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Abstract: The concepts of ultimate bounds and invariant sets play a key role in several control
theory problems, as they replace the notion of asymptotic stability in the presence of unknown
disturbances. However, when the disturbances are unbounded, as in the case of Gaussian
white noise, no ultimate bounds nor invariant sets can in general be found. To overcome this
limitation we introduced, in previous work, the notions of probabilistic ultimate bound (PUB)
and probabilistic invariant set (PIS) for discrete-time systems. This article extends the notions
of PUB and PIS to continuous-time systems, studying their main properties and providing tools
for their calculation. An application of these concepts to robust control design is also presented.
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1. INTRODUCTION

Dynamical systems under the influence of non-vanishing
unknown disturbances cannot achieve asymptotic stability.
However, under certain conditions, the ultimate bound-
edness of the system trajectories can be guaranteed and
invariant sets can be found. Consequently, the notions
of ultimate bounds and invariant sets play a key role in
control systems theory and design.

A necessary condition to ensure the existence of ultimate
bounds and invariant sets is that the disturbances be
bounded. However, in systems theory, disturbances are
often represented by unbounded signals such as Gaussian
white noise, in which case ultimate bounds and invariant
sets cannot be obtained in a classical sense. To overcome
this problem, the authors have introduced in Kofman
et al. (2011, 2012) the notions of probabilistic ultimate
bound (PUB) and probabilistic invariant set (PIS), as sets
where the trajectories converge to and stay in with a
given probability. The concepts in Kofman et al. (2011,
2012) are limited to the discrete-time domain. Ultimate
boundedness and invariance are also important concepts
in continuous-time systems (see Blanchini (1999) and
the references therein), and they experience the same
limitations regarding unbounded disturbances.

Motivated by these facts, this work firstly extends the no-
tions, properties and tools for PUB and PIS developed in
Kofman et al. (2011, 2012) to the continuous-time domain.
While in the case of PUB the extension is almost straight-
forward, the concept of probabilistic invariance in contin-
uous time needs to be redefined because of the limitations
imposed by the infinite-bandwidth nature of continuous-

time white noise disturbances (see, e.g., the discussions
in Åström (1970)). Finally, the problem of designing a
controller so that the closed loop system under white noise
disturbances has a desired PUB is studied. The work is
organized as follows: Section 2 introduces the concepts of
continuous time PUB and PIS and establishes their basic
properties. Then, Sections 3 and 4 present closed formulas
for the calculation of PUB and PIS, respectively. Section 5
develops the technique for control design and Section 6
illustrates the results with a numerical example.

2. BACKGROUND AND DEFINITIONS

We consider a continuous-time LTI system given by the
following stochastic differential equation

dx(t) = Ax(t)dt + dw(t) (1)

with x(t), w(t) ∈ Rn. We assume that A is a Hurwitz
matrix and that the disturbance vector w(t) is a stochastic
process whose increments are uncorrelated with zero mean
values (e.g., in the case of a normal distribution the
disturbance is given by a Wiener process).

2.1 Expected Value and Covariance of x(t)

We denote Σwdt , cov[dw(t)] = E[dw(t)dwT (t)] the
incremental covariance of w(t) and we define

Σx(t) , cov[x(t)] = E[(x(t)− E[x(t)])(x(t) − E[x(t)])T ]
(2)

Both, Σw and Σx(t) are symmetric positive semidefinite
matrices. The expected value µx(t) = E[x(t)] can be
computed (see e.g. Åström (1970), Theorem 6.1, page 66)
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as the solution of µ̇x(t) = Aµx(t). We assume that the
initial state x(t0) is known, then µx(t0) = x(t0) and the
previous equation has the solution

µx(t) = eA(t−t0)x(t0) (3)

The covariance matrix Σx(t) verifies (see e.g. Åström
(1970), Theorem 6.1, page 66) the following differential
equation:

Σ̇x(t) = AΣx(t) + Σx(t)A
T +Σw (4)

with Σx(t0) = 0 (since x(t0) is known). Since A is a
Hurwitz matrix, the latter expression converges as t → ∞.
Then, defining Σx , limt→∞ Σx(t) we have from Eq.(4)
that Σx can be obtained from the Lyapunov equation

AΣx +ΣxA
T = −Σw (5)

2.2 Definition of PUB and γ-PIS

We next define the two notions that concern this article.

