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Abstract: The paper proposes a novel performance audit report for a SAG Mill Circuit. The audit report is 

demonstrated on a validated run-of-mine ore grinding circuit model, which the authors have captured in a 

simulator, using Simulink. The elements of the report combine established statistics and views with 

specific mill control context. A representative case study demonstrates the construction and interpretation 

of the audit report, so as to gain insight into the circuit performance over a historical data episode. 
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1. INTRODUCTION 

Operational problems: One cannot escape them. So, one 

learns to see a problem coming; often, from past experience. 

The monitoring and audit of historical process data can be a 

very effective way of learning from past experience.  

The monitoring of process systems in mineral processing and 

other materials manufacturing plants may target several 

variables, such as key performance indicators (KPIs), 

important process variables related to process efficiency and 

potential hazards, as well as control performance (e.g. settling 

times and manipulated variable saturation). The purposes of 

process monitoring may include short-term detection and 

identification of abnormal conditions, so as to allow 

automated or manual process recovery; or long-term 

identification of opportunities for continuous process 

improvement.  

Presenting a sensible, insightful overview of a large number 

of measured variables can be achieved by focusing on a 

selection of relevant key performance indicators, as well as 

by means of multivariate statistical process control charts 

(MSPC) and latent variable methods, such as principal 

component analysis (PCA) and partial least squares (PLS) 

(MacGregor and Kourti, 1995; MacGregor et al. 2007).  

The varying goals of process monitoring can be 

accommodated by publishing context-specific monitoring 

reports to appropriate personnel, at appropriate time-scales. 

The complex relations between variables may be expressed in 

a monitoring report, by including an overview of changing 

correlations between process variables.  

In minerals engineering, and communition in particular, the 

semi-autogenous grinding mill (SAG mill) is an operational 

unit where many problems may lurk. A suitable overview of 

historical data should prove useful, indeed (Remes et al. 

2006). 

This study considers a novel process monitoring overview for 

a generic semi-autogenous grinding (SAG) mill circuit. Since 

the goal of such a process monitoring overview is a succinct 

evaluation of the performance of the considered process 

system, this overview is termed a performance audit. 

The organisation of this paper is as follows: Section 2 

presents an overview of SAG milling circuit monitoring and 

control requirements; Section 3 discusses the elements of the 

performance audit; Section 4 treats a general dynamic 

simulation for a SAG milling circuit; Section 5 considers a 

case study illustrating the performance audit on a SAG 

milling circuit simulation; and overall conclusions and future 

developments follow in Section 6.  

2. SAG MILLING CIRCUIT OVERVIEW 

Amongst the problems that face SAG milling operations are 

ore feed inconsistency, energy inefficiency, instability of 

operating point, and particle size of grind output. Increasing 

economic pressure to raise throughput only serves to 

aggravate these existing problem areas.  

The dominant objective for control of grinding mill circuits is 

maximising of economic benefit. According to a survey on 

the control and economic concerns of grinding mill circuits 

(Wei and Craig, 2008), the main contributors to this benefit 

are gains in process stability, throughput, and energy 

efficiency. 

Several control strategies are followed, including advanced 

process control; yet, more than 60% of grinding circuits still 

rely on some form of PID control, according to Wei and 

Craig (2008). The question at the root of this paper is: What 

significant insight can a comprehensive audit report on 

historical operational data provide into the behaviour of a 

chosen control strategy, over and above conventional trend 

monitoring?  
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This paper proposes a methodology to produce and interpret a 

performance audit report on a SAG mill. The audit report will 

contain context-specific views on the important measured 

variables of the SAG mill, such that these views reveal 

interesting events and trends that may form a basis for 

improving control strategy. 

2.1 A grinding mill circuit 

In the typical grinding mill circuit that deploys a SAG mill, 

the mill is accompanied by a sump and a process recycle loop 

that includes a hydrocyclone (Figure 1).  

