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Abstract: This article considers different automatic control paradigms allowing for varying degrees of 

agent cooperation and autonomy. In order to support the automatic verification of safety-relevant software 

controllers, it proposes the use of a generic testing pattern which can be instantiated such as to allow to 

optimize automatic test data generation with respect to the specific targets of the application considered 

and of the testing phase involved. The article reports on successful case studies carried out in different 

real-world environments. 



1. INTRODUCTION 

During the last decades, computer-based automatic control 

has been essentially characterized by increasing demands on 

software reliability and functional complexity. 

On the one hand, the growing number of safety-critical, 

computer-controlled technical applications in everyday life 

obviously requires the development of appropriate, 

transparent and practicable verification techniques for the 

purpose of ensuring risk-adequate reliability targets. 

On the other hand, the positive experiences meanwhile 

gained with software-based instrumentation and control − 

allowing in particular to support or even replace costly and 

fault-prone human resources − motivate the development of 

new applications based on increasingly sophisticated 

functionalities. On its turn, the automatic controllability of 

growingly complex functional behaviour demands for 

correspondingly more elaborated verification techniques 

capable of ensuring adequate reliability levels at affordable 

effort. 

Currently, a particular challenge is being posed by the need to 

control the behaviour of cooperating technical processes 

typically arising in robot factories or in vehicle traffic based 

on car-to-car communication. The automatic control of 

decentralized, concurrent behaviour evidently poses non-

obvious communication and synchronization requirements 

which have to be explicitly addressed during development as 

well as during verification. 

The more complex is the situation in case the cooperating 

processes to be controlled are planned to act in full 

autonomy, thus requiring each of the participating agents to 

be individually computer-controlled. In such a case the 

controlling software must be specified and designed such as 

to be able to anticipate any possible interaction with other 

agents and to enable appropriate decision-making solely on 

the basis of decentralized sensoring and reasoning 

capabilities. 

Common to all control paradigms summarized in Table 1 is 

the need to capture the variety of potential scenarios before 

operation and to verify the corresponding multiplicity of 

behaviour by appropriate tests. Obviously, this is less 

difficult in case of one central controller addressing a single 

technical process than in case of distributed controllers 

involving interaction among several agents. 

Table 1.  Control Paradigms 

automatic control controlled process(es)  

embedded controller, 

local autonomy 

stand-alone process 

central controller, 

no local autonomy 

cooperating processes / 

concurring processes 

interacting local controllers, 

high or full local autonomy 

cooperating processes / 

concurring processes 

 

Depending on the underlying control paradigm, different 

testing approaches were developed and applied in recent 

years for the purpose of capturing and covering behavioural 

variability. 

In spite of their differences, they reveal to be based on a 

generic testing pattern which will be illustrated in this article 

and which allows to be instantiated depending on the 

functional complexity and on the application-specific testing 

targets. This pattern is structured as follows. 

1.1 Step 1: Choice of Behavioural Model 

Depending on the functionality addressed, a suitable 

behavioural notation must be selected allowing for the 

expressive power required by the problem class considered. 

Higher modelling expressiveness may only be achievable at 

the price of lower analyzability or even of undecidability. In 
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order to allow for the visualization of scenarios, a graphical 

notation is usually selected. Some classical examples are 

illustrated in Chapter 2. 

1.2 Step 2: Definition of Testing Targets 

Depending on the testing phase addressed (unit testing, 

integration testing or acceptance testing) the verification 

process is driven by specific super-ordinate motivations like 

fault detection, cost or reliability assessment. The degree at 

which a goal may be considered as adequately achieved has 

to be captured by suitable metrics addressing a.o. test 

coverage and test amount. In case the testing targets involve 

conflicting goals, test data generation results by multi-

objective optimization. Some examples are presented in 

Chapter 3. 

1.3 Step 3: Automatic Test Data Generation 

In general, complex multi-objective optimization problems 

do not allow for analytical solutions, but rather require 

heuristics capable of providing acceptable compromises 

between full optimization and practicality. Evolutionary 

techniques based on Darwinian evolution theory have 

revealed as extremely helpful for the purpose of generating 

test data sets such as to achieve to an acceptable degree the 

different targets of a testing phase. Some details will be 

illustrated in Chapter 4. 

