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Abstract: This paper presents a derivative free state estimation algorithm for nonlinear systems called
the state dependent Riccati equation information filter (SDREIF). The SDREIF is developed by fusing
an SDRE filter with an information filter. Similar to the extended Kalman filter (EKF) or the extended
information filter (EIF), the proposed SDREIF consists of two stages, prediction and update. However,
unlike the EKF or EIF, the SDREIF does not use Jacobians and hence the filter is suitable for highly
nonlinear systems. Furthermore, the framework is extended to handle state estimation for multi-sensor
measurements. The efficacy of the proposed SDREIF is shown by a simulation example of a permanent
magnet synchronous motor.

Keywords: SDRE filters, information filters, state estimation.

1. INTRODUCTION

Nonlinear state estimation is an active research area which
plays an important role in real-life applications ranging from
engineering to finance. Nonlinear state estimation can broadly
be classified as derivative and derivative-free filters. Derivative
filters use Jacobians, which are the truncated first order Taylor
series of the nonlinear functions; whereas derivative-free filters
explicitly avoid the use of Jacobians. The most famous Jacobian
based derivative filter for nonlinear systems is the extended
Kalman filter (EKF). The EKF has been extensively used in
industry and academia over the last six decades. Another im-
portant class of derivative filter for nonlinear systems is the
extended H∞ filter; which is based on robust H∞ theory (Simon,
2006). In many cases, the derivative filters are not preferred
because of the errors introduced by first order linearisation
and inconvenience of the involvement of Jacobians. Recently,
a few researchers have proposed derivative free filters like
particle filters (Arulampalam et al., 2002), unscented Kalman
filters (Julier, 1996; Julier and Uhlmann, 2000; Wan and Van
Der Merwe, 2000), Gaussian filters (Ito and Xiong, 2000),
etc. These may be called sigma-point filters. Another class of
derivative-free filters is the state dependent Riccati equation
(SDRE) filter (Cloutier, 1997; Mracek et al., 1996; Çimen,
2008; Nemra and Aouf, 2010), etc. In sigma-point filters, a
few sigma-points are selected and processed to capture the
mean and covariance. However, in SDRE filters, the nonlinear
functions are parameterised in a state dependent coefficient
(SDC) form which is then followed by an estimation procedure.

When it comes to multi-sensor state estimation, the state and
covariance are propagated in the information space and the
state estimators derived in the information domain are called
information filters and for nonlinear systems, they are called
extended information filters (EIFs) (Mutambara, 1998).

In this paper, we present a new nonlinear state estimator
called the state dependent Riccati equation information filter
(SDREIF). The SDREIF is based on the SDRE filter and the
information filter and has the advantages of both. The SDREIF
is a derivative free filter like the SDRE filter and can easily
handle multi-sensor measurements like the information filter.
The remainder of this paper is organised as follows. Section
2 describes the basic formulation of the SDRE and the infor-
mation filters. The details of the proposed SDREIF are given in
Section 3; Section 4 describes the numerical simulations for the
permanent magnet synchronous motor and Section 5 concludes
the paper.

2. SDRE AND EXTENDED INFORMATION FILTERS

A brief introduction to the SDRE filter and the EIF is presented
in this section. For a detailed formulation and derivation of
these methods see for example (Cloutier, 1997) for the SDRE
filter and (Mutambara, 1998) for the EIF.

2.1 SDRE Filter

Consider the discrete-time process and measurement models
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xk = f(xk−1,uk−1)+wk−1 (1)

zk = h(xk)+ vk, (2)

where, k is a current time index, xk ∈ R
n represents a state

vector, uk ∈ R
q is a control input vector, zk ∈ R

p is a measure-
ment vector, and wk−1 and vk are the process and measurement
noises. In this paper, the process and measurement noises are
assumed to be Gaussian with zero means and covariances of
Qk−1 and Rk,

wk−1 = N (0,Qk−1)

vk = N (0,Rk),

where, N represents the Gaussian or normal probability distri-
bution.

The nonlinear models in Eqs. (1) and (2) can be represented in
the state dependent coefficient (SDC) (Cloutier, 1997) form as:

xk = F(xk−1)xk−1 +G(xk−1)uk−1 +wk−1 (3)

zk = H(xk)xk + vk. (4)

Note that the SDC matrices, F, G and H, for nonlinear systems
are non-unique.

