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Abstract: In the paper a traffic control strategy based on ramp metering is proposed in order
to reduce traffic emissions in freeway stretches. Such strategy is devised to take into account
that two vehicle classes are present in the freeway (cars and trucks) and that they are separately
controlled. The simulation analysis developed in the paper shows, first of all, that the proposed
control strategy is able not only to reduce traffic emissions in the freeway but also to reduce
the congestion, by decreasing the total time spent by vehicles in the system. Moreover, the
effectiveness of the two-class ramp metering control is shown on different traffic scenarios, that
are deeply analysed and discussed in the paper.

1. INTRODUCTION

Road transport is one of the main sources of air pollution,
and for this reason it has become more and more important
to estimate traffic emissions precisely in order to design
appropriate pollution-reduction measures [1]. One of the
most widespread traffic emission models used within the
European context is the COPERTmodel, which represents
the vehicle emissions as functions of the vehicle mean
travel speed. Hence COPERT belongs to the class of the
so-called average-speed models that have been progres-
sively updated on the basis of real measured data obtained
from different sources. COPERT will be used in this paper
to compute the traffic emissions, since the aim of this work
is to propose a two-class traffic control scheme in order to
reduce traffic emissions in freeway systems.

The traffic control approaches for freeway systems present
in the literature consider different control objectives. The
most of them are devoted to reduce congestion, often
measured in terms of total time spent by the drivers in
the traffic network [2], but there are also some recent
results considering other goals, such as the decrease in
fuel consumptions or the minimization of traffic emissions
[3, 4, 5]. In our case, we propose a two-class local ramp
metering strategy to control the traffic flow entering the
mainstream; in [6] we have shown that, adopting such
a control strategy, the two objectives of minimizing the
total time spent and of minimizing the total emissions
are not conflicting. In the simulation analysis provided in
the present work we will confirm this result and we will
show different scenarios in which the controlled system is
characterized by a reduction of both the total time spent
and the total emissions with respect to the open-loop case.

The control strategy considered in this work is based
on the feedback traffic controller ALINEA [7], which has
been successfully implemented in many real cases. Other
more sophisticated traffic control approaches can be found
in the literature, such as for instance those based on
Model Predictive Control [8, 9]. However, these control
approaches are not taken into account in this work since

we aim at designing a local ramp metering strategy that is
simple and flexible, and ALINEA has shown, also in real
applications, to present these characteristics [10].

One of the peculiarities of our work stands in considering
a two-class traffic model in order to separately control cars
and trucks. Generally speaking, it is useful to adopt a
two-class model whenever the considered freeway system is
characterized by a significant presence of slow vehicles: in
that case classical macroscopic models are not completely
adequate since vehicles do not form a homogeneous flow,
but two different flows can be identified. Besides explicitly
modeling different classes, it seems useful to define the
control measures specifically for different vehicle classes,
cars and trucks in particular. Devising ramp-metering
control strategies specific for each vehicle class means
that different lanes in the on-ramps, with different traffic
lights, are assigned to different vehicle typologies. Some
multiclass models can be found in the literature, such as
for instance [11] and [12].

The two-class model and the local ramp metering strategy
adopted in this work are an extended version of the work
[5] and are, instead, the same adopted in [6]. However, the
objective of the present work is quite different from the one
in [6]: in [6] we have analysed how the performance of the
controlled system (in terms of emissions and total time
spent) changes while varying the set-point value of the
occupancy to be set in the local control strategy, both in
the one-class and in the two-class case. In the present work,
instead, the simulation analysis is completely different and
devoted to analyse the behaviour of the traffic densities
and the queue lengths, for each vehicle category, in differ-
ent traffic scenarios, in order to show the effectiveness of
the proposed two-class control strategy.

The paper is organized as follows. Section 2 describes
the two-class macroscopic traffic model adopted in this
work, whereas Section 3 describes the proposed ramp
metering strategy to reduce traffic emissions. Then, in
Section 4 the results of the developed simulation analysis
are reported and discussed in detail. Finally, in Section 5
some conclusive comments are drawn.
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2. THE TWO-CLASS TRAFFIC MODEL

The two-class traffic model adopted in this paper is ob-
tained by extending the macroscopic traffic flow model
Metanet [13] to the case in which two classes of vehicles are
explicitly taken into account, as in [6]. The two-class model
is motivated by the fact that cars and trucks constitute
two traffic flows which share the same freeway stretch.
Obviously, distinguishing trucks from cars is much more
required if the percentage of trucks in the overall traffic
flow is quite high. Moreover, in our work we suppose
that different control actions can be actuated for cars and
trucks.