2. BEHAVIOURAL MODELLING NOTATION 

2.1 Unit Testing of Embedded Controllers 

Typical graphical notations modelling the logic of central 

automatic controllers are characterized by compact visual 

descriptions of their operational behaviour. At design stage, 

classical representation languages are finite state machines 

capturing all legal sequences of operational states. At code 

level, on the other hand, units of limited size are usually 

represented by control flow graphs capturing all legal paths 

through the software by highlighting the transfer of control 

between instructions; classical control flow patterns are 

shown in Fig. 1. 

sequence if then if then else while do do while  

Fig. 1. Control flow graphs modelling the transfer of control 

between program instructions 

Furthermore, control flow models may be enriched by data 

flow annotations indicating at which point during execution 

variable values are used in order to take decisions concerning 

transfer of control or in order to define new values of 

program variables (Rapps and Weyuker, 1982). Evidently, 

(def,use)-pairs consisting of a variable definition and of any 

of its uses are suitable to reflect the write-read chains of 

operations induced by data flow. 

2.2 Integration Testing of Component-based Controllers 

Once individual components have been thoroughly tested, 

their appropriate interplay is verified by integration-based test 

cases focused on interfaces and invocations across 

component boundaries. 

At design level, such interactions may be modelled by 

communicating finite state machines, each representing the 

behaviour of one component. Upon invocation of an 

operation across component boundaries, both the invoking 

and the invoked component may change their internal state 

by synchronized traversals of state transitions (Saglietti and 

Pinte, 2010). For example, the occurrence of event tr2 in 

state1 of component c (Fig. 2) not only triggers the transition 

of c to state3; it results in a further event tr1’ triggering the 

transition of component c’ from state1’ to state2’ as well. 

state1

state2

state3

state2‘

state1‘

state3‘

state4‘

tr1/tr1‘

tr2/tr1‘

tr1/tr2‘

tr1‘

tr2‘

tr3‘

component c component c‘

 

Fig. 2. Communicating finite state machines modelling 

synchronous component interactions at design level 

At code level, crucial interactions between components are 

captured by applying classical data flow concepts (s. section 

2.1) to the data flow occurring across component boundaries 

(Jin and Offutt, 1998, Alexander and Offutt, 2004). An 

example of coupling pairs, i.e. (def,use)-pairs induced by 

component invocation, is shown in Fig. 3. 

F(x)

use(x)

y = 48

return y

caller callee

last-def-before-call

call site

first-use-after-call
last-def-before-return

first-use-in-callee
a = 18

b = F(a)

use(b)

 

Fig. 3. Coupling pairs induced by component invocation F(a) 

modelling component interactions at implementation level 

2.3 Interaction Testing of Cooperating Controllers 

In case of decentralized and interacting controllers the main 

question concerns the degree of cooperation and autonomy 
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involved. Cooperation implies the coordination of individual 

contributions required to achieve a common target. In 

particular, this includes the need of avoiding resp. resolving 

potential conflicts arising in the course of cooperative 

activities. On the other hand, autonomy − from the ancient 

Greek terms auto (self) and nomos (law) − refers to the 

behavior of entities governing themselves and taking 

responsibility for their actions. Evidently, in general 

cooperation may involve different degrees of autonomy, 

where the most challenging scenario involves fully 

autonomous agents capable of individual decision-making 

solely on the basis of their own perception of reality and of 

their reasoning capabilities without requiring the intervention 

of any broker agent suggesting actions on the basis of global 

knowledge. 

A graphical language capable of capturing the interactions of 

autonomously cooperating processes was shown to be offered 

by coloured Petri nets (Jensen and Kristensen, 2009). In 

general, classical Petri nets allow to generalize from finite 

state machines by allowing the current state information to be 

spread across the whole graph by means of tokens, hereby 

stressing the decentral role of concurrent processes. In 

particular, Petri nets also permit to represent infinitely many 

states by means of finite graphs. In case of varying numbers 

of cooperating agents, however, the choice of classical Petri 

nets would require to re-design the cooperation model each 

time new agents are introduced, e.g. as soon as a new 

intelligent forklift is added to a robot factory. The alternative 

offered by coloured Petri nets (CPNs) allows to relax this 

restriction by including several types (colours) of tokens for 

the purpose of encoding several robot missions, thus enabling 

high model scalability, as a fluctuating number of agents is 

easily captured by adding or removing tokens without 

needing to adapt the underlying graphical structure. 

A coloured Petri net illustrating the cooperation of forklifts 

moving along a path consisting of discrete segments is 

illustrated in Fig. 5. A central controller assigns dedicated 

missions to the forklifts (transition next order). Each robot 

aims at achieving its own task as autonomously as possible 

by accessing segments previously identified as free 

(transition forward resp. transition backward depending on 

the direction taken). In case forklifts face each other while 

trying to reach their target, they decide to exchange their 

positions (transition switching maneuver). Segments may be 

blocked by traffic jam or by passive obstacles; after 5 

unsuccessful attempts to access a segment, an alarm is raised 

(transition traffic holdup). Once a robot reaches its target, the 

successful completion of its mission is eventually logged 

(transition mission completed). Thanks to its high scalability, 

the same CPN layout allows to capture the behaviour of an 

arbitrary number of forklifts moving along an arbitrarily long 

path by adjusting the number of token colours accordingly. 

