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Abstract: The complexity of industrial embedded systems is increasing continuously. Compa-
nies try to keep a leading position by offering additional functionalities and services. Systems
are to be composed by multiple sensor, actuation and computation subsystems running in
a coordinated way on a distributed platform. Due to the increment in processor power, it
is possible to allocate a large number of functions in the same platform. This gives rise to
mixed-criticality systems, when components with different criticality levels coexist in the same
processor. This approach can lead to prohibitive certification costs. A better approach is to
rely on partitioned systems, based on a hypervisor that isolates each of the virtual machines in
the system. Components with different criticality levels are allocated to different partitions, in
order to prevent interferences. The aim of this paper is to introduce mixed-criticality systems,
to introduce the most challenging research topics, and to provide some background on the most
promising techniques and research activities.
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1. INTRODUCTION

The complexity of industrial embedded systems is increas-
ing continuously. Companies try to keep a leading position
by offering additional functionalities and services. Embed-
ded systems evolve to what has been named cyber-physical
systems, which aims at merging the physical and virtual
worlds. They are composed of multiple sensor, actuation
and computation subsystems running on a distributed
platform. These computational and physical components
must be coordinated, distributed, and connected, as well as
robust and responsive. Sensors capture information of the
physical world, which is used for controlling and providing
functions and services to users.

The automotive industry is an example of this trend. Cur-
rent premium vehicles contain around 70–100 computers,
around 100 electric motors and 2 km of wiring. These are
connected by a mixture of databus standards (Thompson,
2012). Complex and assorted functions are currently in-
cluded, such as driver assistance features, ESP systems,
motor control, etc. It can be expected that more services
will be added in the near future. Furthermore, drivers will
receive a plethora of services by the connection of the
vehicle to internet, like weather and traffic information,
stations or food location, breakdown or accident assis-
tance, etc. This panorama also holds for other application
domains, such as aerospace, ubiquitous systems, manufac-
turing equipment, etc.

The large improvement on the execution and communi-
cation platforms is making this scenario feasible. Proces-
sors with an increasing number of cores can provide a

great computational power to developers. The ubiquitous
allowance of mobile networks with high bandwidth is com-
monplace. The most natural trend is to integrate a large
number of functions in the same processor, in order to
provide cost-effective systems. In this way is also possible
to satisfy the requirements for reduced size, weight, and
power consumption (SWaP).

Society relies on the devices that control cars, brakes,
trains, or medical equipment. The envisaged future sys-
tems must continue to behave in a safe, secure and robust
way. From this point of view, the integration of a large
number of functionalities in the same execution platform
poses a number of new technical challenges.

In some domains, it is necessary to certify the system
for ensuring it can be trusted, i.e. it will operate in a
safe and secure way for persons and the environment.
The certification is the process of providing evidence
that the system will behave as expected, and is usually
performed by an independent organization. Conformance
to a safety standard is of great help, or even required,
for certification. There are several such standards for
different domains, such as electronic systems (IEC 61508),
airborne civil avionics (DO-178B), nuclear power plants
(IEC 880), medical systems (IEC 601-4), European railway
(EN 50128]), European space (ECSS), etc.

Most of these standards rely on the assignment of integrity
or criticality levels to the different components of the
system. These levels represent the likelihood of a safety-
related system for satisfactorily performing the required
safety functions under all de stated conditions within
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a stated period of time. The integrity level determines
the development methods and validation and verification
techniques to be used.

Traditionally, components with different criticality levels
were located on separated processors, in order to prevent
undesirable interferences. However, this approach often
results in excessive resource consumption, and is being re-
placed by so-called mixed criticality systems that are being
made possible by the increased processor power available
nowadays. In mixed-criticality systems, components with
different criticality levels coexist on the same execution
platform. In this scenario, certification authorities would
require the certification of the whole system, even the
less critical parts, which would likely result in the cost
of certification rising to prohibitive levels.

An alternative approach is to use virtualization in mixed-
criticality systems. Under this approach, a hypervisor
implements partitions or virtual machines that are isolated
from each other in the temporal and spatial (i.e. storage)
domains. Applications with different criticality levels can
be located in different partitions, so that there are no
undesirable interferences. In this way, only the hypervisor
and the critical partitions have to be certified to the
highest levels.

The aim of this paper is to provide a general view of mixed-
criticality systems, their technical challenges, and some
research results. Section 2 introduces mixed-criticality
systems, the main research challenges related to them,
and an overview of some relevant research projects. An
analysis of partitioned systems is included in section 3.
The scheduling of these systems for guaranteeing time
requirements is the content of section 4. Mixed-criticality
will require comprehensive and integrated toolsets, whose
requirements are described on section 5. Finally, section
6 includes some sample applications illustrating future
mixed-criticality systems.

2. MIXED CRITICALITY SYSTEMS

2.1 Overview

The following features will be present in a number of next
generation embedded systems:

• High computer performance: a large number of the
embedded applications will be multi-core, which pro-
vides high computing power to the users. As it has
been a common trend, systems developers will try to
take advantage of this feature for providing the most
advance applications.
• Systems interconnection: the availability of networks

of different types nearly everywhere has motivated
the development of applications that interact and
cooperate with external services. The development
of distributed applications or ubiquitous systems is
common nowadays.
• Requirements on size, weight and power (SWaP):

Many embedded systems have this kind of require-
ments. A large number of them will be mobile, while
others will be embedded on other equipments. Im-
provements on SWaP features will allow the develop-
ment of devices that are easier to carry or with larger
autonomy.

