

A Testing Pattern for Automatic Control Software

Addressing Different Degrees of

Process Autonomy and Cooperation

Francesca Saglietti, Raimar Lill


Informatik 11 − Software Engineering, University of Erlangen-Nuremberg, Erlangen, Germany

(e-mail: saglietti@informatik.uni-erlangen.de, raimar.lill@informatik.uni-erlangen.de)

Abstract: This article considers different automatic control paradigms allowing for varying degrees of

agent cooperation and autonomy. In order to support the automatic verification of safety-relevant software

controllers, it proposes the use of a generic testing pattern which can be instantiated such as to allow to

optimize automatic test data generation with respect to the specific targets of the application considered

and of the testing phase involved. The article reports on successful case studies carried out in different

real-world environments.



1. INTRODUCTION

During the last decades, computer-based automatic control

has been essentially characterized by increasing demands on

software reliability and functional complexity.

On the one hand, the growing number of safety-critical,

computer-controlled technical applications in everyday life

obviously requires the development of appropriate,

transparent and practicable verification techniques for the

purpose of ensuring risk-adequate reliability targets.

On the other hand, the positive experiences meanwhile

gained with software-based instrumentation and control −

allowing in particular to support or even replace costly and

fault-prone human resources − motivate the development of

new applications based on increasingly sophisticated

functionalities. On its turn, the automatic controllability of

growingly complex functional behaviour demands for

correspondingly more elaborated verification techniques

capable of ensuring adequate reliability levels at affordable

effort.

Currently, a particular challenge is being posed by the need to

control the behaviour of cooperating technical processes

typically arising in robot factories or in vehicle traffic based

on car-to-car communication. The automatic control of

decentralized, concurrent behaviour evidently poses non-

obvious communication and synchronization requirements

which have to be explicitly addressed during development as

well as during verification.

The more complex is the situation in case the cooperating

processes to be controlled are planned to act in full

autonomy, thus requiring each of the participating agents to

be individually computer-controlled. In such a case the

controlling software must be specified and designed such as

to be able to anticipate any possible interaction with other

agents and to enable appropriate decision-making solely on

the basis of decentralized sensoring and reasoning

capabilities.

Common to all control paradigms summarized in Table 1 is

the need to capture the variety of potential scenarios before

operation and to verify the corresponding multiplicity of

behaviour by appropriate tests. Obviously, this is less

difficult in case of one central controller addressing a single

technical process than in case of distributed controllers

involving interaction among several agents.

Table 1. Control Paradigms

automatic control controlled process(es)

embedded controller,

local autonomy

stand-alone process

central controller,

no local autonomy

cooperating processes /

concurring processes

interacting local controllers,

high or full local autonomy

cooperating processes /

concurring processes

Depending on the underlying control paradigm, different

testing approaches were developed and applied in recent

years for the purpose of capturing and covering behavioural

variability.

In spite of their differences, they reveal to be based on a

generic testing pattern which will be illustrated in this article

and which allows to be instantiated depending on the

functional complexity and on the application-specific testing

targets. This pattern is structured as follows.

1.1 Step 1: Choice of Behavioural Model

Depending on the functionality addressed, a suitable

behavioural notation must be selected allowing for the

expressive power required by the problem class considered.

Higher modelling expressiveness may only be achievable at

the price of lower analyzability or even of undecidability. In

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 1599

order to allow for the visualization of scenarios, a graphical

notation is usually selected. Some classical examples are

illustrated in Chapter 2.

1.2 Step 2: Definition of Testing Targets

Depending on the testing phase addressed (unit testing,

integration testing or acceptance testing) the verification

process is driven by specific super-ordinate motivations like

fault detection, cost or reliability assessment. The degree at

which a goal may be considered as adequately achieved has

to be captured by suitable metrics addressing a.o. test

coverage and test amount. In case the testing targets involve

conflicting goals, test data generation results by multi-

objective optimization. Some examples are presented in

Chapter 3.