Definition 1. (Probabilistic Ultimate Bounds). Let 0 <
p ≤ 1 and let S ⊂ Rn. We say that S is a PUB
with probability p for system (1) if for every initial state
x(t0) = x0 ∈ Rn there exists T = T (x0) ∈ R such that the
probability Pr[x(t) ∈ S] ≥ p for each t ≥ t0 + T .

For the definition of PIS, we first define the product of a
scalar γ ≥ 0 and a set S as γS , {γx : x ∈ S}. Notice
that when 0 ≤ γ ≤ 1, and provided that S is a star–shaped
set with respect to the origin, 1 it results γS ⊆ S.

Definition 2. (γ-Probabilistic Invariant Sets). Let 0 <
p ≤ 1, 0 < γ ≤ 1 and let S ⊂ Rn be a star–shaped
set with respect to the origin. We say that S is a γ–PIS
with probability p for system (1) if for any x(t0) ∈ γS the
probability Pr[x(t) ∈ S] ≥ p for each t > t0.

Remark 3. The definition of PUB for discrete and con-
tinuous time systems are almost identical. However, PIS
for discrete-time systems were defined to ensure that the
states belonging to any trajectory starting in the set
remain in the set with a given probability. By choosing
a sufficiently large set, the contractivity of the system’s
dynamics at the boundary of the set dominates the noise
and the probability of the trajectory leaving the set at the
next step can be made arbitrarily small. In continuous
time, however, this is not possible. Irrespective of the
contractivity, when a trajectory starts at time t0 at the
border of the set, taking t sufficiently close to t0 the
dynamics is always dominated by the white noise due to
its infinite-bandwidth nature. Thus, at those instants of
time, the probability of leaving the set only depends on
the noise and becomes independent of the size of the set.
In order to overcome this fundamental difficulty, the initial
states of a PIS are restricted in Definition 2 to a subset
γS, with γ less than one.

2.3 Some properties of PUB and γ–PIS

The main properties of continuous-time PUB are almost
identical to their discrete-time counterparts, i.e., Lemmas
3, 4, 5, 8, as well as Corollaries 7 and 10 in Kofman et al.
(2012). Thus, the proofs of the corresponding lemmas are
omitted.
1 A set S ⊂ Rn is star shaped, or a star domain, with respect to the

origin if x ∈ S ⇒ γx ∈ S for all 0 ≤ γ ≤ 1

Lemma 4. If S is a PUB (γ–PIS) with probability p for
(1), then it is also a PUB (γ–PIS) with probability p̃ ≥ 0
for any p̃ < p.

Lemma 5. (γ-PIS⇒PUB). Let S0 ⊂ Rn be a γ–PIS for (1)
with probability p which contains the origin. Given ε > 0
we define Sε = {x : dist(x, S0) ≤ ε}. Then, Sε is a PUB
for (1) with probability p.

Lemma 6. (Intersection of PUB). Let S1 be a PUB with
probability p1 for system (1) and let S2 be a PUB with
probability p2 for the same system, with p1 + p2 > 1.
Then, the set S = S1 ∩ S2 is a PUB with probability
p = p1 + p2 − 1.

The proofs of Lemmas 4–6 are almost identical to those
of Lemmas 3–5 in Kofman et al. (2012). Induction on
Lemma 6 results in the following corollary.

Corollary 7. (Intersection of several PUB). Let {Si}ri=1
be a collection of PUB for system (1) with probabilities
pi, i = 1, . . . , r, respectively, with

∑r
i=1 pi > (r − 1).

Then, the set S = ∩r
i=1Si is a PUB with probability

p =
∑r

i=1 pi − (r − 1).

Lemma 8. (Intersection of γ–PIS). Let S1 be a γ1–PIS
with probability p1 for system (1) and let S2 be a γ2–PIS
with probability p2 for the same system, with p1+ p2 > 1.
Then, the set S = S1 ∩ S2 is a γ–PIS with probability
p = p1 + p2 − 1 where γ = min{γ1, γ2}.