• Non-functional requirements: these type of require-
ments are not directly associated with a specific func-
tion or component of the system. They usually apply
to the system as a whole. Non-functional require-
ments are usually defined as constraints on the system
functionality. Time, reliability, availability, safety, or
security, are examples of non-functional requirements.

Time requirements are of specific interest in the
development of control systems. The outcomes of the
application have to be produced within a given time
interval. Otherwise it is considered to be faulty. Sys-
tem developers have to ensure that time requirements
are always met for safety critical applications.

• Functional complexity: processor performance makes
it possible to encapsulate a large number of functions
within one system, in order to produce competitive
devices. This complexity poses a number of challenges
to consider.

• Coexistence of applications with different safety and
security levels: the requirement for integrating a num-
ber of applications implies that they will be of dif-
ferent nature. It is no longer advisable to isolate
applications with more demanding requirements on
a processor, due to the different type of associated
costs. They must coexist in the same computer with
other applications, while behaving as expected.

Mixed-criticality systems (MCS) are characterized by the
integration of critical and non-critical applications on the
same computing platform, as defined in the last item of
the above list.

In order to fulfil these requirements a strong isolation
of applications (critical and non-critical) is needed. An
application is isolated from others if its execution is not
influenced by the behaviour of the other applications.
Different kinds of isolation can be considered:

• Fault isolation: a fault in an application must not
propagate to other applications. Any fault must be
handled either by the failing application itself or by
the system.

• Spatial isolation: applications must execute in inde-
pendent physical memory address spaces. The sys-
tem must control that applications cannot access any
memory areas that have not been specifically allo-
cated to them.

• Temporal isolation: the real-time behaviour of an
application must be correct independently of the
execution of other applications. The allocation of the
system resources to an application is not influenced
by others, and can be analysed in a independent way.

In section 3, partitioned systems based on partitioning
kernels are proposed as the most suitable software solu-
tion to fulfil these requirements. The partitioning kernel
enables applications to be encapsulated in partitions that
provide independent execution environments on a common
execution platform. A partition is a container for a number
of applications and an operating system supporting their
execution. A virtualization layer or hypervisor is proposed
in the same section as a convenient mechanism to imple-
ment the concept of a partitioning kernel.

The major benefit of using a partitioning approach for
mixed-criticality systems is to reduce certification costs in
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complex systems. In order to achieve this goal, it must
be possible to analyse each application in an independent
way. This requirement has some implications on the overall
system:

• The hypervisor has to be certified at the same criti-
cality level as the most critical application.
• System resources (CPU time, memory areas, IO

ports, etc.) have to be allocated to partitions in a
predefined and static way. Static allocation is neces-
sary to enable independent analysis and certification
of partitions. This principle applies both to the appli-
cations running in a partition and to the underlying
operating system that controls their execution within
the partition.
• Non-critical applications running in separate parti-

tions do not have to be certified, as long as it can be
guaranteed that they do not affect to the execution
of critical partitions.
• Re-certification of a partition should not affect the

certification status of other certified partitions.
• Incremental certification is a goal in order to achieve

independent certification.

Static allocation of resources is a major requirement for
achieving the previous described aims. From the execu-
tion point of view, the virtualization layer should execute
partitions under a static allocation of temporal windows
to the partitions. In this view, cyclic scheduling policies
for partition execution seems the most appropriated ap-
proach, as proposed in the ARINC-653 standard (AEEC,
1996).

2.2 Research Challenges

There are several open issues in research with respect to
the development of mixed-criticality embedded systems.
A number of recent publications deal with the future
challenges of mixed-criticality systems (Barhorst et al.,
2009) (Thompson, 2012) (Burns and Davis, 2013). Some
of them can be summarized as:

• System modelling: The development process should
start with a description or model of the system under
development. There is a need to define notations
that allow providing all the functional components. In
addition, it is required to find ways to describe other
types of information relevant for system partitioning
and deployment.
• Methodology and development tools: The develop-

ment of mixed-criticality includes additional activi-
ties, such as partitioning or system integration, that
are not common in previous systems. As an illus-
tration, the development process involves a ”system
integrator” role, with responsibilities in the design of
the system partitioning, assignment of resources to
partitions, assignment of responsibilities to partition
suppliers, and integration of the partitions. It is re-
quired a methodology and tools to guide this process
and validate its outcomes.
• Scheduling techniques for MCS: Scheduling policies

and scheduling techniques to achieve the independent
certification of critical partitions have to be consol-
idated. The scheduling problem is one of the most
active research area, resulting in proposals of different

approaches to deal with partitioned systems. How-
ever, techniques that can guarantee the incremental
scheduling of partitions are still needed.

• Support for multi-core platforms: Shared hardware
resources in multicore systems have an impact on
temporal isolation. The use of shared resources (such
as L2/L3 cache, memory, bus, IO, etc.) by partitions
running on different cores in parallel introduces an
interference in the overall execution. This interference
impacts directly in the independent behaviour of
partitions and, as consequence, in its independent
certification.

2.3 Research Projects

The great industrial interest of mixed-criticality systems
has motivated the definition of a research roadmap and
challenges, such as in (Thompson, 2012) and (Barhorst
et al., 2009). It has been also a priority topic on Euro-
pean funded research projects. Some of the most relevant
projects with research activities of direct interest for the
development of mixed-criticality systems are now listed.