 

Mill input material consists of ore, recycled grind product 

and water. The mill content forms slurry that exits as mill 

product into the sump, which acts as a buffer. 

The mill feed is augmented with steel balls that assist the 

fracturing of larger ore particles through interparticle impact. 

Complex internal dynamics combine impact and shear forces 

to fracture and grind down particles. 

Mill product is classified by the hydrocyclone into overflow 

and underflow, viz. particles that are smaller or equal to 

specification in size, and particles that are larger than 

specified size, respectively. The underflow is fed back into 

the mill for further grinding. 

Water is added to the mill and sump to condition and control 

the grinding process (Coetzee, 2009). The mill load and sump 

level are open-loop unstable, and must be controlled, since 

the mill and sump act as integrators in the process recycle 

circuit (Craig et al., 1992).  

An optimal operating range of mill load prevails that includes 

a critical point, beyond which the mill must be stopped and 

manually unloaded. Such intervention is costly and carries 

high risk of operator injury.  

This study focuses on a SAG mill circuit that implements 

three PI controllers, viz. particle size – cyclone slurry feed-

rate loop; mill load – mill ore feed loop; sump level – sump 

water feed-rate loop. 

2.2 Important Grinding Mill Variables 

The following controlled process variables (PV's) are listed in 

order of importance by respondents in the survey by Wei and 

Craig (2008): 

1. Slurry level in sump 

2. Product particle size 

3. Sump discharge slurry density 

4. Feed ratio (solids to water into mill) 

5. Mill load 

The following manipulated process variables (MV's) are 

listed in the same survey: 

1. Flow rate of water to sump 

2. Flow rate of water to mill 

3. Feed rate of solids to mill 

4. Flow rate of slurry from sump 

Key interdependencies between variables include the 

following: 

1. Mill load and mill power 

2. Particle size and mill load 

3. Particle size and density of sump discharge 

2.3 Monitoring of milling circuit performance 

The primary challenge for process monitoring lies in how 

best to turn observability into insight for the sake of process 

improvement. In this arena, context is king.  

The approach of this study to monitoring the performance of 

a SAG mill adopts the control strategy as context. One can 

pick from several possible control strategies, given a control 

objective, which in itself requires careful consideration. 

Monitoring the historical performance of the selected control 

strategy can bring insight in support of future improvements. 

One conventional view of mill performance plots mill power 

against load. This view can overlay the characteristic mill 

power-load curve, provided a valid curve is available. 

However, this view cannot monitor further, important 

interdependencies, e.g. particle size and mill load, as well as 

particle size and sump discharge density. 

In fact, views constructed of other multivariate combinations, 

taken from the list of important variables under Section 2.2, 

may yield additional insight. Such views are investigated in 

the remainder of this paper. 

3. PERFORMANCE AUDIT ELEMENTS  

The following elements are proposed for a performance audit 

of a SAG milling circuit: 

a) SPC on KPI’s Particle Size Estimate and Specific Power 

Statistical process control offers a direct view of a single 

variable over a fixed time window. For the audit, the two 

most important KPI’s were selected, with any deviation 

further than three standard deviations from the training data 

mean being flagged as a possible fault.  

If the PSE deviates significantly, it has a large effect on 

downstream process efficiency, e.g. flotation cell recovery. 

Specific power (mill power draw divided by product 

throughput) gives a direct indication of how efficiently the 

mill is operating. High specific power would indicate 

improper mill loading, water addition or an increase in ore 

hardness. 

b) Power-Load Density Plot 

  
Figure 1: SAG mill circuit diagram  (Coetzee, 2009) 

Particle size estimate (PSE)

Cyclone feed (CFF)

Sump water 
(SFW)Solid feed (MFS)

Mill Water (MIW)
Steel Balls (MFB)
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For the performance audit, a density plot is created showing 

the most visited regions, as well as the trajectory between 

points. This view offers insight into mill efficiency. 