The macroscopic traffic flow model is based on the sub-
division of the freeway stretch in N sections and the
discretization of the time horizon in K time steps. In this
paper, k = 0, . . . ,K, denotes the time step, i = 1, . . . , N ,
indicates the section of the freeway stretch, and c = 1, 2,
represents the vehicle class (c = 1 represents the class of
cars whereas c = 2 indicates the class of trucks). T is
the sample time interval and ∆i is the length of section i.
Referring to section i and time step k, the main aggregate
variables to be considered are:

• ρi,c(k) is the traffic density of class c (expressed in
vehicles of class c per space unit);

• ρtoti (k) is the total traffic density (expressed in vehi-
cles of class 1 per space unit);

• vi,c(k) is the mean traffic speed of class c (expressed
in space unit per time unit);

• qi,c(k) is the traffic volume of class c (expressed in
vehicles of class c per time unit);

• li,c(k) is the queue length of vehicles of class c waiting
on the on-ramp (expressed in vehicles of class c);

• di,c(k) is the traffic volume of class c requiring to enter
the freeway from the on-ramp (expressed in vehicles
of class c per time unit);

• ri,c(k) is the on-ramp traffic volume of class c (ex-
pressed in vehicles of class c per time unit);

• rtoti (k) is the total on-ramp traffic volume (expressed
in vehicles of class 1 per time unit);

• si,c(k) is the off-ramp traffic volume of class c (ex-
pressed in vehicles of class c per time unit).

In case a certain section i is not provided with on-ramps
and off-ramps, the corresponding variables ri,c(k), si,c(k),
li,c(k) and di,c(k), k = 0, . . . ,K, c = 1, 2, are fixed equal
to 0. In the considered model, the following quantities are
also defined: the free-flow speed Vf,c, for each class c = 1, 2,
the critical density ρcr (expressed in vehicles of class 1 per
space unit), the jam density ρmax (expressed in vehicles
of class 1 per space unit), the on-ramp capacity rmax,c

for each class c = 1, 2 (expressed in vehicles of class c
per time unit) and the parameter η, that is a conversion
factor between cars and trucks. The meaning of parameter
η, that in this paper is assumed to be a constant value, is
analogous to the definition of passenger car equivalents
(PCE), that are considered as the number of passenger
cars displaced by a single heavy vehicle.

The two-class dynamic model is given by the following
equations

ρi,c(k + 1) = ρi,c(k) +
T

∆i

[

qi−1,c(k)− qi,c(k)

+ ri,c(k)− si,c(k)

]

c = 1, 2, i = 1, . . . , N, k = 0, . . . ,K − 1 (1)

vi,c(k + 1) = vi,c(k) +
T

τc

[

Vi,c(k)− vi,c(k)

]

+
T

∆i

vi,c(k)
(

vi−1,c(k)− vi,c(k)
)

−
νcT

(

ρtoti+1(k)− ρtoti (k)
)

τc∆i

(

ρtoti (k) + χc

) − δon,cT
vi,c(k)r

tot
i (k)

∆i(ρtoti (k) + χc)

c = 1, 2, i = 1, . . . , N, k = 0, . . . ,K − 1 (2)

li,c(k + 1) = li,c(k) + T
[

di,c(k)− ri,c(k)
]

c = 1, 2, i = 1, . . . , N, k = 0, . . . ,K − 1 (3)

Vi,c(k) = Vf,c ·

[

1−

(

ρtoti (k)

ρmax

)lc]mc

c = 1, 2, i = 1, . . . , N, k = 0, . . . ,K − 1 (4)

qi,c(k) = ρi,c(k) · vi,c(k)

c = 1, 2, i = 1, . . . , N, k = 0, . . . ,K − 1 (5)

ρtoti (k) = ρi,1(k) + ηρi,2(k)

i = 1, . . . , N, k = 0, . . . ,K − 1 (6)

rtoti (k) = ri,1(k) + ηri,2(k)

i = 1, . . . , N, k = 0, . . . ,K − 1 (7)

where τc, νc, χc, δon,c, lc, mc, c = 1, 2, are suitable model
parameters.