ACROSS (ARTEMIS CROSS-Domain Architecture
(ACROSS, 2013)) This project aims at designing a
cross-domain architecture for embedded Multi-Processor
Systems-on-a-Chip (MPSoC) and implementing a first
version in an FPGA. The ACROSS MPSoC will pro-
vide a stable set of core services as a foundation for
the component-based development of embedded systems
with short-time-to-market, low cost, and high depend-
ability. In order to facilitate system development, a
library of middleware services will be realized for offering
basic services to be used in multiple application domains
(e.g., fault-tolerance, diagnosis, and security) Another
significant result of the project will be a general design
methodology, supported by appropriate adaptable tools,
for the implementation of ACROSS-based applications.

ARAMiS: (ARAMiS: Automotive, Railway and Avion-
ics Multicore Systems (ARAMiS, 2013)) Its objective is
to develop support for the appropriate deployment of
multicore systemas and virtualization in the domains of
automotive, avionics and railway, especially for safety
related systems. The target systems will be multicore
and relying on virtualization for providing safety critical
applications in mobility domains. Some relevant topics
in this project include time requirements, performance,
reliability, availability, security and energy efficiency.

CERTAINTY: (CErtification of Real Time Applica-
tions desIgNed for mixed criticaliTY (CERTAINTY,
2013)) It addresses the certification process for mixed-
critical embedded systems featuring functions depen-
dent on information of varying confidence levels. The
main challenge is to increase the complexity of the
systems, where time and safety critical solutions be-
comes even more complex on multi-core platforms as
time disturbances, uncertainties, and unreliability are
emerging side effects that need to be efficiently han-
dled. The project relies on mixed-criticality approaches,
with strong segregation and high levels of certification.
Application domains include avionic, automotive and
automation, where real-time and safety-critical require-
ments are of primary importance.
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IMA-SP (Integrated Modular Avionics for Space (IMA-
SP, 2011)). The European Space Agency (ESA) launched
in 2011 this project to study the applicability of IMA
architectures to space applications. The aim of the
project was to define the requirements for the use of
temporal and spatial partitioning systems (TSP) in the
space domain, using the specific hardware available.
The project was integrated by industrial partners and
researcher teams who contribute from different views to
the approach.

MCC: (Mixed Criticality Embedded Systems on Many-
Core Platforms (MCC, 2013)) This project aims at
reconciling the conflicting requirements of partitioning
for safety assurance and sharing for efficient resource
usage. The consortium aims at developing for multi-core
platforms, deriving verification procedures for mixed-
criticality systems, explore the theoretical bounds of the
developed schemes, and developing the necessary run-
time controls to manage the sharing of communication
media between the criticality levels.

MultiPARTES: (Multi-cores Partitioning for Trusted
Embedded Systems (MultiPARTES, 2013) (Trujillo
et al., 2013)) This project is aimed at developing tools
and solutions for building trusted embedded systems
with mixed criticality components on multicore plat-
forms. The approach is based on developing an innova-
tive open-source multicore-platform virtualization layer
based on the XtratuM hypervisor. A software devel-
opment methodology and its associated tools will be
developed, in order to enable trusted real-time embed-
ded systems to be built as partitioned applications, in a
timely and cost-effective way.

parMERASA: (Multi-Core Execution of Parallelised
Hard Real-Time Applications Supporting Analyzabil-
ity (parMERASA, 2013)) The goal of this project is
to make it easier to use multi-core processors in the
development of real-time systems. Current multi-core
architectures make extremely difficult to measure the
worst case execution time of a activity. In addition,
time analysis mainly covers sequential process execu-
tion. This project will provide technical innovations for
dealing with aspects such as parallelization techniques
for safety-critical applications, timing analysable par-
allel design patterns, operating system virtualization,
and efficient synchronisation mechanisms, or timing
analysable multi-core architecture with up to 64 cores.

RECOMP: (Reduced Certification Costs Using Trusted
Multi-core Platforms (RECOMP, 2013)) This project
aims at the development of mixed criticality systems on
multi-core architectures, where safety applications meet
relevant standards, without affecting the efficiency and
design cost of the lower criticality parts. The project
has developed a variety of mechanisms for virtualization
and safe core-to-core communication for different safety
levels with different hardware and development costs.
Methods and tools were also developed to model the
architectures and validate their safety properties, such
that the hardware/software mechanisms can be used in
industrial design processes.

vIrtical: (SW/HW extensions for heterogeneous multi-
core platforms (vIrtical, 2013)) The goal of this project
is to increase functionality, reliability and security of
embedded devices at sustainable cost, and power con-

sumption. The project relies on virtualization as the
basis for this aim. In particular, it tries to provide
to the virtualization concept in embedded devices, the
same maturity level as in the general-purpose computing
domain, in terms of flexibility and security. In order
to elaborate this approach, this project will deliver
software/hardware extensions at different layers of the
design stack (hardware, operating system, hypervisor
and applications) to increase flexibility, programmabil-
ity, performance, QoS, reliability, security and power
saving.

3. PARTITIONED SYSTEMS

Partitioned software architectures were defined to create
trusted systems. They have evolved to fulfil security and
avionics requirements, where predictability is extremely
important. A partition is an execution environment inte-
grated by an operating system and a set of applications.
Partitions are executed on top of a hardware platform,
possibly virtual, in an independent way.

In order to achieve this partition independence, a sepa-
ration kernel was proposed in (Rushby, 1981) as a com-
bination of hardware and software, for allowing multiple
functions to be performed on a common set of physical
resources without interference.

The MILS (Multiple Independent Levels of Security
and Safety) initiative is a joint research effort between
academia, industry, and government to develop and im-
plement a high-assurance, real-time architecture for em-
bedded systems. The technical foundation adopted for
the so-called MILS architecture is a separation kernel.
In addition, the ARINC-653 (AEEC, 1996) standard uses
these principles to define a baseline operating environment
for application software used within Integrated Modular
Avionics (IMA), based on a partitioned architecture.