Consider a simple example, where the nonlinear plant dynamics
is given by:

xk = f(xk−1) =

[
x2,k−1

x2
1,k−1

]
. (5)

The SDC form of Eq. (5) can be written as:
fk−1 = F1(xk−1)xk−1 = F2(xk−1)xk−1 = F3(xk−1)xk−1 = . . .,
where the SDC matrices are:

F1(xk−1) =

[
0 1

x1,k−1 0

]
,

F2(xk−1) =

[ x2,k−1

x1,k−1
0

x1 0

]
,

F3(xk−1) = λ F1(xk−1)xk−1 +(1−λ )F2(xk−1).

A similar example is considered in (Banks et al., 2007). Dif-
ferent parameterisations can be obtained for different ‘λ ’ in
the interval [0,1], which satisfies the convexity of the chosen
parameterisation. Similarly, different combinations of the SDC
measurement matrices, Hi, and the state vector, xk, can yield
the same h(xk), like H1(xk)xk =H2(xk)xk =H3(xk)xk = h(xk).
As the SDC matrices are non-unique, before designing the
SDRE controller (or the SDRE observer), one should make
sure that the state-dependent controllability matrix (or the state-
dependent observability matrix) has full rank (Banks et al.,
2007).

Similar to the Kalman filter, the SDRE filter can be written
in prediction and update stages (Jaganath et al., 2005). The
predicted state, x̂k|k−1, and positive definite matrix, Pk|k−1, can
be written as:

x̂k|k−1 = f(x̂k−1|k−1,uk−1) (6)

Pk|k−1 = F(x̂k−1|k−1)Pk−1|k−1F(x̂k−1|k−1)
T +Qk−1. (7)

The updated state, x̂k|k, and positive definite matrix, Pk|k, are:

x̂k|k = x̂k|k−1 +Kk[zk −H(x̂k|k−1)] (8)

Pk|k = (In −KkH(x̂k|k−1))Pk|k−1, (9)

where, In denotes the identity matrix of dimension n×n and the
SDRE filter gain is:

Kk = Pk|k−1H(x̂k|k−1)
T [

H(x̂k|k−1)Pk|k−1H(x̂k|k−1)
T +Rk

]−1
.

(10)
It can be noted that the matrices Pk|k−1 and Pk|k satisfy the
Riccati recursion and are state dependent. At first glance, the
above formulation looks similar to that of the EKF; but it is
not. The main difference between the SDRE filter and the EKF
is the way in which the matrices F(x̂k−1|k−1)) and H(x̂k|k−1)
are defined. In the SDRE filter they are the parameterised
SDC matrices and for the EKF they are the Jacobians of the
process and measurement models. The SDRE filter avoids the
evaluation of Jacobians and hence avoids errors introduced by
truncation of Taylor series. It is interesting to note that different
parameterisations in SDRE filter may yield different results
(Liang and Lin, 2013).

2.2 Extended Information Filter

For nonlinear state estimation with multi-sensor measurements,
the extended version of the information filter (the EIF), is
preferred over the EKF (Mutambara, 1998). The EIF is an
algebraic equivalent of the EKF, in which the parameters of
interest are the information vector and the information matrix
rather than the states and covariance. The EIF is summarised
below.

Consider the discrete nonlinear process and measurement mod-
els given in Eqs. (1) and (2). The information filter deals with
the information vector, y, and the corresponding matrix, Y. The
EIF can also be expressed in prediction and update stages. The
predicted information vector, ŷk|k−1, and the predicted informa-
tion matrix, Yk|k−1, are given as:

ŷk|k−1 = Yk|k−1x̂k|k−1 (11)

Yk|k−1 = P−1
k|k−1 =

[
∇fxY−1

k−1|k−1∇fT
x +Qk−1

]−1
, (12)

where, Pk|k−1 is the predicted covariance matrix and

x̂k|k−1 = f(x̂k−1|k−1,uk−1). (13)
The updated information vector, ŷk|k, and the updated informa-
tion matrix, Yk|k, are

ŷk|k = ŷk|k−1 + ik (14)

Yk|k = Yk|k−1 + Ik. (15)
The information vector contribution, ik, and its associated ma-
trix, Ik, are

ik = ∇hT
x R−1

k

[
νk +∇hxx̂k|k−1

]
(16)

Ik = ∇hT
x R−1

k ∇hx, (17)
where, the measurement residual, νk, is

νk = zk −h(x̂k|k−1,uk) (18)

and ∇fx, and ∇hx are the Jacobians of f and h evaluated at
the latest available state (Jacobians for prediction and update
equations are evaluated at x̂k−1|k−1 and x̂k|k−1, respectively).