In case the freeway system is not controlled, the on-ramp
entering flow can be computed as follows

ri,c(k) = min

{

di,c(k) +
li,c(k)

T
, rmax,c,

rmax,c ·
ρmax − ρtoti (k)

ρmax − ρcr

}

i = 1, . . . , N, c = 1, 2, k = 0, . . . ,K − 1 (8)

If the on-ramps are controlled via ramp metering and
denoting with r̄i,c(k) the actuated on-ramp flow for ramp
of section i at time step k for class c, (8) is substituted by

ri,c(k) = min

{

di,c(k) +
li,c(k)

T
, r̄i,c(k), rmax,c,

rmax,c ·
ρmax − ρtoti (k)

ρmax − ρcr

}

i = 1, . . . , N, c = 1, 2, k = 0, . . . ,K − 1 (9)

It is worth noting that the two-class model can be
easily used to represent the one-class case by con-
sidering c = 1, ρtoti (k) = ρi,1(k) and rtoti (k) = ri,1(k)
i = 1, . . . , N, k = 0, . . . ,K − 1.

3. THE PROPOSED CONTROL SCHEME

In this work we adopt a local ramp metering strategy
with the objective of minimizing the traffic emissions of
cars and trucks in the freeway system. Different emission
models can be found in the literature but in this work
we are interested in considering the class of average-speed
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emission models since they are quite aggregate and then
are easy to be adopted in our control approach. These
models assume that the average emissions for a certain
pollutant and for a certain type of vehicle only depend
on the average speed during a trip. In particular, we rely
on the COPERT model proposed in [14]. In this paper
we consider a simplified traffic composition: we suppose
that all the cars are gasoline cars, split in four legislation
emission categories (from Euro 1 to Euro 4), and only
the case of roads with no slope and half loaded trucks
is considered for the truck emission models. Note that
the methodology proposed in this paper could be easily
adapted to the case of more complex traffic compositions.

According to COPERT, the hot emissions for gasoline
passenger cars, referred to the emission legislation category
j = 1, . . . , 4 (from Euro 1 to Euro 4), are calculated as

Ej
1(v) =

aj1 + ej1v + f j
1v

2

1 + bj1v + dj1v
2

(10)

where v represents the mean speed, whereas aj1, b
j
1, d

j
1,

ej1 and f j
1 , j = 1, . . . , 4, are parameters which depend on

the considered pollutant, the vehicle type and the engine
capacity. Note that the index 1 is used to indicate that this
is the model for class 1, i.e. for cars. As regards instead
trucks, many formulations for the emission factors of heavy
duty vehicles can be found in the literature. In [14] some of
these formulations are reported, and in this work we refer
in particular to the case of roads with no slope and half
loaded trucks, i.e.

E2(v) = a2 +
b2

1 + exp(−c2 + d2 ln(v) + e2v)
(11)

where v represents again the mean speed, and the parame-
ters a2, b2, c2, d2 and e2 depend on the considered load and
slope conditions, according with the emission legislation.
Analogously to the notation adopted before, in (11) the
index 2 stands for class 2, i.e. trucks.

The ramp metering strategy adopted in this paper is based
on the controller ALINEA [7] and in particular on its
extended version of proportional integral type, called PI-
ALINEA [15], properly adapted to the two-class case. Let
us introduce PI-ALINEA for the one-class case, reminding
that its main aim is to maximize the flow throughput at
the merging area, considering both a proportional and an
integrative logic. According to PI-ALINEA, the on-ramp
flow for section i at time step k is computed as

r̄i(k) = max
{

rmin, ri(k− 1)−KP [oi(k − 1)− oi(k − 2)]

+KR[ô− oi(k − 1)]
}

(12)

where oi(k − 1) is the freeway occupancy measurement
downstream of the ramp collected during the interval [(k−
1)T, kT ), oi(k − 2) is the same measurement during the
interval [(k − 2)T, (k − 1)T ), ô is a desired value for the
downstream occupancy (normally set equal to the critical
occupancy at which the freeway flow becomes maximum),
rmin is the minimum on-ramp traffic volume, KR > 0 and
KP > 0 are regulator parameters.