Proof. Notice that γS ⊆ γSi ⊆ γiSi, i = 1, 2. Then, given
an initial state x(t0) ∈ γS, we have that x(t0) ∈ γiSi,
i = 1, 2. Then, for any t > t0, and i = 1, 2, we have

Pr[x(t) ∈ Si] ≥ pi ⇒ Pr[x(t) /∈ Si] ≤ 1− pi ⇒
Pr[x(t) /∈ S1 ∨ x(t) /∈ S2] ≤ Pr[x(t) /∈ S1] + Pr[x(t) /∈ S2]

≤ 2− p1 − p2
Finally,

Pr[x(t) ∈ S] = Pr[x(t) ∈ S1 ∧ x(t) ∈ S2]

= 1− Pr[x(t) /∈ S1 ∨ x(t) /∈ S2] ≥ p1 + p2 − 1

which concludes the proof. ✷

Induction on Lemma 8 results in the following corollary.

Corollary 9. (Intersection of several γ-PIS). Let {Si}ri=1
be a collection of γi–PIS for system (1) with probabilities
pi, i = 1, . . . , r, respectively, with

∑r
i=1 pi > (r − 1).

Then, the set S = ∩r
i=1Si is a γ–PIS with probability

p =
∑r

i=1 pi − (r − 1) where γ = min{γi : i = 1, . . . , r}.
Lemma 10. (Union of PUB). Let S1 be a PUB with prob-
ability p1 for system (1) and let S2 be a PUB with prob-
ability p2 for the same system, then the set S1 ∪ S2 is a
PUB with probability p = max{p1, p2}.
Corollary 11. (Union of several PUB). Let {Si}ri=1 be a
collection of PUB for system (1) with probabilities pi,
i = 1, . . . , r. Then, the set S = ∪r

i=1Si is a PUB with
probability p = max{pi : i = 1, . . . , r}.
Lemma 12. (Union of γ–PIS). Let S1 be a γ1–PIS with
probability p1 and S2 be a γ2–PIS with probability p2 for
system (1), then the set S1∪S2 is a γ–PIS with probability
p = min{p1, p2} where γ = min{γ1, γ2}.
Corollary 13. (Union of several γ-PIS). Let {Si}ri=1 be a
collection of γi–PIS for system (1) with probabilities pi,
i = 1, . . . , r. Then, the set S = ∪r

i=1Si is a γ–PIS with
probability p = min{pi : i = 1, . . . , r} where γ = min{γi :
i = 1, . . . , r}.
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The proof of Lemma 10 is identical to its discrete time
counterpart given by Lemma 8 of Kofman et al. (2012).
The proof of Lemma 12 combines that of Lemma 8 above
and Lemma 9 in Kofman et al. (2012) for discrete-time
systems. Corollaries 11 and 13 are the result of applying
induction on Lemmas 10 and 12, respectively.

Remark 14. When pi = γi = 1, i = 1, . . . , r, Corollaries 9
and 13 say that the intersection and the union of determin-
istic invariant sets are deterministic invariant sets, which
is a well known result.

3. PUB COMPUTATION

We develop first a method to compute Probabilistic Ul-
timate Bounds for (1) based on Chebyshev’s inequality
which can be used for stochastic processes w(t) with ar-
bitrary distributions. We will then give tighter bounds
for the special case of a Gaussian disturbance. Given a
parameter (probability) p such that 0 < p < 1, we will
define n parameters p̃i such that

0 < p̃i < 1, i = 1, . . . , n;
n
∑

i=1

p̃i = 1− p (6)

Also, for a vector x, xi denotes its ith component, and
for a square matrix Σ, the notation [Σ]i,i indicates its ith
diagonal element.