The different behavioural models addressed in this article are 

summarized in Table 2. 

 

Table 2.  Behavioural Models 

automatic control 

software 

graphical modelling 

notation 

central controller, 

monolithic code 

finite state machine, 

control flow graph, 

data flow annotations 

central controller,  

component-based code, 

synchronous execution 

interface / invocation model, 

communicating state machines 

decentral controllers, 

cooperating codes, 

asynchronous execution 

Petri net, 

coloured Petri net 

 

3. MEASURABLE TESTING TARGETS 

As already mentioned, each testing phase is driven by phase-

specific targets and constraints, a.o. behavioural coverage, 

test case balance, prioritization of test scenarios, operational 

significance and cost limits. 

3.1 Fault Detection by Structural Coverage 

Early testing phases are mainly characterized by the need to 

detect faults. Therefore, test criteria applied to these phases 

usually refer to measures of behavioural coverage to be 

maximized during testing. Such measures are expected to 

correlate with fault detection capability, as faults affecting 

regions not covered by test cases are doomed to remain 

undetected. 

Depending on the models introduced in Chapter 2, 

behavioural coverage can be measured by the relative amount 

of graphical elements (nodes, arcs and paths) traversed 

during testing. Several model-based testing criteria were 

defined for the models introduced above, a.o. statement, 

branch and path coverage for unit control flow, several 

variants of (def,use)-pairs coverage for unit data flow (Rapps 

and Weyuker, 1982), coupling pairs coverage  and pairs of 

interacting transitions for component integration (Jin and 

Offutt, 1998, Saglietti and Pinte, 2010), as well as various 

coverage criteria for coloured Petri nets (Lill and Saglietti, 

2013). The latter are based on the coverage of CPN 

transitions (representing generic, context-free actions), CPN 

events (data-enriched transitions representing context-

dependent actions), up to CPN states (token markings 

globally capturing any operational condition which may be 

encountered before or after the traversal of a transition). 

In addition to coverage demands, test cases may also be 

required to be spread as evenly as possible over all regions of 

the subject under test, hereby aiming at a well-balanced test 

case distribution. Alternatively, test intensity may be varied 

according to the safety relevance of the functionalities 

addressed, possibly yielding manifold coverage demands for 

more critical regions as opposed to simple coverage demands 

for behavioural scenarios without safety implications. 
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3.2 Testing Effort due to Test Amount 

For practical reasons, the testing effort should be kept as low 

as reasonably possible; in particular, the number of test cases 

required to achieve a given coverage should be minimized by 

avoiding redundant testing evidence, as each test case 

demands for an accurate validation of the test behaviour 

observed. 

3.3 Reliability Analysis by Independent Operational Sample 

For the purpose of deriving a quantitative assessment of 

software reliability during the final acceptance testing phase, 

a sound technique called reliability testing consists of 

observing an operationally significant sample of test 

scenarios and to infer from their correctness an upper bound 

of software failure probability to any given confidence level 

. The conservative estimation is based on statistical 

sampling theory (Parnas, Schouwen and Kwan, 1990). 

Its application requires that the n scenarios observed are 

significant for the expected operational behaviour; in 

particular, this means that the observations are not redundant 

and that they reflect an application-specific usage profile. In 

other words, the test cases have to be independently selected 

according to an expected operational profile. Furthermore, 

they are also required to be independently executed, which, if 

required, can be achieved by resetting mechanisms between 

subsequent test case executions. Under these conditions, 

reliability testing without failure occurrence allows to bound 

software failure probability p at confidence level  by 

n 11p  . 

With regard to test case selection, the main testing criteria 

concern conformity to a given profile and stochastic 

independence. Classical goodness-of-fit-tests like the χ
2
-test, 

the Kolmogorov-Smirnov test or the Anderson-Darling test 

may be applied to evaluate whether test data can be taken as 

sufficiently representative for a given operational 

distribution. On the other hand, stochastic independence 

among test scenarios can be measured by evaluating 

appropriate auto- and cross-correlation coefficients. 

Test drivers with corresponding measurable criteria are 

summarized in Table 3. 

Table 3.  Testing Targets 

test driver criterion 

fault detection structural coverage 

balance evenness of coverage 

safety prioritization according to criticality 

effort amount of test cases 

reliability operational significance 

(representativeness, independence) 

representativeness goodness-of-fit tests 

independence auto-and cross-correlation tests 

 

3.4 Multi-Objective Optimization 

In practice, depending on the testing phase an appropriate 

combination of targets is considered. Typical examples of 

multiple objectives to be pursued in the same testing phase 

were already mentioned in earlier sections and summarized in 

Table 4. 