Integrated Modular Avionics (IMA) was the solution that
allowed the aeronautic industry to integrate new func-
tionalities, while maintaining the level of complexity and
efficiency. Its main goal was to define an architecture that
captures and handles faults at the different levels and
permits the parallel application development. One of the
main aspects to cover fault management is the temporal
and spatial isolation of partitions. Currently, the ESA
(European Space Agency) has initiated a program for
the development of Time and Space Partitioning (TSP)
solutions for space systems. Some of the potential benefits
identified of TSP are (Windsor and Hjortnaes, 2009):

• Provide a clear model of the development process, by
enforcing the integrator and developer roles.

• Facilitate the integrator activities providing a set of
assistance tools.

• Provide a common target for developing applications.
• Increase the efficiency of the software validation and

qualification process.

Virtualization techniques are the basis for building par-
titioned software architectures. Although virtualization
has been used in mainframe systems since the 60’s, the
advances in the processing power of desktop processors in
the middle of the 90’s, opened the possibility to use it
in the PC market. The embedded market is now ready
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to take advantage of this promising technology. The main
elements on this technology are:

Virtual machine (VM) is a software implementation of
a machine (computer) that executes programs like a real
machine.

Virtualization layer is the software layer that virtu-
alizes the computer resources. It can be defined and
used for dealing with application resources or system
resources.

Hypervisor (also known as virtual machine monitor
(VMM) ) is a layer of software (or a combination of
software/hardware) that allows running several inde-
pendent operating systems in a single computer. Hy-
pervisors are virtualization layers involving hardware
(CPU, Memory, etc.) and software.

The purpose of the hypervisor is to virtualise efficiently the
available resources. One of its required features is that it
should introduce low overhead; therefore the performance
of the applications executed on the virtualized system
should be close to the same applications running on the
native system.

The current state of the virtualizing technology is the
result of the convergence of several technologies: operating
system design, compilers, interpreters, hardware support,
etc. This heterogeneous origin, jointly with its fast evolu-
tion, has caused some confusion on the terminology. The
same term is used to refer to different ideas and the same
concept is differently named depending on the engineer
background.

3.1 Types of Hypervisors

Attending to the resources used by the hypervisor there are
two classes of hypervisors, usually called type 1 and type
2. Type 1 hypervisors run directly on the native hardware
(also named native or bare-metal hypervisors); the second
type of hypervisors is executed on top of an operating
system, which is called host. The operating systems that
are executed in the virtual environments are called guest
OS. Considering the virtual environment provided by the
hypervisor, there are two types of hypervisors: full virtu-
alization hypervisors, and para-virtualization hypervisors,
which are described in the following paragraphs.

Full Virtualization

Full virtualization provides a complete re-creation of the
hardware behavior of a native system to each of the guests.
The objective is that the guest system should not be able
to detect whether the system is real or virtual.

It is important to distinguish between full virtualization
and emulation. With full virtualization, the guest system
is very similar to the native system. In fact, most of the
guest code is executed directly by the native processor,
while only those instructions that deal with the processor
or peripheral management are virtualized (those privileged
instructions that can break the temporal or spatial iso-
lation are called conflicting instructions). Emulation is a
technique for simulating in software the behaviour of a
computer. The main difference between a full virtualizer
and an emulator is that while the first one is focused
on achieving the maximum performance by reusing the

native resources as much as possible, the emulator tries to
precisely reproduce the behaviour of the emulated system.

A common technique used in full virtualizers is to use the
processor facilities that are not employed by the operating
systems. For example, the x86 architecture provides 4
privilege levels (rings) which where initially designed to
help operating system programmers, but which are seldom
used in current operating systems. Full virtualizers use the
ring 1 to virtualize the supervisor mode of the processor
(the guest OS is moved from ring 0 to ring 1). The
virtualization layer has to catch unprivileged accesses to
or from guest operating systems, and deal with them
in a transparent way. A full virtualizer is able to run
unmodified versions of the software.

Para-Virtualization

Para-virtualization is a virtualization technique where the
conflicting instructions are explicitly replaced by functions
provided by the hypervisor. In this case, the guest system
has to be aware of the limitations of the virtual environ-
ment and use the hypervisor services.

The para-virtualization technique greatly improves the
performance and simplifies the hypervisor. With this tech-
nique it is possible to develop very compact and efficient
hypervisors. The only drawback is that the guest system
must be modified or ported to the hypervisor API. If the
hypervisor API is close to the native processor operation,
then the porting may require the modification of only a
small number of instructions. The hypervisor is still in
charge of managing the hardware resources of the systems,
and enforcing the spatial and temporal isolation of the
guests.

Para-virtualization is the technique that best fits with the
requirements of embedded systems: faster, simpler, and
smaller. The customization (para-virtualization) of the
guest operating system is feasible when the source code
is available. In addition, this technique does not requires
special processor features that may increase the cost of the
product.

3.2 Virtualization and Real-Time

Bare-metal hypervisor technology is the most promising
approach to achieve the best performance, which is of
major importance for designing and implementing critical
real-time systems. On the other hand, para-virtualization,
jointly with dedicated devices, permits to reduce drasti-
cally the size of the virtualization layer code. In order to
design a hypervisor for safety critical systems, the follow-
ing design criteria has to be considered:

Strong spatial isolation : A hypervisor has to be ex-
ecuted in privileged processor mode, whereas partions
are executed in user processor mode. Partitions are
allocated in independent physical memory addresses.
Partitions cannot access other partition memory areas.
The basic concern of spatial isolation is to detect and
avoid the possibility that a partition can access another
partition memory. The hardware uses to provide some
basic mechanisms to guard against violations of spatial
isolation.
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Strong temporal isolation : It refers to the system
ability to execute several partitions guaranteeing i) the
fulfilment of the timing constraints of the partition
tasks, ii) that the execution of each partition does not
depend on the temporal behaviour of other partitions.
The enforcement of temporal isolation is achieved by
designing a schedulable plan and guaranteeing that it is
executed as specified.