1.3 Step 3: Automatic Test Data Generation

In general, complex multi-objective optimization problems

do not allow for analytical solutions, but rather require

heuristics capable of providing acceptable compromises

between full optimization and practicality. Evolutionary

techniques based on Darwinian evolution theory have

revealed as extremely helpful for the purpose of generating

test data sets such as to achieve to an acceptable degree the

different targets of a testing phase. Some details will be

illustrated in Chapter 4.

2. BEHAVIOURAL MODELLING NOTATION

2.1 Unit Testing of Embedded Controllers

Typical graphical notations modelling the logic of central

automatic controllers are characterized by compact visual

descriptions of their operational behaviour. At design stage,

classical representation languages are finite state machines

capturing all legal sequences of operational states. At code

level, on the other hand, units of limited size are usually

represented by control flow graphs capturing all legal paths

through the software by highlighting the transfer of control

between instructions; classical control flow patterns are

shown in Fig. 1.

sequence if then if then else while do do while

Fig. 1. Control flow graphs modelling the transfer of control

between program instructions

Furthermore, control flow models may be enriched by data

flow annotations indicating at which point during execution

variable values are used in order to take decisions concerning

transfer of control or in order to define new values of

program variables (Rapps and Weyuker, 1982). Evidently,

(def,use)-pairs consisting of a variable definition and of any

of its uses are suitable to reflect the write-read chains of

operations induced by data flow.

2.2 Integration Testing of Component-based Controllers

Once individual components have been thoroughly tested,

their appropriate interplay is verified by integration-based test

cases focused on interfaces and invocations across

component boundaries.

At design level, such interactions may be modelled by

communicating finite state machines, each representing the

behaviour of one component. Upon invocation of an

operation across component boundaries, both the invoking

and the invoked component may change their internal state

by synchronized traversals of state transitions (Saglietti and

Pinte, 2010). For example, the occurrence of event tr2 in

state1 of component c (Fig. 2) not only triggers the transition

of c to state3; it results in a further event tr1’ triggering the

transition of component c’ from state1’ to state2’ as well.

state1

state2

state3

state2‘

state1‘

state3‘

state4‘

tr1/tr1‘

tr2/tr1‘

tr1/tr2‘

tr1‘

tr2‘

tr3‘

component c component c‘

Fig. 2. Communicating finite state machines modelling

synchronous component interactions at design level

At code level, crucial interactions between components are

captured by applying classical data flow concepts (s. section

2.1) to the data flow occurring across component boundaries

(Jin and Offutt, 1998, Alexander and Offutt, 2004). An

example of coupling pairs, i.e. (def,use)-pairs induced by

component invocation, is shown in Fig. 3.

F(x)

use(x)

y = 48

return y

caller callee

last-def-before-call

call site

first-use-after-call
last-def-before-return

first-use-in-callee
a = 18

b = F(a)

use(b)

Fig. 3. Coupling pairs induced by component invocation F(a)

modelling component interactions at implementation level

2.3 Interaction Testing of Cooperating Controllers

In case of decentralized and interacting controllers the main

question concerns the degree of cooperation and autonomy

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1600

involved. Cooperation implies the coordination of individual

contributions required to achieve a common target. In

particular, this includes the need of avoiding resp. resolving

potential conflicts arising in the course of cooperative

activities. On the other hand, autonomy − from the ancient

Greek terms auto (self) and nomos (law) − refers to the

behavior of entities governing themselves and taking

responsibility for their actions. Evidently, in general

cooperation may involve different degrees of autonomy,

where the most challenging scenario involves fully

autonomous agents capable of individual decision-making

solely on the basis of their own perception of reality and of

their reasoning capabilities without requiring the intervention

of any broker agent suggesting actions on the basis of global

knowledge.