For multi-sensor data fusion, the update stage of the EIF is
computationally simpler and has several other advantages over
the EKF. But some of the drawbacks inherent in the EKF
still affect the EIF; these include the nontrivial nature of the
derivations of the Jacobian matrices and linearisation instability
(Mutambara, 1998).
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3. SDRE INFORMATION FILTER

This section presents the formulation for the SDRE information
filter (SDREIF). The SDRE filter and the EIF are fused to form
the SDREIF, to preserve the benefits of both these filters. The
SDREIF is a derivative free filter like SDRE filter, and like
the EIF, it is handy to deal with multi-sensor state estimation.
Similar to the information filter, the SDREIF is developed in
the information space, where the information vector and its
associated matrix are propagated.

Consider the discrete time process and measurement models
given in Eqs. (1) and (2) and their SDC form in Eqs. (3) and
(4). The predicted information vector, ŷk|k−1, and the inverse of

the positive definite matrix, Yk|k−1 = P−1
k|k−1, for the SDREIF

are:

ŷk|k−1 = Yk|k−1x̂k|k−1 (19)

Yk|k−1 =
[
F(x̂k−1|k−1)Y

−1
k−1|k−1F(x̂k−1|k−1)

T +Qk−1

]−1
,(20)

where,
x̂k|k−1 = f(x̂k−1|k−1,uk−1). (21)

It can be noted that the predicted information vector in Eq. (19)
is the same as that of the EIF, but the expression for Yk|k−1
is different. In the EIF, the updated information matrix is the
function of the Jacobian, ∇fx, whereas in the SDREIF the ∇fx
is replaced by the SDC F(xk−1).

The updated information vector, ŷk|k, and Yk|k are:

ŷk|k = ŷk|k−1 + ik (22)

Yk|k = Yk|k−1 + Ik. (23)

The information vector contribution, ik, and its associated in-
formation matrix, Ik, are:

ik = H(x̂k|k−1)
T R−1

k

[
νk +H(x̂k|k−1)x̂k|k−1

]
(24)

Ik = H(x̂k|k−1)
T R−1

k H(x̂k|k−1), (25)

where, the measurement residual, νk, is:

νk = zk −H(x̂k|k−1), (26)

and H(x̂k|k−1) is a parameterised SDC matrix of the measure-
ment model.

3.1 SDREIF in Multi-Sensor State Estimation

State estimation performed in the information domain has the
ability to easily handle multi-sensor state estimation (Mutam-
bara, 1998; Bar-Shalom et al., 2004). In the update stage, the
information from different sensors can be easily fused (Mutam-
bara, 1998; Bar-Shalom et al., 2004). The prediction step for
the SDREIF multi-sensor state estimation is the same as that
of the SDREIF (with single sensor). In the update stage, the
measurements from different sensors are fused for an efficient
and reliable estimation (Raol and Girija, 2002).

Let the different nonlinear sensors used for the state estimation
be:

z j,k = h j,k(x j,k)+ v j,k; j = 1,2, ...D, (27)
where, ‘D’ is the number of sensors. The parameterised SDC
form for the multi-sensor models can be written as:

z j,k = H(x j,k)x j,k + v j,k; j = 1,2, ...D. (28)

The prediction step of multi-sensor SDREIF is the same as that
of SDEIF. The updated information vector and the correspond-
ing matrix for multi-sensor SDREIF are:

ŷk|k = ŷk|k−1 +
D

∑
j=1

i j,k (29)

Yk|k = Yk|k−1 +
D

∑
j=1

I j,k, (30)

where,

i j,k = H(x̂k|k−1)
T R−1

j,k

[
νk +H(x̂k|k−1)x̂k|k−1

]
(31)

I j,k = H(x̂k|k−1)
T R−1

j,k H(x̂k|k−1). (32)

The SDREIF is summarised in Algorithm 1.