The power load curve is a traditional representation of mill 

performance. Normally, the mill power draw is maximised at 

a certain volume loading – representing the most effective 

milling point. If the mill is overloaded too far past this point, 

it becomes ineffective and may need to be manually 

discharged. Operating at the lower load end signals an 

ineffective use of mill power, leading to higher production 

costs. The power-load density plot could be augmented by a 

corrected power-load curve, where a regression model (e.g. 

neural network model) is used to predict the power-load 

curve from measured process variables, compensating for the 

effect of varying operating conditions (see Aldrich et al., 

2014 for more details). 

c) Mill State Density  

In addition to the univariate SPC analyses, a multivariate 

representation of the data was also created, using PCA. PCA 

allows one to combine the process variables, in terms of a 

subset of composite principle components that explains the 

significant variance of the process variables. In doing so, 

linear variable relationships are captured, which forms a basis 

to project new operational data and find differences to the 

(baseline) training data. 

For the milling audit report, PCA was performed on all the 

important measured variables, so as to create a mill state 

density plot and two diagnostic statistics, namely squared 

prediction error (SPE) and the modified Hotelling’s T
2
 

statistic, which show the deviation of each point from the 

assumed lower dimensional manifold and from the expected 

normal operating centroid (given that the training data 

variance structure holds), respectively. This view and these 

statistics can be used to determine whether a fault may have 

occurred and offer a starting point for root cause analyses. 

The application to SAG mill monitoring with PCA has also 

been considered by Ko and Shang (2011). Their study 

indicated that PCA is a suitable approach to visualize overall 

mill process performance, as well as to detect abnormal 

process conditions. Aldrich et al. (2014) also considered 

visualization of mill circuit time series data, but for the 

purpose of controller state tracking, making use of embedded 

mill variables. 

d) Correlation Plot of detected fault 

The correlation plot of the data included all the important 

measured variables for a given fault episode. The correlations 

could indicate changes in key interdependencies. The limits 

on the correlation values were determined via bootstrapping 

by investigating various contiguous sets of data (with the 

same amount of samples) in the training episode. Although 

bivariate correlations do not capture the full complexity of 

multivariate interdependency, identifying major shifts in 

bivariate correlations may assist in further root cause 

analysis. 

e) SPE Contribution Plot 

In the SPE contribution plot the contribution of each variable 

to the overall SPE diagnostic is presented. These 

contributions may help identify important variables 

associated with fault causes and symptoms.  

f) Manipulated Variable Saturation  

A major focus of the mill performance audit is aimed at 

controller performance. By tracking how saturated the 

manipulated variables are, one can determine whether the 

process is being operated within acceptable limits. Certain 

manipulated variables need to be run closer to saturation, e.g. 

ore feed (increasing productivity), while others may be 

minimised to decrease resource usage (e.g. sump water). 

Saturation plots also allows one to track the largest 

variations, so as to see how well controllers react to process 

disturbances. 

g) Set Point Tracking 

Finally, the set point tracking of the controllers were 

quantified by calculating the error of each controlled variable 

datum, with relative limits generated, again using three sigma 

deviations from the training data. 

4. SAG MILL CIRCUIT SIMULATION  

4.1 Model Baseline 

A newly validated run-of-mine ore grinding circuit model (Le 

Roux et al., 2013) was used for design and testing of the mill 

monitoring solution. This model had been used before by 

various authors (Craig, 2012; Coetzee, 2009; Coetzee, et al., 

2010), specifically for advanced controller development.  

The model, which accounts for rheology, power load, 

different breakage mechanisms, had been developed to offer 

a simple and theoretically sound representation of the milling 

circuit, and avoided a large, empirically-fitted set of 

parameters.  

The first step was to recreate the Le Roux model in Simulink 

from published differential and state equations (Le Roux, et 

al., 2013). During validation, Le Roux et al. (2013) used 

collected survey data to drive the model and then compared 

the model outputs to that of the survey. Figure 2, below, 

shows that the current Simulink implementation has 

successfully replicated the work of Le Roux et al. for various 

survey data. 

