back-to-back AC/DC/AC
converters; see Weiss et al. (2012) for more details related
to the power electronics. Here z,, is the water level, z,
is the height of the mid-point of the float. The control
input is the g-axis current in the generator-side power
converter, to control the electric torque of the generator.
The generator torque is proportional to the force f, acting
on the pistons from the fluid in the cylinders. Since the
motion of the float imposes a velocity v = 2, on the
piston, the extracted power P(t) at time ¢ is expressed
as P = — f,v. The extracted energy over a period [0, T] is

therefore — fOT fuvdt. MPC aims to maximize the energy
in its discrete time version, which amounts to minimize
the cost function

T =" fulk)u(k) (1)
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where f,(k) and v(k) are the discrete time values of
fu(t) and v(t) sampled with a sampling period Ts. For
safety reasons, two constraints have to be considered. One
concerns the relative motion of the float to the sea surface
(it should neither sink nor raise above the water and then
slam), which can be expressed as |z, — 24| < Ppax. Since
Zw — 2y is proportional to the buoyancy force f;, this
constraint can be equivalently represented as

|f8| S Zmax~ (2)

The other constraint is on the control signal set by limita-

tions on the allowable converter current. This constraint
can be expressed as

Ful < 7. (3)

The control objective is to maximize the extracted energy
subject to the constraints (2) and (3).

However, this constrained optimization problem leads to a
non-convex QP, which prevents us from using efficient op-
timization algorithms to resolve it efficiently online. Some
methods have been proposed to overcome this problem. In
Bacelli et al. (2011), the WEC control is formulated as a
constrained optimization problem which is approximated
by a resulting concave quadratic function. In Li et al.
(2012), we aim to resolve this non-convex optimization
problem directly using dynamic programming (DP). How-
ever, although simulations show that the computational
speed is fast enough to guarantee the real time implemen-
tation of DP for a second order model, the exponentially
increased computational burden for a higher order model,
namely “the curse of dimensionality of DP”, can invalidate
its application.

An alternative approach is to use a modified objective
function to approximate the original one (1). This modified
objective function takes the form of

N
J=3" fulkpo(k+1) (4)
k=0

which contains one sampling instant delay from input
to output. In Cretel et al. (2011); Hals et al. (2011),
similar approaches are used, and the QP resulting from
this approximated objective function is assumed convex,
which enables the application of the conventional MPC.
We acknowledge the efficacy of this approximation method
for many cases. However, we can show that the assumption
on the QP’s convexity associated with the modified cost
function may not always hold.

Motivated by the existing results, the present paper aims
to propose an efficient MPC control strategy to directly
optimize the energy output and control signal. The MPC
employs the following objective function

N
T = [fulk)olk) +rfi(k) + af? (k)] (5)
k=0

with the weights » > 0 and ¢ > 0. Here the weighted term
rf2(k) represents the consumed energy of the input signal,
and ¢ is used to penalize f;. The QP can be guaranteed
to be convexified when the weight r is chosen bigger than
a certain value. The weight ¢ provides an extra degree of
freedom for tuning, so that the constraint on the heave
motion of the buoy can be satisfied for large incoming
waves. Simulation results show that the energy output loss
due to the extra terms in the cost function is trivial. Based

on this novel cost function, a trade-off between the safe
operation (or design limit) of the WEC and the energy
output under different wave conditions can be achieved.

The approach developed in this paper is based on the as-
sumption that at each sampling instant the wave profile for
a certain future period can be estimated by some wave pre-
diction algorithms, e.g. deterministic sea wave prediction
(DSWP) (Abusedra and Belmont, 2011; Naaijen et al.,
2009), as presented in Li et al. (2012), and perhaps also
other alternative wave prediction algorithms, e.g. Fusco
and Ringwood (2012). We do not conduct robustness and
performance analysis of the proposed methods regarding
the wave prediction accuracy and prediction horizon, as
this can be completed in a similar way as Li et al. (2012).