Supervisor partitions : Some partitions can use special
services provided by the hypervisor. These services
include: partition management, access to system logs,
etc.

Partition management : Partitions are executed in
user mode, thus guaranteeing that they have not access
to processor control registers. The hypervisor defines a
set of services for allowing the supervisor partitions to
start, reset, reboot and stop partitions.

Robust communication mechanisms : Partitions shall
communicate with other partitions using the specific ser-
vices provided by the hypervisor. Th basic mechanism
provided to the partitions is port-based communication.
The hypervisor implements the link (channel) between
partitions.

Interrupt Model : The hypervisor provides an interrupt
model to the partitions. Partitions can not interact with
native traps. All the interrupts are detected and handled
by the hypervisor, and propagated to the partitions,
according to the given interrupt model.

Fault management model : Faults are detected and
handled by the hypervisor. The detection of a fault can
be the occurrence of a system trap or the occurrence
of an event generated by the hypervisor code. The
hypervisor code includes a set of assertions to verify
the properties of the system. All hypervisor services
have a set of pre and post conditions that assert the
system properties. A Health Monitor module within the
hypervisor implements the fault management model.
Actions associated to the Health Monitor depend on the
partition or the hypervisor fault handling mode.

Resource allocation : Fine grain hardware resource al-
location is specified in the system configuration file. This
configuration permits to assign system resources (CPU,
memory, I/O registers, devices, memory, etc.) to the
partitions.

The ARINC-653 (AEEC, 1996) standard specifies the
baseline operating environment for application software
used within Integrated Modular Avionics (IMA), which is
based on a partitioned architecture. Although not explic-
itly stated in the standard, it was developed considering
that the underlaying technology used to implement the
partitions is the separation kernel. Although it is not an
hypervisor standard, some parts of the APEX model of
ARINC-653 can be close to the functionality provided by
an hypervisor.

3.3 XtratuM Hypervisor

XtratuM (Masmano et al., 2009, 2010) is a type 1 hypervi-
sor that uses para-virtualization. The para-virtualized op-
erations are as close to the hardware as possible. Therefore
porting an operating system is a simple task: replace some
parts of the operating system HAL (Hardware Abstraction
Layer) with the corresponding hypercalls.

XtratuM is being used as a TSP-based solution for build-
ing highly generic and reusable on-board payload software
for space applications (Arberet et al., 2009). A TSP based
architecture has been identified as the best solution to
facilitate and secure reuse. It enables a major decoupling
of the generic features that are being developed, validated,
and maintained in mission-specific data processing (Ar-
beret and Miro, 2008).

In a hypervisor, and in particular in XtratuM, a partition
is a virtual computer rather than a group of strongly
isolated processes. When multi-threading (or tasking) sup-
port is needed in a partition, then an operating system
or a run-time support library has to provide it. In fact,
it is possible to run a different operating system on each
XtratuM partition.

XtratuM was designed to meet safety critical real-time
requirements. Its most relevant features are:

• Bare hypervisor.
• Employs para-virtualization techniques.
• Designed for embedded systems: some devices can be

directly managed by a designated partition.
• Strong temporal isolation: fixed cyclic scheduler.
• Strong spatial isolation: all partitions are executed in

processor user mode, and do not share memory.
• Fine grain hardware resource allocation via a config-

uration file.
• Robust communication mechanisms (XtratuM sam-

pling and queuing ports).
• Static resource allocation. A configuration file speci-

fies the temporal and spatial allocation of resources
to partitions.

XtratuM is available for different processors: x86,
LEON2/3/4, ARM Cortex R4. XtratuM has been adapted
to deal with heterogeneous multicore architectures, in the
framework of the MultiPARTES (MultiPARTES, 2013)
project.

4. SCHEDULING TECHNIQUES FOR PARTITIONED
SYSTEMS

4.1 Hierarchical scheduling

Partitioned software architectures define two layers: a par-
titioning kernel in charge of allocating resources to parti-
tions, including CPU time, and the partitions themselves,
where applications are executed. Since partitions usually
include different threads or tasks that are executed con-
currently, the local operating system must in turn manage
the allocation of resources to the partition tasks. Such a
scheme leads, in a natural way, to the concept of hierar-
chical scheduling, where there is a global scheduler that
allocates CPU time to partitions, and a local scheduler in
each partition, that schedules the execution of tasks within
the processor time available to the partition.

A number of different scheduling schemes have been pro-
posed for both global and local scheduling. These include
cyclic or time slicing frameworks, dynamic priority and
fixed priority scheduling. As an example, ARINC 653
defines a cyclic scheduler at the global level and a fixed-
priority scheduler at the local level (ARINC 653-1).
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A key aspect of a scheduling method for real-time systems
is the ability to analyse the schedulability of the system
at design time, in order to guarantee the deadlines of real-
time tasks. In recent years, considerable effort has been
made in order to provide exact schedulability analysis for
hierarchical systems. Specifically, for fixed-priority hierar-
chical systems (where fixed-priority scheduling policy is
used in both global and local schedulers) the work of Davis
and Burns (2005) and Balbastre et al. (2009) provides an
exact worst-case response time analysis.

