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Abstract: We consider systems of Ito’s stochastic differential equations with smooth compact
invariant manifolds. The problem addressed is an exponential mean square (EMS) stabilization
of these manifolds. The necessary and sufficient conditions of the stabilizability are derived on the
base of the spectral criterion of the EMS-stability of invariant manifolds. We suggest methods for
the design of the feedback stabilizing regulator for SDEs. Parametrical criteria of the stochastic
stabilizability for limit cycles and tori are given. These criteria reduce the stabilization problem
to the minimization of quadratic functionals. An analysis of the minimization problem of the
quadratic functional for the case of the cycle of 2D stochastic system is presented in detail.
Constructiveness of the elaborated theory is demonstrated for the stabilization of stochastically

forced cycles of the Hopf system.
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1. INTRODUCTION

The stability investigation and control of oscillation sys-
tems are attractive from theoretical and engineering points
of view.

It is well known that oscillations are operating modes of
the modern engineering devices, chemical reactors, elec-
tronic generators and so on. From the mathematical point
of view, periodic and quasi-periodic oscillations are tran-
sient regimes in the chain of bifurcations from order to
chaos. Invariant manifold is a convenient general mathe-
matical model for the stability analysis of these various
nonlinear oscillations (limit cycles of various multiplicity,
tori).

Most real systems operate in the presence of noise. In-
deed, even weak noise can result in qualitative changes
in the nonlinear system’s dynamics. Control problems of
nonlinear stochastic systems attract attention of many
researchers [Sun (2006), Guo and Wang (2010)].

In this paper, we consider the exponential mean square
stability and stabilization problem for invariant manifolds
of stochastic differential equations (SDEs).

One of the most important methods of the stability analy-
sis is the Lyapunov function technique (LFT) [Khasmin-
skii (1980), Kushner (1967)]. LFT in the research of the
stochastic stability of equilibria has been widely studied
by many authors (see [Arnold (1998), Mao (1994)]). A
problem of the synthesis of stochastic attractors and con-
trolling chaos was investigated in [Chen and Yu (2003),
Bashkirtseva et al. (2012)].

The orbital Lyapunov functions were used in the stabil-
ity and sensitivity analysis of stochastically forced limit
cycles [Ryashko (1996), Bashkirtseva and Ryashko (2004),
Bashkirtseva et al. (2013)]. LET for the stability analysis of
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the general invariant manifolds is considered for determin-
istic [Ryashko and Shnol (2003)] and stochastic [Ryashko
(2007)] systems. On the base of LFT, a general spectral
criterion of EMS stability of manifolds has been proved
[Ryashko and Bashkirtseva (2011)].

The aim of this work is to apply this criterion to the
solution of the control problem and show how it works
by numerical simulations.

2. STOCHASTIC STABILITY

Consider a deterministic nonlinear system
dr = f(z) d, (1)

where x is n—vector, f(z) is sufficiently smooth vector-
function of the appropriate dimension. It is assumed that
the system (1) has a smooth compact invariant manifold
M (see for details [Fenichel (1971), Hirsch et al. (1977),
Wiggins (1994)]).

Consider a function y(z) in a neighbourhood U of the
manifold M. Here (x) is a point of the manifold M that
is nearest to x, A(x) = x—~(x) is a vector of the deviation
of the point = from the manifold M. It is assumed that the
neighbourhood U is invariant for the system (1).

For any x € M, denote by T, the tangent subspace to M
at z. Denote by N, the orthogonal complement to 7T, and
by P, the operator of the orthogonal projection onto the
subspace N,.

In this paper, we consider a randomly forced deterministic
system (1) as follows:

dr = f(l‘)dt + Zar(x)dwr(t)a (2)

where w,(t) (r = 1,..,m) are independent standard
Wiener processes, o.(x) are sufficiently smooth vector-
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functions of the appopriate dimension. To ensure M is an
invariant of the stochastic system (2) we assume that

orla = 0. (3)

Definition 1. The manifold M is called exponentially
stable in the mean square sense (EMS-stable) for the
system (2) in U if there exist K > 0, | > 0 such that

Ella(@®)I® < Ke "Ella(zo)|l?,
where z(t) is a solution of the system (2) with the initial
condition z(0) = z¢ € U.