A graphical language capable of capturing the interactions of

autonomously cooperating processes was shown to be offered

by coloured Petri nets (Jensen and Kristensen, 2009). In

general, classical Petri nets allow to generalize from finite

state machines by allowing the current state information to be

spread across the whole graph by means of tokens, hereby

stressing the decentral role of concurrent processes. In

particular, Petri nets also permit to represent infinitely many

states by means of finite graphs. In case of varying numbers

of cooperating agents, however, the choice of classical Petri

nets would require to re-design the cooperation model each

time new agents are introduced, e.g. as soon as a new

intelligent forklift is added to a robot factory. The alternative

offered by coloured Petri nets (CPNs) allows to relax this

restriction by including several types (colours) of tokens for

the purpose of encoding several robot missions, thus enabling

high model scalability, as a fluctuating number of agents is

easily captured by adding or removing tokens without

needing to adapt the underlying graphical structure.

A coloured Petri net illustrating the cooperation of forklifts

moving along a path consisting of discrete segments is

illustrated in Fig. 5. A central controller assigns dedicated

missions to the forklifts (transition next order). Each robot

aims at achieving its own task as autonomously as possible

by accessing segments previously identified as free

(transition forward resp. transition backward depending on

the direction taken). In case forklifts face each other while

trying to reach their target, they decide to exchange their

positions (transition switching maneuver). Segments may be

blocked by traffic jam or by passive obstacles; after 5

unsuccessful attempts to access a segment, an alarm is raised

(transition traffic holdup). Once a robot reaches its target, the

successful completion of its mission is eventually logged

(transition mission completed). Thanks to its high scalability,

the same CPN layout allows to capture the behaviour of an

arbitrary number of forklifts moving along an arbitrarily long

path by adjusting the number of token colours accordingly.

The different behavioural models addressed in this article are

summarized in Table 2.

Table 2. Behavioural Models

automatic control

software

graphical modelling

notation

central controller,

monolithic code

finite state machine,

control flow graph,

data flow annotations

central controller,

component-based code,

synchronous execution

interface / invocation model,

communicating state machines

decentral controllers,

cooperating codes,

asynchronous execution

Petri net,

coloured Petri net

3. MEASURABLE TESTING TARGETS

As already mentioned, each testing phase is driven by phase-

specific targets and constraints, a.o. behavioural coverage,

test case balance, prioritization of test scenarios, operational

significance and cost limits.

3.1 Fault Detection by Structural Coverage

Early testing phases are mainly characterized by the need to

detect faults. Therefore, test criteria applied to these phases

usually refer to measures of behavioural coverage to be

maximized during testing. Such measures are expected to

correlate with fault detection capability, as faults affecting

regions not covered by test cases are doomed to remain

undetected.

Depending on the models introduced in Chapter 2,

behavioural coverage can be measured by the relative amount

of graphical elements (nodes, arcs and paths) traversed

during testing. Several model-based testing criteria were

defined for the models introduced above, a.o. statement,

branch and path coverage for unit control flow, several

variants of (def,use)-pairs coverage for unit data flow (Rapps

and Weyuker, 1982), coupling pairs coverage and pairs of

interacting transitions for component integration (Jin and

Offutt, 1998, Saglietti and Pinte, 2010), as well as various

coverage criteria for coloured Petri nets (Lill and Saglietti,

2013). The latter are based on the coverage of CPN

transitions (representing generic, context-free actions), CPN

events (data-enriched transitions representing context-

dependent actions), up to CPN states (token markings

globally capturing any operational condition which may be

encountered before or after the traversal of a transition).

In addition to coverage demands, test cases may also be

required to be spread as evenly as possible over all regions of

the subject under test, hereby aiming at a well-balanced test

case distribution. Alternatively, test intensity may be varied

according to the safety relevance of the functionalities

addressed, possibly yielding manifold coverage demands for

more critical regions as opposed to simple coverage demands

for behavioural scenarios without safety implications.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1601

3.2 Testing Effort due to Test Amount

For practical reasons, the testing effort should be kept as low

as reasonably possible; in particular, the number of test cases

required to achieve a given coverage should be minimized by

avoiding redundant testing evidence, as each test case

demands for an accurate validation of the test behaviour

observed.

3.3 Reliability Analysis by Independent Operational Sample

For the purpose of deriving a quantitative assessment of

software reliability during the final acceptance testing phase,

a sound technique called reliability testing consists of

observing an operationally significant sample of test

scenarios and to infer from their correctness an upper bound

of software failure probability to any given confidence level

. The conservative estimation is based on statistical

sampling theory (Parnas, Schouwen and Kwan, 1990).