In order to achieve hierarchical scheduling, several strate-
gies can be used:

• Server-based scheduling: The improvement in ape-
riodic servers, as well as a better understanding of
the isolation properties of these mechanisms, refo-
cused the application of such servers to what was
called “bandwidth servers” or “resource reservation
protocols”. Servers enable real-time tasks to execute
in a dynamic environment under a temporal pro-
tection mechanism, so that each server will never
exceed a predefined bandwidth, independently of its
actual workload requests. In this way, servers act as
application containers, providing temporal isolation
to applications. In this approach, a separate server
is allocated to each application. Each server has an
execution capacity and a replenishment period, en-
abling the overall processor capacity to be divided up
among the different applications. The advantages of
this technique include the great amount of research
available. However, its main drawback is the difficulty
to handle complex task models.
• Compositional scheduling: The basic idea of this ap-

proach is to extend the classical and widely used
“divide and conquer” strategy to the temporal re-
quirements. This technique has been widely accepted
as a methodology for designing large complex systems
through systematic abstraction and composition. The
complexity of each component is hidden and ab-
stracted through a clean and well-defined interface.

This approach has the following main advantage:
· Clean isolation of scheduling concerns between

partition developers and system integrator. The
partition developers do not have to provide
details about its internal operation (task at-
tributes), just the temporal abstract interface of
the partition.

On the other side, it has some drawbacks:
· The abstract interface is an upper bound of the

real needs of the partition, therefore there is
a non-negligible utilisation penalty. The more
partitions are in the system, the less processor
utilisation can be granted.
· Inter-partition resource sharing may be difficult

to implement and to take into account in the
schedulability analysis.
· The algorithm is not optimal. Some feasible sys-

tems cannot be scheduled with this approach.
· The restriction imposed on the periods of the

partitions (they must be harmonic) is a limitation
needed to produce “efficient” schedules (as well as
to be able to use a deadline-monotonic policy at

partition level). Otherwise, the resulting schedule
may be far from optimal.

• Flat scheduling: In many cases, it is difficult to hide
the internal task structure of the partitions because
of the need to specify execution flows conducted
by input/output operations that involve tasks in
different partitions. A flat model approach considers
all tasks, independently of the partition where they
belong, as a global system. A single global scheduler
can then be in charge of managing all the tasks,
and a global schedulability analysis can be carried
out. The last step is to adapt the solution back to
the partitioned system by grouping (trying to put
together) the tasks of each partition in order to reduce
the number of partition context switches.

This approach has the following advantages:
· Dependencies between tasks of different parti-

tions can be analysed and solved.
· Mature theory support for this model.
· The resulting schedule (or scheduling policy) can

be very efficient. Depending on the task model,
it may be possible to find the optimal solution.

It has also the following drawbacks:
· If an optimized solution is desired, a deep knowl-

edge of the timing attributes of all the tasks
is needed in order to carry out schedulability
analysis.
· There is no clean separation of concerns between

partition developers and system integrator, or
even among partition developers.
· A change of an attribute of a task may require

the whole schedule to be reworked.

4.2 Scheduling in multicore systems

The multiprocessor scheduling problem consists therefore
in finding a feasible schedule for n tasks running on m
processors. In the following we assume that n ≥ m. Mul-
tiprocessor real-time scheduling is intrinsically a much
more difficult problem than monoprocessor scheduling.
The main reason is that few of the results obtained for
monoprocessors can be directly applied to the multipro-
cessor case (Davis and Burns, 2011).

From the perspective of scheduling, multiprocessor sys-
tems can be classified into three categories.

• Heterogeneous multiprocessor systems: processors are
different.
• Homogeneous multiprocessor systems: processors are

identical.
• Uniform multiprocessor systems: the rate of the ex-

ecution of a task depends only on the speed of the
processor.

Research has been focused so far mainly on uniform and
homogeneous multiprocessor scheduling.

Multiprocessor scheduling has to solve two problems: the
allocation problem, that requires deciding on which pro-
cessor a task should execute, and the local scheduling
problem, that is, when a task should execute. Regarding
allocation, there are scheduling algorithms that permit
migration (at task or job level) and algorithms that do
not permit it.
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Scheduling algorithms where no migration is permitted are
referred to as partitioned, whereas those where migration
is permitted (either at task or at job level) are referred to
as global.

Partitioned scheduling

Under this approach, each task is assigned to a single
processor. This has the following advantages:

• Task overruns have only consequences in the same
processor.
• There is no penalty in terms of migration cost.
• The implementation uses a separate run queue per

processor, rather than a single global queue in the
global approach. This reduces overheads due to queue
management.

On the contrary, its main disadvantages are:

• Finding an optimal allocation of tasks to processors is
a bin-packing problem, that is NP-hard in the strong
sense.
• There are task sets that are only schedulable if

migration is allowed.
• Partitioned scheduling algorithms are not work-

conserving, as a processor may become idle, but can-
not be used by ready tasks allocated to a different
processor.

Still, partitioning is widely used by system designers.

Typical memory allocators such as First-Fit (FF), Worst-
Fit (WF), and Best-Fit (BF) have been used to solve the
problem of finding good sub-optimal static allocation of
tasks to processors. These heuristics use the task period
parameter as the key for allocation. Others, such as FFDU
(First Fit Decreasing Utilization) (Oh and Son, 1995),
use the task utilization as a key for choosing the next
task to allocate. These allocators combined with classical
scheduling algorithms (FPPS or EDF) gives rise to the
most popular partitioned scheduling algorithms, such as
RMFF, EDFBF, RMFFDU, etc. A comparison of these
allocation schemes can be found in (Zapata and Mejia-
Alvarez, 2003).