Consider a space X of symmetrical n x n matrix functions
V(x) defined and sufficiently smooth on M and satisfying
the following singularity condition

Vee MVzeT, V(z)z=0.
On the space ¥, we shall consider operators:

AlV] = (f, ?)—‘;) +F'V+VEF,

SV] =Y SIVS,, P=-A"'S,
r=1

where of 5
o,
Fa) = 5L, 5,0 = @)
(+,-) is the Euclidean scalar product. Note that an exis-
tence of the inverse operator A~! follows from the expo-
nential stability of the manifold M of the deterministic

system (1).

Let p(P) be a spectral radius of the operator P.

Theorem 1. The manifold M of the stochastic system
(2) is EMS-stable if and only if

(a) The manifold M of the deterministic system (1) is
exponentially stable,

(b) The inequality p(P) < 1 holds.

This theorem has been proved in [Ryashko and Bashkirt-
seva (2011)] on the base of the spectral theory of the
positive operators [Krasnosel’skii et al. (1990)]. An anal-
ogous approach was used earlier in [Ryashko (1999)] for
the stability analysis and stabilization of linear SDEs with
periodic coefficients.

2.1 Stability of the Limit Cycle for 2D-system

We assume that an invariant manifold M is a limit cycle
corresponding to T-periodic solution £(¢). The function
&(t) gives us a natural parametrization of the cycle orbit
and defines the one-to-one correspondence between cycle
points and the time interval [0, T).

Using this parametrization, we introduce functions

o) =iy, s.0 =2 ew)

defined on [0, T7.

In the case n = 2, for the spectral radius of the operator
P, one can find the following explicit formula:

Here
a(t) =p" (O[F () + F(t)]p(t),

Bt)y=p"(1) <Z Se(t)S, (t)> p(b),

p(t) is a vector orthonormal to the limit cycle M at the
point &(t), brackets < - > mean an integral with the time
averaging:

<a-= %/a(t)dt.

The inequality (famous Poincare criterion)
<a= <0

is a necessary and sufficient condition of the exponential
stability of the limit cycle M for the deterministic system

(1).

Thus, the inequality p(P) < 1 written as
<a+p>=
==<p () [FT(t)+F(t)+Y_ S ()8 (t)| p(t) = <0
r=1

is a necessary and sufficient condition of EMS-stability of
the cycle M for the stochastic system (2) in 2D-case.

2.2 Stability of the Two-torus for 3D-system

Let an invariant manifold M of the system (1) for n = 3
be an two-dimensional toroidal surface.

Here, the following parametrization of 2-torus M is con-
sidered. Suppose some closed sufficiently smooth curve
6 (equator) lies on the M (see Figure 1). This curve is
defined by function 6(s) on the interval 0 < s < 1 with
the condition

0(0) = 6(1).

Consider a solution (¢, s) of the system (1) with the initial
condition

x(0,8) = 0(s).
It is supposed that the trajectory of z(¢, s) leaves the point
0(s) of a curve 6 and after the rotation around the torus
crosses this curve 6 again. Let

T(s) = min{t>0]x(t,s) €0}
be the first return time of the trajectory z(t,s) on the

curve 6 and z(T'(s), s) be the first return point. Let 7(s)
be a point of the interval [0,1) where

0(7(s)) = =(T(s),5)-
Here, 7(s) is the Poincare first return function for inter-

sections of the curve 6 by the phase trajectories of the
system.

Torus M consists of phase trajectories z(t, s) of the system
(1). A function x(t,s) defines one-to-one correspondence
between 2-torus M points and points of the set

D = {(t,s)|0<t<T(s), 0<s<1}.
Vector-functions
ox(t,s) 0x(t,s)
ot 7 Os
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Fig. 1. Closed curve @ is an equator, a = z(0,s) =
6(s) is an initial point of the solution z(t,s), b =
z(T(s),s) = 0(r(s)) is the first return point of the
solution z(t, s) on the curve 6.

are linearly independent. For any point v € M, one can
find t = t(y), s = s(vy) such that z(¢,s) = 7.