3.1 General Distribution

Theorem 15. (PUB Computation – General Case)
Consider the system (1). Assume that A ∈ Rn×n is a
Hurwitz matrix and suppose that w(t) is a stochastic
process whose increments are uncorrelated with zero mean
values and with incremental covariance matrix Σwdt. Let
0 < p < 1 and p̃i, i = 1, . . . , n, be defined as in (6). Then,
for any ε > 0, the set S = {x : |xi| ≤ bi + ε; i = 1, . . . , n}
is a PUB for the system with probability p, where

bi ,

√

[Σx]i,i
p̃i

; i = 1, . . . , n

and Σx is the solution of the Lyapunov equation (5).

The proof of Theorem 15 is identical to that of Theorem 12
in Kofman et al. (2012) for discrete-time systems.

3.2 Gaussian Distribution

The following theorem, valid for the special case of a
Gaussian disturbance, provides tighter bounds than those
of Theorem 15.

Theorem 16. (PUB Computation – Gaussian Noise)
Consider the system (1). Assume A ∈ Rn×n is a Hurwitz
matrix and suppose that w(t) is a Wiener process with
incremental covariance matrix Σwdt. Let 0 < p < 1 and p̃i,
i = 1, . . . , n, be defined as in (6). Then, for any ε > 0, the
set S = {x : |xi| ≤ bi + ε; i = 1, . . . , n} is a probabilistic
ultimate bound for the system with probability p, where

bi ,
√

2[Σx]i,ierf
−1(1− p̃i); i = 1, . . . , n (7)

and where Σx is the solution of the Lyapunov Equation

(5) and erf is the error function: erf(z) , 2√
π

∫ z

0
e−ζ2

dζ.

The proof of Theorem 16 is identical to that of Theorem 1
in Kofman et al. (2011) for discrete-time systems.

4. PIS COMPUTATION

Here, again, we first propose a method to compute proba-
bilistic invariant sets for (1) that can be used for stochastic
processes w(t) with uncorrelated increments and arbitrary
distributions, and then we provide a method for the par-
ticular case of Gaussian noises. We will assume the matrix
A in (1) to be diagonalisable. The symbol � will denote
the elementwise inequality between two vectors, i.e., for
α, β ∈ R

n, α � β if and only if αi ≤ βi, i = 1, . . . , n.
For a matrix M with complex entries, M∗ will denote the
conjugate transpose of M .

4.1 General Distribution

Theorem 17. (γ–PIS Computation – General Case)
Consider the system (1), where matrix A is assumed to
be Hurwitz and diagonalisable. Suppose that w(t) is a
stochastic process whose increments are uncorrelated with
zero mean values and incremental covariance matrix Σwdt.
Let 0 < p < 1 and p̃i, i = 1, . . . , n, be defined as in (6).
Then, the set S = {x : |V −1x| � b} is a γ–PIS for
the system with probability p, where V is a similarity
transformation such that Λ = diag(λ1, . . . , λn) = V −1AV
is the Jordan diagonal decomposition of matrix A, and the
components of b = [b1 . . . bn]

T are computed according to

bi ,

√

[Σv]i,i
2|Re(λi)|(1− γ2)p̃i

; i = 1, . . . , n (8)

with Σv = V −1Σw(V
−1)∗.

Proof. With the linear transformation x(t) = V z(t),
system (1) becomes

dz(t) = Λz(t)dt+ V −1dw(t) (9)

with z ∈ Cn, w(t) ∈ Rn, V −1 ∈ Cn×n, and Λ ∈ Cn×n be-

ing a diagonal matrix. Defining v(t) , V −1w(t), the incre-
mental covariance of v(t) results Σvdt = V −1Σw(V

−1)∗dt,
and the ith component of (9) is

dzi(t) = λizi(t)dt+ dvi(t) (10)

The expected value of zi(t) then verifies E[zi(t)] =
eλi(t−t0)zi(t0), since we assume that zi(t0) is known. The
variance of zi(t) can be computed from (10) as

var[zi(t)] =
1− e2Re(λi)(t−t0)

2|Re(λi)|
[Σv]i,i

Suppose that x(t0) ∈ γS. Thus, |z(t0)| = |V −1x(t0)| � γb
and |zi(t0)| ≤ γbi. Then, for all t > t0 it results that

|E[zi(t)]| = |eλi(t−t0)zi(t0)| ≤ eRe(λi)(t−t0)γbi (11)