4. SIMULATIONS

Simulations are performed on a two phase permanent magnet
synchronous motor (PMSM) model. The state vector of the
PMSM is [ia, ib,ω ,θ ]T . It is assumed that the first two states,
ia and ib, are available and the remaining two states, ω and θ ,
are to be estimated. The inputs to the PMSM are the voltages,
u1,k and u2,k.

The discrete-time nonlinear model of PMSM is (Simon, 2006;
Chandra et al., 2013)




ia,k+1
ib,k+1
ωk+1
θk+1


=




ia,k +Ts

(
−

R
L

ia,k +
ωλ
L

sinθk +
1
L

u1,k

)

ib,k +Ts

(
−

R
L

ib,k −
ωλ
L

cosθk +
1
L

u2,k

)

θk +Ts

(
−

3λ
2J

ia,k sinθk +
3λ
2J

ib,k cosθk −
Fωk

J

)

θk +Tsωk




the outputs and inputs are
[

y1,k
y2,k

]
=

[
ia,k
ib,k

]
,

[
u1,k
u2,k

]
=

[
sin(0.002πk)
cos(0.002πk)

]
.

The following parameters are used for the simulations (Simon,
2006; Chandra et al., 2013): R = 1.9Ω, λ =0.1, L = 0.003H, J =
0.00018, F = 0.001 and Ts = 0.001 s. It is assumed that the plant
and measurement models are excited with additive Gaussian
noises. In this paper, emphasis is given to the state estimation
rather than the control design. The control strategy is based on
an open-loop mechanism and hence reference speed tracking is
not considered.

The first step in implementing the SDREIF is to parameterise
the nonlinear process and measurement equations in the SDC
form. In this paper the following SDC form has been used:

xk = F(xk−1)xk−1 +G(xk−1)uk−1 +wk−1 (33)

zk = H(xk)xk−1 + vk, (34)

where,
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F(xk−1) = I4 +Ts




−
R
L

0
λ
L

sinθk 0

0 −
R
L

λ
L

cosθk 0

−
3
2

λ
J

sinθk
3
2

λ
J

cosθk
−F
J

0

0 0 1 0




G(xk−1) =




1
L

0 0 0

0
1
L

0 0




T

H(xk) =

[
1 0 0 0
0 1 0 0

]
.

Two sets of simulations are performed on the PMSM to anal-
yse the proposed SDREIF. The first set is simulated with a
single group of sensors and the second set of simulations are
performed with two groups of sensors. In the first set of simu-
lations, the covariance of the process and measurement noises
are:

Q=




11.1111 0 0 0
0 11.1111 0 0
0 0 0.0025 0
0 0 0 1× 10−6


 , R= 1×10−4I2.

The initial information vector is selected from

N

(
[ 1 1 1 1 ]

T
,I4

)
.

It was further assumed that the first sensor (ia measurement)
and the second sensor (ib measurement) are faulty from 0.5 s
to 0.8 s and 2 s to 2.3 s, respectively. In this paper, the term
‘faulty’ refer to sensors with zero measurements from 0.5 s to
0.8 s and from 2 s to 2.3 s. Fig. 1 shows the plots of actual
and measured data; where the sensors are faulty. In the first
set of simulations, a single group of faulty sensors are used
to measure the currents, ia and ib; and ω and θ are estimated
using the SDREIF given in Section 3. For the second set
of simulations, two groups of sensors are used and the state
estimation procedure given in the Section 3.1 is used. For the
multi-sensor state estimation, the first group of sensors are the
same as that of the single-sensor state estimation; the noise
covariance of the second group of sensors is: R2 = 4× 10−6I2.
The corresponding results are depicted in Fig. 2. It can be seen
that the SDREIF using single group of sensors are not capable
to handle the faulty sensors; whereas the multi-sensor SDREIF
can handle it efficiently. It is interesting to note that, during the
faulty measurements, the multi-sensor SDREIF is able to keep
the estimation error within an acceptable range. The error plots
using the single- and multi-group of sensors are shown in Fig.
3. Several spikes in the rotor position error are due to the sudden
changes in the trapezoidal rotor position at 2π Radians.