Using a parametrization of 2-torus M connected with a
family of the solutions z(t, s), one can introduce functions

W (wt, ), S(t.9) = 2 a(t, ).

F(t,s) = =—

(ts) = o~

and p(t,s) that is an orthonormal vector-function at the
point z(t, s) to the torus M.

In this case for the spectral radius of the operator P, one
can find the following explicit formula:

p(P)max{M}.

5 < a(t,s) =
Here
alt,s) =p'(t,s)(F " (t,5) + F(t,s))p(t, s),
B(t, s) (Z ST(t,s) )S,-(t,s)) p(t, s),

brackets < - > mean a limit-time averaging

T

1
< == lim — t)dt
14 ngo T / o(t)
0

The inequality

max < a(t,s) = <0

S

is a necessary and sufficient condition of the exponential
stability of the torus M for the deterministic system (1).

The criterion p(P) < 1 of exponential mean square
stability of the torus M for the stochastic system (2) can
be written as

max<a( s)+ B(t,s) = < 0.

3. STABILIZATION

Consider a stochastic system with a control in the form
m
dv = f(z,u)dt + > on(x,u)dw,(t), (4)
r=1

where z is n—dimensional state variable, u is [-dimensional
vector of control inputs, f(x,u), a(x,u) are vector-
functions of the appropriate dimension, w,.(t) (r =

1,...,m) are independent standard Wiener processes. It is
supposed that for « = 0 the system (4) has an invariant
manifold M.

We shall select the stabilizing regulator from the class of
admissible feedbacks u = u(x) satisfying conditions:
(a) u(x) is sufficiently smooth and u|ys = 0;
(b) for the deterministic system
dx = f(x,u(x))dt (5)

the manifold M is exponentially stable in the neighbour-
hood U of M.

Without loss of generality, we can restrict our considera-
tion by the regulator in the following form

u(z) = K(y(x))a(z). (6)
Here K (z) is a feedback matrix coefficient.

Consider a set K of [ x n-matrices K(x) satisfying the
following condition: the manifold M is exponentially stable
for the closed-loop deterministic system (5), (6).

For the stabilization of the closed-loop stochastic system
(4), (6) we will use a spectral criterion from Theorem 1.

Consider corresponding operators

Ag[V] = (fo, a_v) +(F+ BK)'V +V(F + BK),

ZC + H,K)"V(C, + H,K),

K = *AKISK;
where
0 0
fo=f@,0), Fa)= 3 (@,0), B@) =50,
0@) = 20(w,0), 1) = 2 (2,0),

The Theorem 1 implies the following Theorem.

Theorem 2. The manifold M is EMS-stabilizable for the
stochastic system (4) with the feedback (6) if and only if

(a) K0,
(b) The inequality infrxek p(Pr) <1 holds.

The feedback (6) stabilizes the stochastic system (4) for
any K € K satisfying the inequality p(Pk) < 1.

This Theorem reduces a stabilization problem to the min-
imization of the spectral radius of the operator Py

Remark. Consider a case of the manifolds with codimen-
sion one.

For the manifold M with codim(M
P, has the following factorization

) = 1, projective matrix

P, = pup, (7)

where p, is a vector that is ortonomal to the M at the
point x.
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It follows from (7) and the equalities
K(x)=K(x)Py + K(x)(I — Py),

that
u(z) = k(y(2)pmale), (8)

where k(x) = K(x)ps. So, for the control of manifolds
with codimension one it is reasonable to use more simple
regulator (8).

In this case, instead of the operator Pg one can use an
operator
P = Ay 'S,

where

Ai[V] = <f0, ‘2—‘2) +(F+Bkp")"V+V(F+Bkp"),

Z (Cr + Hokp )T V(C, + Hykp").