From Inequality (11), it follows that

Pr[|zi(t)| ≥ bi]

= Pr[|zi(t)| − eRe(λi)(t−t0)γbi ≥ bi(1− γeRe(λi)(t−t0))]

≤ Pr[|zi(t)| − |E[zi(t)]| ≥ bi(1 − γeRe(λi)(t−t0))]

≤ Pr[|zi(t)− E[zi(t)]| ≥ bi(1 − γeRe(λi)(t−t0))]

Chebyshev’s inequality establishes that

Pr
[

|zi(t)− E[zi(t)]| ≥ bi(1− γeRe(λi)(t−t0))
]

≤ var[zi(t)]

b2i (1 − γeRe(λi)(t−t0))2
(12)
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and then it results that

Pr[|zi(t)| ≥ bi] ≤
var[zi(t)]

b2i (1− γeRe(λi)(t−t0))2

=
1− e2Re(λi)(t−t0)

2|Re(λi)|b2i (1 − γeRe(λi)(t−t0))2
[Σv]i,i

The expression

1− e2Re(λi)(t−t0)

(1− γeRe(λi)(t−t0))2
(13)

is maximized when eRe(λi)(t−t0) = γ. Then, it results that

Pr[|zi(t)| > bi] ≤ Pr[|zi(t)| ≥ bi] ≤ [Σv ]i,i
2|Re(λi)|b2i (1−γ2)

= p̃i

for all t > t0. Thus, the probability

Pr[|z(t)| 6� b] ≤
n
∑

i=1

Pr[|zi(t)| > bi] ≤
n
∑

i=1

p̃i = 1− p

for all t > t0, and then,

Pr[|z(t)| � b] = Pr[|V −1x(t)| � b] = Pr[x(t) ∈ S] ≥ p

which proves that S is a γ–PIS with probability p. ✷

Remark 18. Notice that bi in Eq.(8) goes to infinity as γ
goes to one. This is consistent with the observation made
in Remark 3 above, that a PIS cannot be defined without
using a factor γ less than one to restrict the initial states
due to the infinite-bandwidth nature of the continuous-
time white noise disturbance (see, e.g., the discussions in
Åström (1970) about the latter fact).

4.2 Gaussian Distribution

Here we obtain tighter bounds for γ-PIS for the case of
Gaussian noises by replacing the use of Chebyshev’s in-
equality with specific properties of Gaussian distributions.

Theorem 19. (γ-PIS Computation – Gaussian
Noise) Consider the system (1), where matrix A is
assumed to be Hurwitz and diagonalisable. Suppose that
w(t) is a Wiener process with incremental covariance
matrix Σwdt. Let 0 < p < 1 and p̃i, i = 1, . . . , n, be
defined as in (6) with the restriction that for each pair
of complex conjugate eigenvalues λi, λj = λ̄i, we take
p̃i = p̃j. Then, the set S = {x : |V −1x| � b} is a γ–PIS
for the system with probability p, where V is a similarity
transformation such that Λ = diag(λ1, . . . , λn) = V −1AV
is the Jordan diagonal decomposition of matrix A, and
the components of b = [b1 . . . bn]

T are computed as

bi ,

√

[Σv]i,i
|Re(λi)|(1 − γ2)

erf−1(1− p̃i); i = 1, . . . , n

with Σv = V −1Σw(V
−1)∗.

Proof. When λi is real, the proof is almost identical to
that of Theorem 17 above. We replace here Chebyshev’s
inequality of Eq.(12) by the following expression valid for
Gaussian distributions

Pr
[

|zi(t)− E[zi(t)]| ≥ bi(1− γeRe(λi)(t−t0))
]

= 1− erf

(

bi(1− γeRe(λi)(t−t0))
√

2var[zi(t)]

)

and then we obtain,

Pr[|zi(t)| > bi]

≤ 1− erf

(

bi

√

(1− γeRe(λi)(t−t0))2|Re(λi)|
(1− e2Re(λi)(t−t0))[Σv]i,i

)

≤ 1− erf

(

bi

√

(1− γ2)|Re(λi)|
[Σv]i,i

)

= p̃i (14)

In the last step we used the fact that erf(·) is a monotoni-
cally increasing function and we maximized the expression
of Eq.(13) as in the proof of Theorem 17.