4.2 Controllers 

As mentioned in Section 2.1, the milling process contains 

open-loop unstable units. Therefore, any simulation with 

realistic process inputs also will require realistic controllers, 

to keep the process within desired limits. The focus of this 

paper is the creation of a general mill monitoring solution, to 

investigate mill performance. Since more than 60% of milling 

operations used PI control, it was selected as a base case 

controller in this study.  
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In order to ensure sensible controller design, the PI control 

loops proposed by Coetzee (2009), for the same model as Le 

Roux et al. (2013), were chosen and retuned.  

5. CASE STUDY 

The milling case study consists of two data sets: normal 

operating condition (NOC) and disturbance (fault) data. 

Typically, NOC data should span all input variation expected 

during acceptable operation, i.e. where no large disturbances 

were present and the mill operation was close to optimal. The 

fault data reveal an input disturbance that occurs in real world 

plants and causes sub-optimal milling performance. 

Careful selection of the NOC and fault data is critical, so as 

to create a sensible monitoring solution. If the NOC data 

contain too few process excitations the monitoring solution 

will be too sensitive and will alarm on virtually any new data. 

The converse of too large NOC process excitations will result 

in a solution that cannot pick up significant abnormalities.  

5.1 Normal Operating Conditions 

For the NOC data, it was decided to err on the side of a larger 

spectrum of process inputs, by selecting the Le Roux (2013) 

collected survey data inputs as process drivers. Furthermore, 

additional process noise was added, by introducing random 

steps in various process variables, as proposed by Coetzee et 

al. (2010). These variables included ore hardness, ore feed 

size distribution, and coarse split in the hydrocyclone. Each 

of the above variables was taken from a uniform distribution 

every 120s, to ensure NOC data included continuous small 

process disturbances.  

5.2 Operating Disturbance 

When choosing a suitable disturbance for this study, the 

major considerations are process impact, real world 

occurrence and available measurements. Ideally, the 

disturbance should have a definite impact on the process, not 

be easily measured, and occur often enough to be important 

to daily operations.  

Ore feed hardness was chosen as an operational disturbance. 

Ore hardness has a significant impact on milling operation 

(mainly, increasing power needed for grinding), occurs in 

real-world processing and is typically not measured online 

during milling operation (Cuevas and Cipriano, 2008). 

Hardness disturbances may occur when switching from one 

mining face to another or even in a single mine face. The 

selection of the disturbance magnitude followed previous 

selections by Coetzee (2010) and Craig (2012), viz. a 

magnitude increase of 50%. 

5.3 Generating the Audit Report 

A MATLAB implementation was created of the monitoring 

methodology proposed in Section 3, and combined with the 

Simulink model, so as automatically to simulate and then 

process the milling circuit data for a range of disturbance 

magnitudes. The resulting audit report appears on the next 

page, as a collage of figures. 

5.4 Interpretation of Audit Report 

It is important correctly to interpret the performance elements 

described in Section 3. A hierarchical approach that flows 

from Figure 3 to Figure 11, shown on the following page, is 

proposed. The first figures are designed quickly to show 

detected errors, while consequent figures attempt to add 

context to these errors. The selected data episode experienced 

a 50% increase in ore feed hardness at the 50 minutes mark. 

Mill state density 

The mill state density plot, Figure 6, offers a combined view 

of all the data and is, therefore, an ideal starting figure. Note 

the added ellipse enclosing the 99% percentile Hotelling’s T
2
 

limit of the training data, based on two retained principal 

components (66% of total NOC variance). It is apparent that 

a significant portion of the data episode falls outside of this 

ellipse. In particular, two distinct clusters are visible, 

suggesting a definite process state change has occurred 

within the episode. In order to confirm the states, the SPC 

and statistics plots may be investigated. 