The structure of this paper is as follows. In Section 2,
the dynamic model of the point absorber is established.
In Section 3, we present the WEC optimization problem
and the QPs associated with the cost function (5). Section
4 addresses the convexity problems associated with the
cost functions (1) and (4), and justifies the necessity of
including the extra weighted term 7 f2 in the cost function
(5); moreover, to make a direct comparison between the
QP solutions related to the cost functions (1) and (4), the
difference-convex optimization is introduced. Simulation
results are demonstrated in Section 5. Finally, the paper
is concluded in Section 6.

2. MODEL SETUP

Many existing approaches for modelling a point absorber
exist in literature. For a more thorough investigation of
the modeling issues of point absorbers, see Falnes (2002b);
Wacher and Nielsen (2010); Price (2009).

The mathematic model for this WEC can be described by
msév:_fs_fr_ff+fu (6)

Here the buoyancy force is fs := k(zy — 2,), where the
hydrostatic stiffness is k = pgS, with p as water density,
g as gravitational constant, and S as the cross sectional
area of the float; the mechanical force fy := Dz, is due
to friction and viscosity Falnes (2002a); the force applied
on the piston is used as the control input f,; the radiation
force is calculated by f,. := ffoo R (T) [0 (8 — T) — 20 (t —
7)]dT + mZ, with the convolution part h, computed by
boundary element methods (e.g. Newman (1977), WAMIT
WAM (2006)) or approximated using analytical solutions
for specific float geometry Havelock (1955); Hulme (1982).
If we represent the convolution term by f; and assume the

Fourier transform of h(t) is D(jw) ~ (A, By, C,0), then
fa can be equivalently represented as a state space model

Ty = Ary + Br(2y — 24) (7a)

fd = Crmr (7b)
where z,, € R"". Using these relations, we can express the
ODE (6) by a state-space model

T = A.x + Byt + Byow (8a

y=Cex (8b

z=CLz (8c

~

where w =
[fS) ZU? J"T]T?
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0 —k y 0
1 D C, 1
Ac: - = Bye = 0 By.= |—
m m m -B m
0 B A r 0
C. =101 01xp,] C.=1[10 O1xn,]

with m := mg + m,. In this model, D(jw) can be deemed
as a damping coefficient which varies with frequency. The
added mass m, is also frequency dependent, but this
dependence is relatively weak, as shown in e.g. Journee
and Pinkster (2002).

If the convolution term f; is approximated by fq := D(2,—
Zw), then the state space model degenerates to a second

order model with state variable x := [fs, 2,]7, and
0 —k k 0
Ac: -t _D+Df ch: B Buc: i
m m m m
C.=1[01] C,=110]

Note that normally system identification methods together
with some numerical tools are required to derive D(jw)
and even the dynamics of the whole WEC from exper-
imental data. The model we derived here is mainly for
the purpose of demonstration of the MPC strategies by
numerical simulation.

3. QUADRATIC PROGRAMMING FORMULATION
FOR THE WEC OPTIMAL CONTROL PROBLEM

To develop MPC scheme, (8) needs to be discretized to a
discrete time model

xz(k+1) = Az(k) + Byu(k) + B,w(k) (9a)

y(k) = Cz(k) (9b)

z(k) = C,x(k) (9¢)

where w := 2, u = fy, ¥y = Z,, 2 := fs and z € R™.

Based on (9), the constrained optimization problem is

N
min » [y(k)u(k) + rv’(k) + qz*(k)] (10a)
v’ k=0
s.t. |2(k)| < zZmax for k=0,1,..., N (10b)
|u(k)| < Umax for k=0,1,...,N (10c)
|Au(k)|] < Aupax for k=0,1,..., M (10d)
where the state constraint (10b) and input constraint (10c)

correspond to (2) and (3) respectively. (10d) represents the
constraint on the input slew rate.