In the case of complex eigenvalues, Eq.(10) can be split
into real and imaginary parts zi(t) = Re[zi(t)]+jIm[zi(t)],
where both components are Gaussian processes and the
variance can be written as var[zi(t)] = var[Re[zi(t)]] +
var[Im[zi(t)]]. Then, the proof follows that of Theorem 2
in Kofman et al. (2011) for discrete-time systems, replacing
t0 +N by t and bi(1− |λi|N ) by bi(1− γeRe(λi)(t−t0)). ✷

5. CONTROL DESIGN

We consider here the problem of, given a nonnegative
vector b and a probability p, find a controller gain K such
that the closed loop system

dx(t) = (A+BK)x(t)dt+Hdv(t) (15)

has a PUB S = {x : |x| � b} with probability p.

We shall assume that (A,B) is in its controller canonical
form and that the system has a single input. Also, we
shall assume that the disturbance v(t) is matched with
the input, i.e., H = BG and that it has a covariance Σv.

Theorems 15–16 show that the PUB depends on the
diagonal entries of the covariance matrix Σx. Thus, this
is a problem of covariance assignment similar to the one
treated in Sreeram et al. (1996).

When matrix A is in its controller canonical form, the
covariance matrix that solves Eq.(5) has a Xiao structure
(Xiao et al., 1992).

Definition 20. (Xiao matrix). Given a vector 0 � z ∈ R
k,

we define the Xiao matrix X (z) as

X (z) =

















z1 0 −z2 0 z3 · · · ·
0 z2 0 −z3 0 · · · ·

−z2 0 z3 0 −z4 · · · ·
0 −z3 0 z4 0 · · · ·
...

...
...

...
...

. . .
...

· · · · · · · · · · · · · · · · · · zn

















(16)

Before presenting the main result of this section, we
introduce the following lemma.

Lemma 21. Let g : (0, 1) → R
+ be a strictly monoton-

ically decreasing function with Im(g) = R+, let b � 0
be a vector in Rn and let 0 < p < 1. Then, there exist
n constants 0 < p̃i < 1 for i = 1, · · · , n such that
∑n

i=1 p̃i = 1− p and the Xiao matrix

Σx = X
(

[

(b1)
2

g(p̃1)2
(b2)

2

g(p̃2)2
· · · (bn)

2

g(p̃n)2

]T
)

is positive definite.

Proof. Let us suppose that there exist 0 < p̃
(k)
i < 1 for

i = 1, · · · , n with
∑n

i=1 p̃
(k)
i = 1− p such that the matrix
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Σk , X





[

(b1)
2

g(p̃
(k)
1 )2

(b2)
2

g(p̃
(k)
2 )2

· · · (bk)
2

g(p̃
(k)
k )2

]T


 (17)

is positive definite. We shall prove that there exist 0 <

p̃
(k+1)
i < 1 for i = 1, · · · , n with

∑n
i=1 p̃

(k+1)
i = 1− p such

that the matrix

Σk+1 , X





[

(b1)
2

g(p̃
(k+1)
1 )2

(b2)
2

g(p̃
(k+1)
2 )2

· · · (bk+1)
2

g(p̃
(k+1)
k+1 )2

]T




(18)
is also positive definite. We first form the matrix

Σ̃k+1 = X





[

(b1)
2

g(p̃
(k)
1 )2

(b2)
2

g(p̃
(k)
2 )2

· · · (bk+1)
2

g(p̃
(k)
k+1)

2

]T




=





Σk ck

cTk
(bk+1)

2

g(p̃
(k)
k+1)

2



 =

[

Σk ck
cTk d̃k+1

]

(19)

If the product cTk · (Σk)
−1ck < d̃k+1 then Σ̃k+1 > 0 and

we can choose p̃
(k+1)
i = p̃

(k)
i and the matrix Σk+1 defined

as in Eq.(18) is positive definite.