SPC and diagnostic statistics 

The SPC (Figure 3) and diagnostic statistics (SPE, Figure 5, 

and Hotelling’s T
2
, Figure 7) substantiate that large 

abnormalities have been observed in the new data. Each of 

the figures, with the exception of the PSE SPC plot, shows 

multiple and consistent fault detection beyond the 100 min 

mark. The Hotelling’s T
2
 statistic gives the earliest event 

detection, at 61 min, while both SPC plots and the SPE 

statistic detect error events only at 80min-90min. Notably, at 

61 min, PSE and specific power measurements are still well 

within normal operating conditions. Figure 5 and Figure 7 

show a drastic increase in detected events after ±70min, 

corresponding to the two clusters seen on the mill state 

density plot. 

Fault data correlation and SPE contribution plot 

Figures 8 and 9 are presented to give an overview of changes 

in key interdependences, as well as to assist in the 

interpretation of the SPE diagnostic statistic. The correlation 

plot indicates that the following bivariate correlations have 

changed significantly: MFS-MillPower, SFW-CFF and 

SVOL-Throughput. Since the MFS-Load correlation has not 

changed significantly, the mill control loop can be assumed 

to still be operating as desired. The change in MFS-

MillPower correlation (given a functioning mill control loop) 

may suggest a change in grinding efficiency, which is 

consistent with an increased hardness disturbance.  The SFW-

CFF and SVOL-Throughput correlation changes may  

 
Figure 2: Recreated model against model and survey 

data from Le Roux et al. (2013) 
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Figure 3: Statistical process control on KPI variables 

 

 
Figure 4: Power-load density plot 

 

 
Figure 5: Squared prediction error (event logged after 

three consecutive alarms) 

 

 
Figure 6: Mill state density (variance explained per PC 

shown in brackets) 

 

 
Figure 7: Hotelling’s T

2
 statistic (event logged after three 

consecutive alarms) 

 

 
Figure 8: Fault data correlation plot 

 

 
Figure 9: SPE contribution plot 

 

 
Figure 10: Controller set point tracking 

 

 
Figure 11: Controller manipulated variable use 
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indicate a compensating effect around the cyclone for less 

fines produced by the mill.  

The contribution plot indicates that PSE, throughput, sump 

volume, MFS and mill load have the largest contributions to 

the SPE diagnostic statistic. Solid mill feed and mill load 

changes again reflect the change in grinding efficiency, while 

changes in product particle size, throughput and sump 

volume are symptoms of the ore hardness increase and 

associated decrease in grinding efficiency. 

Controller set point tracking and manipulated variable use 

Figure 10 confirms that the SVOL controller is not achieving 

set point, while the load and PSE controllers show less 

deviation, compared to training data (the limits shown). 

Figure 11 shows that CFF has increased, again because the 

mill will be producing fewer fines for the same amount of 

power. One can also see that MFS has been decreased by the 

controller for the same reason.  

6. CONCLUSIONS AND FUTURE DEVELOPMENTS 

In conclusion, this paper has demonstrated that an insightful 

audit report can reveal how well, or otherwise, the milling 

process has behaved during a historical episode. Investigation 

of the mill state density plot and alarm events for SPC, SPE 

and T
2 

supports the early detection of deviations and faults. 

One may gain significant insights into the milling operation 

from the correlation and controller plots, by understanding 

response to process disturbances in terms of pairwise 

interactions between variables and the behaviour of control 

variables under a given control strategy. This particular mix 

of statistics and mill control context, in conjunction with the 

proposed flow of interpretation, allows the reader of the audit 

report to learn from past experience; to gain insight into 

operational events and control strategy, beyond what can be 

learned from conventional KPI trends.  

Potential future work includes improved SPC design, i.e. 

inclusion of rate-of-change limits. Furthermore, mill state 

clusters may be investigated by simulating a library of faults, 

so as further to aid the tracking of mill states and the 

diagnosis of potential fault causes. 
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