3.1 MPC with input magnitudes as optimization variables

Define the notation U7 := [u(k+14),u(k+i41),...,u(k+
7)), with i < j. If the sequence of input U is used as
optimization variable, then the optimization (10) without

the input slew rate constraint (10d) can be converted into
a QP
U* = argmin o (UO V1 U + FTud
of (11)
s.t. AuUO =< by
where
Hoy = Oy + O} + 2R +20(, ,Qy ..,
Fu = (Mg + 200 ,QA, 2)x(k) + (Pw + 207, QP )Wy

C 1 0
CA CB, 0
2
A, = CcA Dy = CAB, CB, 0
C AV CAN-'B, CAN72B, CB, 0
(12)
r 0
CB,
Dy = CAB,, CB, (13)
lcAN-1B, CAN2B,, --- CB,
I Umax
_I Umax
Au == bu =
q)U,z Zmax - 17( ) (I)sz(fv !
_(I)UJ max + Aw zx( ) q)WzWéV !
WithR:TXIN+1,Q:qXIN+17 max [17 ] XUmax
N+1
and Zpax = [1,..., T X zmax. Here A, ., @y, and Py,
N——

N+1

take the same forms as (12) and (13), but with C replaced
by C,. The time derivative of the wave elevation at the
current instant k is w(k); we assume that at instant k, the
future estimated values, w(k + 1]k),--- ,w(k + N — 1|k),
are available. These future wave data can be derived by
some wave prediction algorism, e.g. deterministic sea wave
prediction (DSWP) algorithm.

8.2 MPC with input changing rates as optimizers

If the actuator’s slew rate needs to be limited, the input
slew rate has to be used as optimization variable. As-
suming input slew rate horizon is M, and the prediction
horizon is N with M < N, we have the following relations
u(k +14) = u(k — 1) + 35 Au(k +j — 1), with i = 0, 1,
,Myand u(k+ M) =ulk+M+1)=-- —u(k+N)
Substltutmg these relations into the QP (11) gives the QP
with input slew rate constraint:

(AUOM T HaWUY T+ FAAU

(14)
where
Haw =TAy(Pv + } + 2R +201,.QPy,.) Tav,
Fauw=TLy [(Ay +20F QA, )z (k)
+ (Pu + ®f + 2R+ 29}, ,QPy,.) T u(k — 1)
+H@w + 207 Q0w )W '],

with
17 10 0 07
I IT 00 Iy
. —In
e I R . Thav
Tu— I TAU— IT- -7 AAu— _TAU )
: s : (I)U7ZTAU
7] e Uzdlavu
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AUmax
AUIIla‘X
Unax — Tyu(k — 1)
bauw = Umax + Tuu(k — 1)
Zmax — Mo ox(k) — Oy Tyu(k — 1) — Oy W1
Ziax + Ay ox(k) + @y Tyu(k — 1) + Sy, Wy !
and AUpax = [1,..., 107 X Aupax, I € R™, T, €
N——

M
R(N-l—l)nuxnu and TAU c R(N—&-l)nuanu.

4. THE CONVEXITY OF THE QPS AND
DIFFERENCE-CONVEX OPTIMIZATION

In this section, we discuss some issues related to the
convexity of the QPs associated with the cost functions
(1) and (4). Then we introduce how to use the difference-
convex (DC) optimization method to approximately re-
solve the non-convex QP associated with (1).

4.1 The convexity of the QP formulations

We use simple examples to justify the necessity of in-
cluding the weighted term ru2(t) in the cost function
(10a) and demonstrate that convexity of (4) is not always
guaranteed.

When ¢ = 0 and r = 0 in the cost function (10a), the
Hessian matrices H,, in (11) and Ha,, in (14) degenerate
to Hy = Oy + 5 and Haw = Tiy(®u + 5)Tav
respectively. In a similar way, we can also derive the
Hessian matrices of the QPs corresponding to the cost
function (4). When U™ is used as the optimization
variable, the Hessian matrix is H, = Oy + @5; when
AUlN *1 is used as the optimization variable, the Hessian
matrix is Hy = T4 (Py + @F)Tav. Here

CB,
_ CAB, CB,
oy = . .

cAN-1B, cAN?B, --- CB,

and @y take the same form with ®;; but with B, replaced
by Byw; Tay is derived by deleting the last row of Tay.