3.1 Stabilization of the Cycle for 2D-system

The cycle on a plane (n = 2) is a manifold with codimen-
sion one. So, due to Remark, we will use the regulator (8)
and the operator Py, correspondingly.

The spectral radius of the operator Py is the following

< Br =

P(Pk)=—<ak =

Here
ax=p [(F+Bkp")" +F+Bkp']p

m (9)
Br=p" (Z(c,« + Hokp")(Cr + Hrka)T) 2
r=1

F(t) = 9(6(0),0), Bt) = 2 €0).0),
Cn(t) = S (60,0, Hylt) = S (E(6),0),

p(t) is a vector orthonormal to the limit cycle at the point
§(t).
The condition of the stabilizability

Jnf p(Pe) <1

is equivalent to the inequality

inf (k) < 0,
where
I(k) =<ar+ 0k > .
Due to (9), the functional I(k) is quadratic:
I(k)=<a+B+2b+c)k+k"Hk > .
Here

a(t) =p" (1) [F" (1) + F(D)]p(t), b(t) =B (t)p(1),

B = 30, eft) =3 er(B)h 1),
B = b 0B] (1),

cr(t) =p" (M)C(t)p(t), he(t) = H, (t)p(t).

So, a solution of the stabilization problem is reduced to
the minimizing of the quadratic functional I(k).

Minimization of the quadratic functional

First consider the case of the system (4) with noise that is
not depends of control input. It means that

H.(t)=0, ¢(t)=0, H(t)=0,
and functional I(k) is linear:

I(k) =< a+pB+2(b+c)k ~.

In this case, for the stabilizability of the system (4) for any
noise, it is necessary and sufficient that for the function
b(t) on the interval [0,T], the following holds

b(t) & 0. (10)
Indeed, for p > 0 consider the equation
I(k) == aft) + B(t) + 2b(t) Tk(t) == —p. (11)

Due to the condition (10), the equation(11) has an infinite
set of solutions.

The additional criterion

|k®)||> =< kTk = — min
gives the unique solution

a(t) + B(t) + tu o) (12)

kolt) = =5 =m0 =

with the minimal norm.

By the direct substitution one can verify the equality (11)
that means the regulator with feedback coefficient (12)
stabilizes the system (4).

Consider a general case of the system (2) with control
dependent noise (H (t) # 0.) Here the inequality I(k) < 0
may not have solutions.

Below we present results of the full analysis for the case of
the scalar input (I =1).

For [ = 1, the functions b(t), c(t), H(t) , k(t) are scalar
too and the functional is as follows:

I(k) = < at) + B(t) + 2(b(t) + c(t)k(t) + H()k*(t) -
Let H(t) # 0 on the interval [0, T]. Then
I(k) = < H() <k;(t) + M) -

H()
c 2
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For
ko(t) = 71)@);(5(”, 1)
_ (b(t) + c(t))? o
I(ko) = < a(t) + B(t) — )
and any k(t), the following inequality
I(ko) < I(k)
holds.
Thus, the inequality
alt) +B(t) - < <<Qiﬂgé§91-> (14)

is necessary and sufficient condition for stabilizability of
the system (2) by the regulator (8).

If the inequality (14) holds then the regulator (8) with the
feedback coefficient ko(t) from (13) stabilizes the system

(4).
3.2 Stabilization of the Two-torus for 3D-system

The two-torus for 3D-system is a manifold with codimen-
sion one. So, due to Remark, we will use the regulator (8)
and investigate its stabilization capacity via the operator
Pr..

The spectral radius the of operator Py for two-torus with
the parametrization by family of the solutions z(t, s) is the
following

B < Ok(t,s) =
p(Pr) = msax{—m}-
Here
=p' [(F+Bkp")' +F+Bkp'|p
(i (Cr + Hykp" (07-+H7-ka)T> P,
N (15)

F(ta 5) = 8_£(Z(ta S),O), B(tv ) ZZ( ( 5)70) )
CT(tas)i %(;T( (ta )ao)v HT(tvs) %OJ( (t 8),0),

p(t, s) is a vector orthonormal to the toroidal surface at
the point z(¢, s).