Global scheduling

Global scheduling cannot be used to reduce the mul-
tiprocessor scheduling problem to many monoprocessor
scheduling problems, contrary to partitioned scheduling.
The fact that tasks are allowed to migrate in the global
approach gives rise to many unexpected effects and disad-
vantages, which complicate the design of scheduling and
allocation algorithms for the global scheme. The most
significant problems are:

• Migration of tasks to processors introduce a high
overhead in the system.
• Migration increases the information flow between

processors. This kind of communication may require
the use of shared memory or communication channels.
• Predictability is much lower than that associated to

the partitioned scheme.
• Some scheduling anomalies may occur, for example

the Dhall effect: tasks sets with very small utilization
may be unschedulable (Dhall and Liu, 1978).

On the contrary, the main advantages of this approach are:

• There are typically fewer context switches/preemp-
tions. This is because the scheduler will only preempt
a task when there are no idle processors.

• An advantage of the global scheme is its generality.
Since tasks can migrate from one processor to an-
other, the processor system “could be” better utilized.

• Global scheduling is more appropriate for open sys-
tems, as there is no need to run load balancing/task
allocation algorithms when the set of tasks changes.

To classify global scheduling algorithms we use the con-
cepts of fixed job priorities or fixed task priorities. In the
former approach, the priority of a task can only change at
job boundaries, while in the latter all jobs generated by
the same task have identical priorities. Some well-known
global scheduling methods are:

Fixed job priorities:

• The best-known scheduling algorithm for global mul-
tiprocessor scheduling is the so-called global Earliest
Deadline First (EDF), where jobs are dispatched to
any available processor according to a global priority
scheme following EDF rules.

• Srinivasan and Baruah (2002) proposed the EDF-
US[u] algorithm that gives the highest priority to
tasks with utilization greater than a threshold u.

Fixed task priorities:

• Global-FP in which the global priority scheme is
based on fixed priorities.

• Andersson (2008) proposed a “slack monotonic” algo-
rithm, where priorities are ordered according to the
slack of each task. This algorithm is known as SM-US.

Dynamic priorities:

• Pfair (Baruah et al., 1996) is a schedule generation
algorithm that is applicable to periodic task sets
with implicit deadlines. Pfair is based on the idea
of fluid scheduling, where each task makes progress
proportionate to its utilization (or weight in Pfair ter-
minology). Pfair scheduling divides the timeline into
equal length quanta or slots. At each time quantum t,
the schedule allocates tasks to processors, such that
the accumulated processor time allocated to each task
τi will be either dtuie or btuic. A number of variants
on the Pfair approach have been introduced (ERFair,
PD, PD2, BF).

• Lee (1994) introduced the Earliest Deadline until Zero
Laxity.

5. REQUIREMENTS ON THE DEVELOPMENT
TOOLS

The complexity of the development of mixed-criticality
embedded systems can only be overcome by the avail-
ability of adequate methodologies and tools. Due to the
technical difficulties of achieving this aim, it is not feasible
to develop a single tool that is completely satisfactory. On
the contrary, the solution should rely on a set of com-
plementary and composable tools that deal with different
aspects of the problem. There is a ongoing effort by the
research community on defining such tools, as it is the
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case with the research projects listed in section 2. The
set of requirements that these tools must fulfil can be
summarized as follows:

Development of mixed-criticality systems The con-
cept of criticality is central in the whole development
process. The criticality level of each system component
must be stated. This property has to be considered in all
the functionalities provided by the tools: partitioning,
validation, artefacts generation, or testing.

Support for non-functional requirements These are
of great importance when dealing with embedded sys-
tems. They are not directly associated with an specific
function or components of the system. They usually
apply to the system as a whole, and defined as con-
straints on the system functionality. Time, safety, and
security, are examples of non-functional requirements
that will be present in most of the targeted systems.
The toolset has to provide means for specifying them,
and validating their fulfilment. This support can be
provided at different development phases. The toolset
can include tools for validating a certain outcome with
respect to a non-functional property. The generators and
transformers have to consider them, in order to ensure
that their outcomes are compliant.

Support for partitioned systems System partitioning
is a fundamental activity on the target type of systems.
However, there is little support in similar development
tools. This toolset should generate system partitioning
that has to be compliant with the system models,
non-functional requirements, and hardware resources
availability.

Support for multi-core architectures The execution
platform can be multi-core, as it is commonplace in
current industrial systems. It should be supported mod-
elling multi-core systems and to assign partitions to
cores, according to the model defined by the hypervisor

System modelling The toolset has provide means for
modelling the whole system, which includes the appli-
cations, platform, and any other information that the
user has to provide. This is required for ensuring a
consistent and coherent handling of all the information
related with a system development. It is also required
to support legacy applications. This is mandatory for
integrating applications that have been developed with
other approaches.

Support system deployment Deployment is the last
step required before running the system. When dealing
with partitioned embedded systems, this implies the
generation of a bootable software image that includes
the hypervisor, the partitions, and their operating sys-
tem and applications. The tools shall support system
deployment by generating mechanisms for the automatic
building of the system. System deployment also requires
the configuration of the hypervisor, which includes infor-
mation on the systems partitions, resources associated
to them, etc. This system description can be naturally
generated by the toolset, if the developer provides the
required data.