In Hals et al. (2011), the QPs corresponding to the cost
function (4) are assumed convex, i.e. H, > 0 and Hp > 0.
However, we can show by simple examples that this claim
does not always hold. For ease of presentation, suppose
the second order state space model, with the assumption
Dy = 0 without loss of generality, is discretized using the
zero-order hold method with a sampling period of T; the
analysis below can be extended to the higher order WEC
model. The matrices associated with this discrete time
model are

T AR A
5= () e

Suppose prediction horizons are N = 2, M = 2, then

10 0 0 0

Tav = [1 11 dy=|CB, 0 0| (6
11 CAB, CB, 0

. [0l & _[CB, 0

U [1 1] v = {CABM CBu] (17

In this scenario, we can investigate the convexity of the
QPs corresponding to the cost function (4) by checking
the positive definiteness of their associated Hessian ma-
trices. It can be easily shown that the convexity of the
QPs corresponding to the cost function (4) can only be
guaranteed within a limited range of values for parame-
ters, and the range for the case with input slew rates as
optimization variables is bigger than that for the case with
input magnitudes as optimization variables.

Within this scenario, it can also be shown that the Hessian
matrices H, and Ha, of the QPs corresponding to the
cost function (1) can not be positive definite for any
possible parameter values. This justifies the inclusion of
the extra term ru?(k) with r > 0 in the cost functions (5)
or (10a) to convezify the QPs, since this is equivalent to
adding positive diagonal entries to the QPs. Suppose the
Hessian of the QP associated with the cost function (1), i.e.
Zszo fu(k)v(k), is H. Then we can choose 1 > —Apin (H) 1
such that H, := H + rI > 0. Here H, is the Hessian
of the convex QP corresponding to the cost function

Sico [fuk)o(k) +rf2(k)].
4.2 Difference-convex (DC) optimization

Based on the analysis in the last subsection, we can use
DC as a benchmark optimization method to make a direct
comparison of the QP solutions corresponding to the two
cost functions (1) and (4) respectively.

The Hessian matrices of the QPs associated with the cost
function (1), i.e. Ziv:o fu(k)v(k) can be expressed as

1
Ui = argmin iUkT”HpUk +ULF (18)
k

with He > —Apin(H)I and H,, := H + He. Here Apin(H)
denotes the minimum eigenvalue of the matrix . Since
‘H is not positive definite, we have —Apin(#H) > 0, so that
He > 0 and Hp, > 0. Define

f(Uy) =

1
9(Uy) = SULH U (20)

Then both f(Ux) and g(Uy) are convex. Alternatively,
they can be defined as the convex QPs corresponding to
the cost functions Zgzo[fu(k)v(k) +7f2(k) +qf%(k)] and
SO [ f2(k) + qf2 (k)] respectively. Optimization of (18)
is thus equivalent to minimizing the difference between
the two convex functions, which is known as a difference-
convex (DC) optimization problem Tao and An (1998).
The first order Taylor series expansion of g(Uy) is

1
9(Ux) = g(Uy) — iUlz_1HeUk—1 + O(Uy, — Ug—-1)

with g(Ug) = UgHeUk_l. We approximate (18) by
replacing g(Uy) in (18) by g(Uyg)

1
iUkT’HpUk +ULF (19)

1
Ui = argnl}in §U,€T7-£,,U1C + UL (F —HU1) (21)
k
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Fig. 2. The wave amplitude and its derivative data used
in simulations

Then the suboptimal solution can be found by resolving
the convex QP (21) iteratively. The algorithm is summa-
rized in Algorithm 1.

Algorithm 1 Difference of convex optimization
given Uy, k=1,¢>0
do Compute
U = argming, [%UE(H +He)Uy + UL (F — ’HeUk,l)}.
s.t. constraints.
while || f(Uy) = g(U}) = f(Uk—1) + g(Us-1)|I> > ¢,
or k > maximum iterations.