Remark: Similar to the SDRE filter, the selection of an ap-
propriate SDC form plays a crucial role in the SDREIF. For
the state estimation of the PMSM, if the SDC matrix F(xk−1)
given in Eq. (35) is selected and assuming all the remaining
parameters are the same as used in the Section 4, then the
estimation errors are found to be quite large. One of the main
reasons for this is the (3,3) and (3,4) elements of the matrix in
Eq. (35).
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Fig. 1. Actual and measured states.
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Fig. 2. State estimation using single- and multi-sensor SDREIF.

F(xk−1) = I4 +Ts




−
R
L

0
λ
L

sinθk 0

0 −
R
L

λ
L

cosθk 0

−
3
2

λ
J

sinθk
3
2

λ
J

cosθk −
F
J
(1−θk) −

F
J

ωk

0 0 1 0



. (35)

In the PMSM model, ω and θ are sensitive states and hence the
SDC matrices formed with a combination of these states lead to
an erroneous state estimation. The selection of an appropriate
SDC form for the SDRE filters is an active area of research as
reported in (Liang and Lin, 2013).

5. CONCLUSIONS

In this paper, we have presented the state dependent Riccati
equation information filters (SDREIFs). The proposed filter
is derived from the SDRE filter and an extended information
filter. Further it has been extended to deal with a multi-sensor
platform. The SDREIF has the following advantages:
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Fig. 3. Error plots using single- and multi-sensor SDREIF.

(1) It is a derivative free filter and has the ability to deal with
highly nonlinear systems.

(2) The multi-sensor SDREIF has a simpler update stage.
(3) The multi-sensor SDREIF can handle multiple sensors

and faulty measurements.

The efficacy of the multi-sensor SDREIF has been demon-
strated on a permanent magnet synchronous motor example and
the results are promising. Further areas of study include:

(1) A square-root version of the SDREIF to improve the
numerical stability.

(2) Different parameterisations and their effects on the state
estimation error.

(3) Stability of the SDREIF.
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Algorithm 1 State Dependent Riccati Equation Information
Filter (SDREIF)
State Dependent Coefficient Form:

1: Use paramerisation to bring the nonlinear process and
measurement models in to the below SDC form:

xk = F(xk−1)xk−1 +G(xk−1)uk−1 +wk−1

zk = H(xk)xk−1 + vk.

Prediction:
Initialise the information vector, ŷk−1|k−1, and the associated
matrix, Yk−1|k−1; by setting k = 1.

1: The predicted information vector and the associate matrix
are:

ŷk|k−1 = Yk|k−1x̂k|k−1

Yk|k−1 =
[
F(x̂k−1|k−1)Y

−1
k−1|k−1F(x̂k−1|k−1)

T +Qk−1

]−1
,

where,

x̂k|k−1 = f(x̂k−1|k−1,uk−1).

Measurement Update:
1: Evaluate the information vector contribution and its associ-

ated information matrix

ik = H(x̂k|k−1)
T R−1

k

[
νk +H(x̂k|k−1)x̂k|k−1

]

Ik = H(x̂k|k−1)
T R−1

k H(x̂k|k−1)

where, the measurement residual, νk, is

νk = zk −H(x̂k|k−1).

2: The updated information vector and the corresponding
matrix are

ŷk|k = ŷk|k−1 + ik
Yk|k = Yk|k−1 + Ik.

For multi-sensor state estimation, the updated information vec-
tor and the corresponding matrix are:

ŷk|k = ŷk|k−1 +
D

∑
j=1

i j,k

Yk|k = Yk|k−1 +
D

∑
j=1

I j,k,

where,

i j,k = H(x̂ j,k|k−1)
T R−1

j,k

[
νk +H(x̂ j,k|k−1)x̂ j,k|k−1

]

I j,k = H(x̂ j,k|k−1)
T R−1

j,k H(x̂ j,k|k−1)

Recovery of State and the Corresponding Ma-
trix:

1: The state and the corresponding positive definite matrix can
be recovered as:

x̂k|k = Yk|k\ŷk|k

Pk|k = Yk|k\In

where, In is the state vector sized identity matrix and ‘\’ is
left divide operator.
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