6. APPLICATION TO THE DEVELOPMENT OF
CONTROL SYSTEMS

Cyber-physical control systems (CPCS) are those that
making use of computational resources (or cyber capabil-
ities) interact with the external world (physical phenom-
ena), in order to achieve the desired behaviour, i.e., to
control some physical phenomena. In a sense, most em-
bedded systems can be considered as CPCS. A number of
CPCS may include functionalities with different criticality
levels.

Example of CPCS can be found in different application
domains, going from transport applications (avionics, au-
tomotive or railway) to medical devices or process indus-
try. In such type of systems, it is common to distinguish
between safety and mission criticality types. The former
refers to the parts of the system whose failure can impact
human safety, and the latter refers to the parts of the
CPCS that allows achieving the purpose of the system.
There may be functions that are critical for mission success
that have no impact on safety issues. For instance in
avionics, a field posing the highest levels of safety and
security challenges, engine control is safety critical, while
navigation or communication are generally considered mis-
sion critical.

The demanding requirement of current complex CPCS ap-
plications with respect to Size, Weight and Power (SWaP)
is pushing CPCS to be implemented in mixed critical-
ity architectures. At the same time, technology advances
in communication and Internet technology is leading to
networked control systems and larger scale complex sys-
tems. In this sense, innovation in the transport industry
(automotive, aerospace and railway) is being introduced
adding driver, operator or passenger services and interac-
tion. Examples can be found in advanced driver assistance,
automatic cruise control, autonomous driving or smart col-
laborative interfaces. Combination of real life and virtual
reality may convert cars, aircraft and trains into smart
personalized comfortable spaces (Thompson, 2012).

The consumer market may also benefit from mixed critical-
ity architectures, as temporal and spatial isolation are key
to ensuring safe system operation. Embedded computing
based on multi-core and many-core processors will allow
reducing design complexity and SWaP while providing
increased flexibility. Thus, initiatives such as smart energy
or mobility will lead to interconnected complex systems
offering mobile services (so-called systems of systems). Ap-
plications of this type are under development on domains
such as automation, smart metering, medical monitoring,
traffic control or smart grid.

On the other hand, multimedia services arising in the
consumer market are placing a strong demand for the
same services to be available in transport applications.
New services via Internet are being introduced in the
automotive sector, such as navigation systems and remote
support and configuration, providing better and faster
customer services.

However, where mixed-criticality architectures are making
a great impact, it is in safety-related applications where
SWaP and increased processing capabilities are very de-
manding requirements. Future avionics are provoking a
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movement towards all-Integrated Modular Architecture
(IMA), as a means to provide more processing power while
decreasing SWaP (B.Triquet, 2012). Barhorst et al. (2009)
analyses the impact of mixed criticality architectures in
the field of avionics, mainly from the perspective of UAVs.
G. Horvath (2012) presents the first step towards a parti-
tioned software architecture for space robotics, highlight-
ing the benefits throughout the entire development cycle
from requirements and design to implementation, testing
and operations. They also identify the changes in flight
software design as well as the risks associated to them.

Looking at the automotive sector, migration of vehicle
security features from mechanical solutions to CPCS is
another field in which mixed criticality architectures seem
to have direct application. Brewerton et al. (2012) present
a safety architecture based on the multicore extensions
of AutoSAR for steering column lock, including the ver-
ification and validation of the selected mechanisms. The
work concludes with some of the advantages of the mixed
criticality architecture:

• cost reduction through the reduced number of ECUs
needed.
• reduction in integration (verification and validation)

costs by OEM, as a set of safety function can be
integrated in a single ECU,
• scalability, being possible to deploy safety function on

a single core or spread them over multiple synchro-
nized cores.
• simplified certification effort, reducing development

costs.

In summary, current requirements in SWaP, distribution,
and reconfiguration capabilities make mixed-criticality ar-
chitectures a good option for many of the future CPCS
applications. But this type of architectures also leads to
research challenges and new design scenarios. Software
and hardware providing temporal and spatial isolation
are needed, as well as a re-definition of criticality levels,
since functionalities may have variable criticality defined
by their context or use if reconfiguration is triggered.
Criticality level may pass from being one-dimensional to
a multi-dimensional issue depending on the CPCS be-
haviour. Mixed criticality architecture opens the road to
change from design and certification to design for certifica-
tion, as pre-certified components (hardware and software)
would exist that can be combined with mixed criticality
functionality components to ensure CPCS meet their func-
tional and non-functional requirements. These are only
some of the features of the CPCS of the near future
belonging to different application fields such as aerospace,
automotive and rail transport, wind turbines, power grid,
medical or factory automation. As a consequence, new
challenges arises demanding research effort in modelling,
analysis and design methods and tools able to ensure that
CPCS composed by functionalities that can operate in
different configurations satisfy competing safety, security
or timeliness requirements in all cases. Reference architec-
tures, methodologies and tools for reducing certification
efforts, parallelization techniques and tools for mapping
functionalities to cores, timing analysis methodologies and
tools and virtualization techniques, including network vir-
tualization, are some challenges to start with.

7. CONCLUSIONS

This paper has discussed the use of mixed-criticality sys-
tems. These type of systems are the result of the evo-
lution of embedded systems, which is characterized by
more complex functionality, more powerful processors, re-
quirements on size, weight and power, and non-functional
requirements. The most promising approach is to rely
on hypervisors that provide temporal, spatial and fault
isolation between partitions. In this way, components with
different criticality level are assigned to different partition,
preventing undesirable interferences.

The previous sections describe mixed-criticality systems,
their main characteristics, most relevant challenges, and
some of the on-going work. This paper has the goal
of serving as an initial starting point for researchers
interested on a topic with a great potential in the near
future.
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