5. NUMERICAL SIMULATION

In this section, we present the simulation results using the
MPC control strategies based on the cost functions (1),
(4) and (5) respectively. For ease of presentation, we refer
to the MPC based on (1) as ezact MPC (i.e. the MPC
with the cost function ezxactly reflecting the extracted
energy), the MPC based on (4) as approximated MPC,
while the MPC based on (5) as the novel MPC. The model
adopted contains a frequency dependent added damping
term f)(jw). Apart from damping, this model has similar
dynamics to the 2nd order model in Li et al. (2012). The
stiffness is k = 6.39 x 10° N/m. The mass of the float is
ms = 1 x 10%kg. The frequency independent added mass
is mq = 7 x 10%kg. Then the total mass is m = 8 x 10%*kg.
The input magnitude constraint is umax = 3 x 10> N and
the slew rate constraint is Aumax = 0.4 x 10° N. The heave
motion limit of the buoy is ®nax = 1.2 m. The frequency
dependent added damping is

1.5 x 10* x (jw + 0.01)(jw + 0.02)

(jw+0.1)(jw + 0.2)2

This transfer function is estimated from real experimental
data provided by OPT Inc. for the PB150 device. The
resulting 5th order continuous-time model rules out the
implementation of the DP algorithm on computational
ground. The WEC model is discretized with a sampling
rate Ts = 0.02 sec. Real sea wave data gathered off the
coast of Cornwall, UK is used.

D(jw) =

(22)

The wave heave magnitude and its derivative for a period
of 50 seconds used for simulations are shown in Fig. 2. The
sequence of input slew rates is used as the optimization

T T
The novel MPC

= = = The approxiamted MPC
1111+ MPC (by DCQP)

0 5 10 15 20 25 30 35 40 45 50
Time (s)

ig. 3. The vertical displacement difference between the
water level and the mid-point of the float. Constraint
violations occur for approximate MPC.

variable and the input slew rate constraint is incorporated
into QP formulation. Prediction horizons are N = 50 and
M = 30. For the novel MPC, the weights in the cost
function (5) are chosen as r =3 x 10~7 and ¢ =2 x 1077,
which guarantees the positive definiteness of the Hessian
matrix. It is noted that when the constraint on the relative
heave motion is [—1.2,1.2] m, the approximated MPC
cannot always yield feasible solutions during simulations.
For this reason, this limit is relaxed to [—1.4,1.4] m for
the case of the approximated MPC simulations.

In the Figs. 3-4, the solid lines and dashed lines correspond
to the simulation results from the novel MPC and the
approximated MPC respectively.

Fig. 3 shows the heave motion trajectories: solid line is for
the novel MPC and dashed line is for the approximated
MPC. When the WEC is controlled by the proposed novel
MPC, the relative heave motion constraint is satisfied
for the whole period. But when the WEC is controlled
by the approximated MPC, the constraint on relative
heave motion is violated around 1.6, 10.3, 12.3, 13.5 and
30.5 seconds. These constraint violations can potentially
damage the WEC.

Fig. 4 shows the energy generated by the three MPC
WEC controllers respectively. The energy generated by the
novel MPC and exact MPC are still indistinguishable and
slightly less than that of the approximated MPC. This
indicates two aspects: First, it should be noted that this
relative smaller energy output is traded off by the smaller
energy consumption by the actuator, and most impor-
tantly, the relative motion constraint is always satisfied
for the whole simulation period compared with the con-
strained violation by the approximated MPC controller.
In reality, this comparison is not even necessary because
the approximate MPC violates the state constraints and so
could not even be used under the real conditions. Second,
the extra terms involved in the novel MPC for penalizing
the input variable and constrained state variable are nearly
negligible compared with the case when only the output
energy is used as the objective function.
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Fig. 4. Extracted energy over time. The energy generated

by the novel MPC is indistinguishable from that by
DCQP control.

6. CONCLUSION

We have proposed a novel MPC strategy for WEC control.
This novel MPC can trade off the amount of energy output
against the input energy consumption requirements of the
actuator. It also explicitly penalizes the relative heave
motion of the WEC, which guarantees feasible optimal
solution and safe operation. The quadratic programme
associated with this novel MPC can be tuned to be
convex, which facilitates efficient online implementation.
A typical type of point absorber is used as a study case.
The simulation results confirm the efficacy of the proposed
novel MPC strategy for WEC control.
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