Otherwise, if cTk · (Σk)
−1ck ≥ d̃k+1, we first compute

rk+1 =
cTk · (Σk)

−1ck

d̃k+1

(20)

and choose a constant α > 1 to calculate

[Σk+1]i,i =
[Σk]i,i
αrk+1

for 1 ≤ i ≤ k (21)

Then we take

p̃
(k+1)
i =























g−1

(

bi
√

[Σk+1]i,i

)

for 1 ≤ i ≤ k

p̃
(k)
i

1− p−
∑k

j=1 p̃
(k+1)
j

1− p−∑k
j=1 p̃

(k)
j

for i > k

(22)

That way, we ensure that
∑n

i=1 p̃
(k+1)
i = 1 − p, and,

taking into account that g(p̃i) monotonically decreases and
[Σk+1]i,i < [Σk]i,i for i ≤ k, it results that

p̃
(k+1)
i < p̃

(k)
i for i ≤ k and p̃

(k+1)
i > p̃

(k)
i for i ≥ k + 1

Then, we have

Σk+1 = X





[

(b1)
2

g(p̃
(k+1)
1 )2

(b2)
2

g(p̃
(k+1)
2 )2

· · · (bk+1)
2

g(p̃
(k+1)
k+1 )2

]T




=









Σk

αrk+1

ck

αrk+1

cTk
αrk+1

(bk+1)
2

g(p̃
(k+1)
k+1 )2









=









Σk

αrk+1

ck

αrk+1

cTk
αrk+1

dk+1









with dk+1 > d̃k+1. Thus, it results that

cTk
αrk+1

·
(

Σk

αrk+1

)−1

· ck

αrk+1
=

cTk · (Σk)
−1ck

αrk+1

=
d̃k+1

α
< dk+1

and then Σk+1 is positive definite.

The proof by induction then concludes by observing that
Σ1 is positive definite for any choice of the parameters

p̃
(1)
i > 0 such that

∑n
i=1 p̃

(1)
i = 1 − p. We can initially

take, in particular

p̃
(1)
i =

1− p

n
(23)

✷

Based on this result, the following Theorem establishes
that an arbitrary PUB can be assigned to the system of
Eq.(15) with a proper choice of the feedback gain K.

Theorem 22. (PUB Assignment). Given a system

dx(t) = Ax(t)dt +Bu(t)dt+Hdv(t) (24)

with (A,B) in controller canonical form, H = B ·G where
the disturbance vector v(t) is a stochastic process with
uncorrelated increments and zero mean, and given a vector
b � 0 and a probability 0 < p < 1, there exist a control law
u(t) = K ·x such that S = {x : |x| � b+ ε}, for any ε > 0,
is a PUB with probability p of the closed loop system.

Proof. Let Σv be the covariance matrix of v. Defining
w(t) , Hv(t), the covariance of w(t) results

Σw = HΣvH
T = BGΣvG

TBT = BΣBT

where Σ = GΣvG
T is the covariance of Gv(t).

Thus, according to Theorems 15 and 16, provided that
A+BK is Hurwitz, the closed loop system of Eq.(15) has
a PUB S = {x : |x| � b+ ε} with probability p where

bi =
√

[Σx]i,ig(p̃i)

with
∑n

i=1 p̃i = 1− p and

g(p̃i) =

{

1/
√

p̃i for a general distribution√
2erf−1(1− p̃i)for a Gaussian distribution

and where Σx is the solution of the Lyapunov equation

(A+BK)Σx +Σx(A+BK)T = −BΣBT (25)

Notice that in both cases (general and Gaussian distribu-
tion), the function g verifies the hypothesis of Lemma 21.
Thus, the constants p̃i can be chosen such that the matrix

Σx = X
(

[

(b1)
2

g(p̃1)2
(b2)

2

g(p̃2)2
· · · (bn)

2

g(p̃n)2

]T
)

is positive definite.

According to Lemmas 3.1 and 3.2 in Sreeram and Agath-
oklis (1992), this positive definite Xiao matrix Σx is an
assignable covariance matrix of the controller-form pair
(A,B). That is, there exists K such that Σx is the solution
of the Lyapunov equation (25). Moreover, it results that

A+BK = Ā =









0 1 0 · · · 0
0 0 1 · · · 0
...
...