Its application requires that the n scenarios observed are

significant for the expected operational behaviour; in

particular, this means that the observations are not redundant

and that they reflect an application-specific usage profile. In

other words, the test cases have to be independently selected

according to an expected operational profile. Furthermore,

they are also required to be independently executed, which, if

required, can be achieved by resetting mechanisms between

subsequent test case executions. Under these conditions,

reliability testing without failure occurrence allows to bound

software failure probability p at confidence level  by

n 11p  .

With regard to test case selection, the main testing criteria

concern conformity to a given profile and stochastic

independence. Classical goodness-of-fit-tests like the χ
2
-test,

the Kolmogorov-Smirnov test or the Anderson-Darling test

may be applied to evaluate whether test data can be taken as

sufficiently representative for a given operational

distribution. On the other hand, stochastic independence

among test scenarios can be measured by evaluating

appropriate auto- and cross-correlation coefficients.

Test drivers with corresponding measurable criteria are

summarized in Table 3.

Table 3. Testing Targets

test driver criterion

fault detection structural coverage

balance evenness of coverage

safety prioritization according to criticality

effort amount of test cases

reliability operational significance

(representativeness, independence)

representativeness goodness-of-fit tests

independence auto-and cross-correlation tests

3.4 Multi-Objective Optimization

In practice, depending on the testing phase an appropriate

combination of targets is considered. Typical examples of

multiple objectives to be pursued in the same testing phase

were already mentioned in earlier sections and summarized in

Table 4.

The simultaneous achievement of some of these goals may

involve high complexity, especially in case of conflicting

objectives as those involved when maximizing structural

coverage while minimizing the number of test cases required.

Evidently, in general such multi-objective optimization

problems cannot be solved analytically, but rather demand for

heuristic approaches, as presented in the next Chapter 4.

Table 4. Multi-Objective Testing

testing phase(s) objectives

unit test,

integration test,

interaction test

maximization of structural coverage

minimization of number of test cases

reliability test operational representativeness

stochastic independence

reliability test

combined with

integration test

operational representativeness

stochastic independence

maximization of interaction coverage

additional optional objectives:

evenness of coverage or

prioritization according to criticality

4. AUTOMATIC DATA GENERATION BY HEURISTICS

The heuristic technique applied to generate optimal test data

with respect to different − sometimes conflicting − objectives

is based on Darwinian evolution theory: each individual

belonging to an initial random population is evaluated in

terms of the degree to which it achieves the underlying

targets; the result of this evaluation is a quantitative

measurement of its fitness. As long as no individual can be

taken as acceptable, a new population is derived by the

preceding one by means of genetic manipulations and the

evaluation is repeated. The iterative process is illustrated in

Fig. 4, while the genetic operators and the correspondence

between genetic entities and test data structure are detailed in

Table 5 and in Table 6.

evaluation
of

individuals

optimized
test data set

criterion
satisfied

criterion not
satisfied

genetic
operations

fitness
measures

population
(test data sets)

Fig. 4. Evolutionary process applied to test data generation

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1602

Table 5. Genetic Operators and Strategies

genetic operator /

genetic strategy

effect

selection extraction of best fitted individuals

or random extraction of individuals

recombination by

uniform

crossover

exchange of genes between

individuals at given probability

(possibly decreasing with progress)

recombination by

cut & glue

split of 2 genes of 2 individuals,

recombination after switching parts

mutation delete, add, replace, modify genes

gene pool storage of good genetic material
to be re-inserted if required

skip crossover bypassing of recombination

to avoid worsening best individuals

elitism unaltered transfer of fixed amount

of best individuals

Table 6. Analogy between Genetics and Testing

genetic entity test element

gene test case: initial state followed by

sequence of parameterized actions

individual test suite: set of test cases,

output of test case generator

population set of test suites,

candidates for test case generator

The fitness of an individual with respect to several objectives

may be simply evaluated by weighted combinations of target-

specific fitness values; this requires, however, a priori

decision-making on weight values. Alternatively, Pareto-

optimal solutions (not dominated by any other solution with

respect to all objectives) may be heuristically determined and

visualized by a Pareto front. This strategy supports a

posteriori decision-making by moving along the front and

selecting acceptable solutions in the light of individual cost-

benefit considerations.