According to the two-class PI-ALINEA, the on-ramp flow
of class c for section i at time step k is computed as

r̄i,c(k) = max
{

rmin,c, ri,c(k − 1)

−KP c[oi,c(k − 1)− oi,c(k − 2)]

+KRc · fi,c(k − 1)[ô− ototi (k − 1)]
}

c = 1, 2, i = 1, . . . , N, k = 0, . . . ,K − 1 (13)

In (13) fi,c(k) indicates the ratio of the occupancy of
class c over the entire occupancy (referred to both the
mainstream and the queues) computed as

fi,1(k) =
oi,1(k)∆i + li,1(k)

oi,1(k)∆i + li,1(k) + η · [oi,2(k)∆i + li,2(k)]

i = 1, . . . , N, k = 0, . . . ,K − 1 (14)

fi,2(k) =
η · [oi,2(k)∆i + li,2(k)]

oi,1(k)∆i + li,1(k) + η · [oi,2(k)∆i + li,2(k)]

i = 1, . . . , N, k = 0, . . . ,K − 1 (15)

whereas the total occupancy ototi (k) is obtained as

ototi (k) = oi,1(k) + ηoi,2(k)

i = 1, . . . , N, k = 0, . . . ,K − 1 (16)

In (13) rmin,c is the minimum on-ramp traffic volume
for class c, c = 1, 2, while KP c and KRc, c = 1, 2, are
suitable parameters for the considered regulators. When
the two-class PI-ALINEA is adopted to minimize traffic
emissions, as in the present work, the set-point value for
the occupancy in (13) must be properly set, as it has been
shown in [6].

The adoption of a ramp metering control action can imply,
in some cases, the formation of long queues, in particular
when the mainstream is very congested. Such a situation
is often undesirable, both because of physical limitations
of the queues and because it implies a high concentration
of polluting emissions due to the wait of vehicles at the on-
ramp. Taking into account such a motivation, a constraint
on the maximum queue length is added to the two-class PI-
ALINEA defined above, according to the following logic.
Suppose that the computed on-ramp flow to be actuated
according to PI-ALINEA gives rise to a queue length that
is too high, then such on-ramp flow should be increased
in order to reduce the queue length to be almost equal
to its maximum value. Let us denote with lmax,i,c the
maximum queue length for section i and class c. First of
all, a temporary value r̄∗i,c(k) for the actuated on-ramp
volume is computed as in (13), i.e.

r̄∗i,c(k) = max
{

rmin,c, ri,c(k − 1)

−KP c[oi,c(k − 1)− oi,c(k − 2)]

+KRc · fi,c(k − 1)[ô− ototi (k − 1)]
}

c = 1, 2, i = 1, . . . , N, k = 0, . . . ,K − 1 (17)

that would correspond to the on-ramp volume r∗i,c(k) and

queue length l∗i,c(k + 1), computed as in (3) and (9), i.e.

r∗i,c(k) = min

{

di,c(k) +
li,c(k)

T
, r̄∗i,c(k), rmax,c,

rmax,c ·
ρmax − ρtoti (k)

ρmax − ρcr

}

c = 1, 2, i = 1, . . . , N, k = 0, . . . ,K − 1 (18)

l∗i,c(k + 1) = li,c(k) + T
[

di,c(k)− r∗i,c(k)
]

c = 1, 2, i = 1, . . . , N, k = 0, . . . ,K − 1 (19)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

938



Then, l∗i,c(k + 1) represents the queue length that would

be obtained if the flow r̄∗i,c(k) were actuated. If such a
queue exceeds the maximum length, this flow is actuated;
otherwise, the flow is increased such that the queue does
not exceed the maximum value, i.e.

If l∗i,c(k + 1) ≤ lmax,i,c

then

r̄i,c(k) = r̄∗i,c(k)

else

r̄i,c(k) = r̄∗i,c(k) +
l∗i,c(k + 1)− lmax,i,c

T
(20)

4. SIMULATION RESULTS

The control strategy and the two-class dynamic model
have been implemented with Matlab. The considered free-
way stretch is composed of N = 12 sections, each one with
a length ∆i = 500 [m], i = 1, . . . , 12; this stretch is char-
acterized by three on-ramps, that are present in sections
3, 5, 8. The sample time T = 10 [s] has been chosen and a
total time horizon of 2 hours (corresponding to K = 720)
has been considered for the simulation tests. Three traffic
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Fig. 1. Traffic demand of cars, scenario 1.
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Fig. 2. Traffic demand of trucks, scenario 1.

scenarios corresponding to decreasing congestion levels
have been considered (scenario 1 is the most congested
one). The traffic demands relative to cars and trucks for
the three on-ramps in scenario 1 are reported, respectively,
in Fig. 1 and in Fig. 2. The demands of scenarios 2 and 3
present similar behaviours but are characterized by lower
values. The initial and boundary conditions are the same
for the three scenarios and have been set equal to 40
[cars/km] and to 2.5 [trucks/km].