The condition of the stabilizability
inf 1
B Pe) <
is equivalent to the inequality
ill%fmaxl(k,s) < 0,
S

where

I(k,s) =< ag(t,s) + Bi(t,s) =

The functional I(k, s) is quadratic:

I(k,s) =<a+B+2b+c)k+k"Hk - .

t,s)p(t, s),

cr(t,s) =p' (t,8)C(t, s)p(t, s),
h.(t,s) = H,T(t,s)p(t,s).

So, a solution of the stabilization problem for two-torus
is reduced to the minimax problem for the quadratic
functional I(k, s).

4. STABILIZATION OF CYCLES FOR THE
STOCHASTIC HOPF SYSTEM

Consider stochastically forced Hopf system with control
&= pr—y— (2* +yP) +ut
+o1(2? + y* — p)in (t) + ouaia(t) (16)
g =a+py— (@ +y)y.

Here wy, wy are standard Wiener processes, oy is an
intensity of state-dependent noise, and o9 is an intensity
of control-dependent noise, u is a scalar control input.

For uw =0, u > 0, 01 = 0, this system has a limit cycle
22 442 = .

For this cycle, we use the parametrization

x = /pcost,y = \/usint.
The aim of the control is to stabilize this cycle in the mean
square sense.
The feedback matrix in the regulator (6) for Hopf system
(16) is

K(t) = k(t)p(t),
where p(t) = (cost,sint)” and k(t) is a scalar function.
Functions ag, B in (9) have an explicit representation
ap = —4p + 2kcost, By =4oiu+ ko2

So, the quadratic functional I(k) =< ai + Bk = is as
follows

I(k) = 4p(of —

™

1)+ %/(Qk(t) cost + k*(t)o3) dt.(17)

For u = 0, a necessary and sufficient condition of the
stochastic stability of the cycle is 0% < 1.

For numerical simulations, fix 4 = 1, 03 = 2. Theoreti-
cally, for these parameters, the cycle 2 + y> = 1 of the
uncontrolled (u = 0) system (16) is stochastically unstable
in the mean square sense.
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0 0.62 0.04 t

Fig. 2. Mean square deviation M(t) for uncontrolled
(dashed line) and controlled (solid line) stochastic
Hopf system.

In Fig. 2, by dashed line, we plot a function M(t) =
2

E ( x2(t) + y2(t) — 1) , where x(t), y(t) is a solution of

the Hopf system with « = 0 for initial conditions z(0) =

1.01, y(0) = 0. For numerical simulations, we use Euler-

Maruyama scheme with time step At = 107> and aver-

aging of 5000 random trajectories. Here, an exponential

growth of the quadratic deviation of solutions from the
cycle is observed.

Consider now possibilities of the stabilization. The func-

t
tion k,(t) = 7cos§ ) minimizes the functional (17). The
03
minimal value of this functional is
1
2
I(ko) = 4p(oy — 1) — 307
For 02 > 1, a necessary and sufficient condition of the

stabilizability can be written in a parametrical form:
1
2
R
8u(of —1)
For the considered set of parameters u = 1, 03 = 2, the

stabilizability condition is ¢3 < 1/24. In this case, the
feedback regulator is the following:

= (V)
_ 24yt -1).
o2\ 2%+ y?

In Fig. 2, by solid line, we plot a function M (t) for the sys-
tem (16) with this regulator and o2 = 0.1. An exponential
decrease of the quadratic deviation of solutions from the
cycle demonstrates a stabilization.

ag

U= —

5. CONCLUSION

A problem of the mean square stabilization of the gen-
eral invariant compact manifolds for nonlinear stochastic
systems was reduced to the minimization of the spectral
radius of the corresponding operator. Constructiveness of
this theory has been demonstrated for the important prob-
lem of the stabilization of the stochastically forced limit
cycle and tori. The problem of the stabilization of these
manifolds has been turned to the classical mathematical
problem of the quadratic functional minimization. This
theory was successfully applied to the stabilization of the
cycles of Hopf system.
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