The simultaneous achievement of some of these goals may 

involve high complexity, especially in case of conflicting 

objectives as those involved when maximizing structural 

coverage while minimizing the number of test cases required. 

Evidently, in general such multi-objective optimization 

problems cannot be solved analytically, but rather demand for 

heuristic approaches, as presented in the next Chapter 4. 

Table 4.  Multi-Objective Testing 

testing phase(s) objectives 

unit test, 

integration test, 

interaction test 

maximization of structural coverage 

minimization of number of test cases 

reliability test operational representativeness 

stochastic independence 

 

reliability test 

combined with 

integration test 

operational representativeness 

stochastic independence 

maximization of interaction coverage  

additional optional objectives: 

evenness of coverage or 

prioritization according to criticality 

 

4. AUTOMATIC DATA GENERATION BY HEURISTICS 

The heuristic technique applied to generate optimal test data 

with respect to different − sometimes conflicting − objectives 

is based on Darwinian evolution theory: each individual 

belonging to an initial random population is evaluated in 

terms of the degree to which it achieves the underlying 

targets; the result of this evaluation is a quantitative 

measurement of its fitness. As long as no individual can be 

taken as acceptable, a new population is derived by the 

preceding one by means of genetic manipulations and the 

evaluation is repeated. The iterative process is illustrated in 

Fig. 4, while the genetic operators and the correspondence 

between genetic entities and test data structure are detailed in 

Table 5 and in Table 6. 

evaluation
of

individuals

optimized
test data set

criterion
satisfied

criterion not 
satisfied

genetic
operations

fitness
measures

population
(test data sets)

 

Fig. 4. Evolutionary process applied to test data generation 
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Table 5. Genetic Operators and Strategies 

genetic operator / 

genetic strategy 

effect 

selection extraction of best fitted individuals 

or random extraction of individuals 

recombination by 

uniform 

crossover 

exchange of genes between 

individuals at given probability 

(possibly decreasing with progress) 

recombination by  

cut & glue 

split of 2 genes of 2 individuals, 

recombination after switching parts 

mutation delete, add, replace, modify genes 

gene pool storage of good genetic material 
to be re-inserted if required 

skip crossover bypassing of recombination  

to avoid worsening best individuals 

elitism unaltered transfer of fixed amount 

of best individuals 

 

Table 6. Analogy between Genetics and Testing 

genetic entity test element 

gene test case: initial state followed by 

sequence of parameterized actions 

individual test suite: set of test cases, 

output of test case generator 

population set of test suites,  

candidates for test case generator 

 

The fitness of an individual with respect to several objectives 

may be simply evaluated by weighted combinations of target-

specific fitness values; this requires, however, a priori 

decision-making on weight values. Alternatively, Pareto-

optimal solutions (not dominated by any other solution with 

respect to all objectives) may be heuristically determined and 

visualized by a Pareto front. This strategy supports a 

posteriori decision-making by moving along the front and 

selecting acceptable solutions in the light of individual cost-

benefit considerations. 

5. RESULTS 

The testing pattern proposed in this article was instantiated 

via implementation of tools successfully applied to several 

application classes. 

At the level of unit testing, first experiences were gained with 

the maximization of control and data flow coverage by a 

minimal number of test cases (Oster and Saglietti, 2006). 

At the level of integration testing, an approach to capture 

interactions by synchronous communication between 

software components was developed and applied in a medical 

environment (Saglietti and Pinte, 2010). 

At the level of reliability testing, automatic test case 

evaluation and generation approaches were developed and 

applied to a software-based gearbox controller in order to 

extract significant runs from operating experience gained 

during test drives and to support the extension of these 

operational runs by additional, both independent and 

representative test cases allowing for reliability assessment 

(Söhnlein et al., 2010). 

Furthermore, reliability testing was combined with 

integration testing by requiring – in addition to operational 

significance − also the maximization of coupling pair 

coverage. This helps ensuring that the operational evidence 

on which to base reliability assessment is not biased by 

omitting less frequent component interactions. This approach 

was further extended to include test evenness over 

interactions and prioritization of critical interactions (Meitner 

and Saglietti, 2014). 

Finally, for the purpose of testing the interaction of 

autonomous cooperating agents, the approach proposed was 

applied to a model of cooperative forklifts inspired by a real-

world robot logistic warehouse (Lill and Saglietti, 2013). 
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Fig. 5. Coloured Petri net modelling the cooperation of autonomous forklifts moving along a common path 
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