...
. . .

...
Ān









is a Hurwitz matrix with

Ān = −
[

Σ−1
x h

]T
(26)

and
h = [[Σx]2,n [Σx]3,n · · · [Σx]n,n Σ/2]

T
(27)

from where it results that

K = Ān −An (28)

An being the last row of matrix A (recall that in the
controller canonical form B = [0 . . . 0 1]T ).
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Then, taking K from Eq.(28) the closed loop system has
the desired PUB, which concludes the proof. ✷

From Theorem 22 and Lemma 21 the following algorithm
can be devised to find the control law u(t) = K ·x(t) such
that system (24) has a PUB of size b with probability p:

(1) Obtain the covariance matrix Σx > 0:

(a) Take k = 1 and p̃
(1)
i as in Eq.(23).

(b) Form Σk from Eq. (17) and Σ̃k+1 from Eq.(19).

(c) If Σ̃k+1 > 0, take p̃
(k+1)
i = p̃

(k)
i and go to step

(1e).

(d) Otherwise, choose α > 1 and take p̃
(k+1)
i from

Eqs.(20)–(22).
(e) Let k := k + 1. If k < n go back to step (1b).

(2) Calculate Σ = GΣvG
T and compute K from

Eqs.(26)–(28).

6. EXAMPLE

We consider a system described by Eq.(24) with

A =

[

0 1 0
0 0 1
0 0 0

]

; H = B =

[

0
0
1

]

; (29)

where v(t) is a Wiener process with incremental covariance
Σvdt = 0.01dt.

We want this system to have a PUB

S = {x : |x| < b+ ε} where b = [0.1 0.1 0.1]
T

for all ε > 0 with probability p = 0.9.

The algorithm derived above with the choice α = 2
provides the values p̃1 = p̃2 = 0.002617, p̃3 = 0.09477, and
Σx = X ([0.0011 0.0011 0.00358]T ). Then, the resulting
control gain is

K = [−2.0176 −3.2446 −2.0176]

In order to verify the result, we performed 10000 simula-
tions of the system from the initial state x(t0) = 10 · b
(outside S) and for each instant of time tk = 0.1k, with
k = 0, · · · 1000 we evaluated the exit ratio e as the number
of times x(tk) lies outside the PUB divided by 10000. We
found that for any tk > 12, between 8.3% and 11.3% of the
simulations lie outside the calculated PUB, which is close
to the maximum theoretical probability (1 − p) of 10%.

We also computed a γ–PIS with γ = 0.9 and probability
p = 0.9 for the system. For that goal, we set p̃1 = p̃2 =
p̃3 = 0.1/3 obtaining a set S = {x : |V −1x| � bp} with

V =

[−0.636 0.251− 0.241i 0.251 + 0.241i
0.573 0.194 + 0.483i 0.194− 0.483i
−0.517 −0.779 −0.779

]

and bp = [0.2796 0.3343 0.3343]
T
.

As before, we run 10000 simulations from an initial state
x0 = [−0.145, −0.00278, 0.000173]T located on the
border of the set of initial conditions γS of the γ–PIS
S. We then computed the exit ratio as a function of time,
obtaining the results shown in Figure 1. It can be seen
that, near the beginning of the simulation, about 1.7% of
the simulated trajectories abandon the γ–PIS. This set was
obtained so as to ensure that the probability of abandoning
the set is less than 10%; so, in spite of some conservatism,

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

t

e

Fig. 1. Exit ratio vs. t for the γ–PIS

the numerical result is in the order of magnitude of the
theoretical bound.

7. CONCLUSIONS

We have extended the notions of PUB and PIS to the
continuous-time domain, deriving their main properties
and providing formulas for their calculation. In the case
of PIS, a redefinition was required to take into ac-
count the fundamental limitations imposed by the infinite-
bandwidth nature of continuous-time white noise. Then,
a controller design technique was presented to assign a
predetermined PUB having a given probability p for a
system given in controller canonical form. The results were
illustrated with a numerical example. Future work will
include the extension of the results to more general classes
of linear systems.
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