5. RESULTS

The testing pattern proposed in this article was instantiated

via implementation of tools successfully applied to several

application classes.

At the level of unit testing, first experiences were gained with

the maximization of control and data flow coverage by a

minimal number of test cases (Oster and Saglietti, 2006).

At the level of integration testing, an approach to capture

interactions by synchronous communication between

software components was developed and applied in a medical

environment (Saglietti and Pinte, 2010).

At the level of reliability testing, automatic test case

evaluation and generation approaches were developed and

applied to a software-based gearbox controller in order to

extract significant runs from operating experience gained

during test drives and to support the extension of these

operational runs by additional, both independent and

representative test cases allowing for reliability assessment

(Söhnlein et al., 2010).

Furthermore, reliability testing was combined with

integration testing by requiring – in addition to operational

significance − also the maximization of coupling pair

coverage. This helps ensuring that the operational evidence

on which to base reliability assessment is not biased by

omitting less frequent component interactions. This approach

was further extended to include test evenness over

interactions and prioritization of critical interactions (Meitner

and Saglietti, 2014).

Finally, for the purpose of testing the interaction of

autonomous cooperating agents, the approach proposed was

applied to a model of cooperative forklifts inspired by a real-

world robot logistic warehouse (Lill and Saglietti, 2013).

REFERENCES

Alexander, R.T., Offutt, A.J. (2004). Coupling-based Testing

of O-O Programs. In: Journal of Universal Computer

Science, vol. 10(4). TU Graz

Jensen, K., Kristensen, L.M. (2009). Coloured Petri Nets −

Modelling and Validation of Concurrent Systems.

Springer-Verlag

Jin, Z., Offutt, A.J. (1998). Coupling-based Criteria for

Integration Testing. In: Software Testing, Verification &

Reliability, vol. 8(3). John Wiley & Sons

Lill, R., Saglietti, F. (2013). Model-based Testing of

Cooperating Robotic Systems using Coloured Petri Nets.

In: Proc. SAFECOMP 2013 Workshops. LAAS-CNRS

and open access archive HAL

Meitner, M., Saglietti, F. (2014). Target-Specific Adaptations

of Coupling-Based Software Reliability Testing. In:

Measurement, Modelling and Evaluation of Computing

Systems, Dependability and Fault Tolerance, Lecture

Notes in Computer Science, vol. LNCS 8376. Springer-

Verlag

Oster, N., Saglietti, F. (2006). Automatic Test Data

Generation by Multi-Objective Optimisation. In:

Computer Safety, Reliability and Security, Lecture Notes

in Computer Science, vol. LNCS 4166. Springer-Verlag

Parnas, D., van Schouwen, J., Kwan, S. (1990). Evaluation of

Safety-critical Software. In: Communications of the

ACM, vol. 33 (6). ACM

Rapps, S., Weyuker, E.J. (1982). Data Flow Analysis

Techniques for Test Data Selection. In: 6th Int. Conf. on

Software Engineering. IEEE Computer Society

Saglietti, F., Pinte, F. (2010). Automated Unit and Integration

Testing for Component-based Software Systems. In:

Dependability and Security for Ressource Constrained

Embedded Systems. ACM Digital Library

Söhnlein, S., Saglietti, F., Bitzer, F., Meitner, M., Baryschew,

S. (2010). Software Reliability Assessment Based on the

Evaluation of Operational Experience. In: Measurement,

Modelling, Evaluation of Computing Systems,

Dependability and Fault Tolerance, Lecture Notes in

Computer Science, vol. LNCS 5987. Springer-Verlag

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1603

Fig. 5. Coloured Petri net modelling the cooperation of autonomous forklifts moving along a common path

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1604