Let us start analysing scenario 1, that is the most con-
gested one. The behaviour of the traffic density in the
open-loop case, for the two vehicle classes, is reported in
Fig. 3 and in Fig. 4, showing a rather high congestion level.
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Fig. 3. Traffic density of cars, scenario 1 (open-loop).
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Fig. 4. Traffic density of trucks, scenario 1 (open-loop).
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Fig. 5. Traffic density of cars, scenario 1 (without con-
straints).
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Fig. 6. Traffic density of trucks, scenario 1 (without con-
straints).

In this case the queue lengths at the on-ramps are null over
the entire time horizon.

By applying the ramp metering control strategy, setting
ô = 127 [veh/km] and without constraining the queue
lengths at on-ramps, the congestion is strongly reduced,
as shown by the density behaviours, for cars and trucks,
reported in Fig. 5 and in Fig. 6. The resulting queue
lengths at on-ramps are shown in Fig. 7 and in Fig. 8,
for cars and trucks respectively. Note that the the queue
of the first on-ramp is almost null and this is due to the
local nature of the considered controller.
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Fig. 7. Queue of cars, scenario 1 (without constraints).
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Fig. 8. Queue of trucks, scenario 1 (without constraints).
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Fig. 9. Traffic density of cars, scenario 1 (with constraints).
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Fig. 10. Traffic density of trucks, scenario 1 (with con-
straints).
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Fig. 11. Queue of cars, scenario 1 (with constraints).

The evolutions of the traffic densities, for cars and trucks,
in case a limit on the queue lengths is set, are shown in
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Fig. 12. Queue of trucks, scenario 1 (with constraints).

Fig. 9 and in Fig. 10, whereas the queue lengths for each
vehicle category are reported in Fig. 11 and in Fig. 12. In
the considered case we have set a maximum queue length
equal to 100 for cars and equal to 10 for trucks. Obviously,
when setting a queue limit, the queue lengths are lower
and consequently the traffic densities are higher (but much
lower than in the open-loop case).

In order to compare the different scenarios, some perfor-
mance indexes have to be introduced. First of all, the
emissions in the mainstream can be computed separately
for each vehicle class, as follows

Emain
1 =

720
∑

k=1

12
∑

i=1

4
∑

j=1

∆i · ρi,1(k) · γ
j
1 ·E

j
1

(

vi,1(k)
)

(21)

Emain
2 =

720
∑

k=1

12
∑

i=1

∆i · ρi,2(k) · E2

(

vi,2(k)
)

(22)

where Ej
1

(

vi,1(k)
)

and E2

(

vi,2(k)
)

are computed respec-

tively according to (10) and (11). In (21) γj
1 represents the

composition rate for cars related to legislation emission j.

These composition rates must be such that
∑4

j=1 γ
j
1 = 1

and in this case they are γ1
1 = 0.21, γ2

1 = 0.19, γ3
1 = 0.20,

γ4
1 = 0.40. Moreover, in this analysis the considered pollu-

tant is carbon monoxide.

Analogously, the emissions at the on-ramps can be com-
puted separately for each vehicle class, as follows

Eramp
1 =

720
∑

k=1

12
∑

i=1

4
∑

j=1

γj
1 · α

j
1 · li,1(k) (23)

Eramp
2 =

720
∑

k=1

12
∑

i=1

α2 · li,2(k) (24)

where αj
1, j = 1, . . . , 4, are constant emission factors

obtained from (10) in case of v = 10 [km/h] and α2 is
obtained from (11) with v = 12 [km/h].

The total mainstream emissions are Emain = Emain
1 +

Emain
2 , the total on-ramp emissions are Eramp = Eramp

1 +
Eramp

2 and the total emissions are Etot = Emain+Eramp. It
is also possible to compute the emissions referred to class
c, i.e. Etot

c = Emain
c + Eramp

c , c = 1, 2.

Besides the emissions in the freeway, other important
indexes regard the capability of the control scheme to
reduce the congestion. Such indexes are the Total Time
Spent (TTS) and the Total Travelled Distance (TTD),
computed as
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TTS = T ·

720
∑

k=1

12
∑

i=1

∆i

(

ρi,1(k) + η · ρi,2(k)

)

+

(

li,1(k) + η · li,2(k)

)

(25)

TTD =

720
∑

k=1

12
∑

i=1

∆i · T

(

qi,1(k) + η · qi,2(k)

)

(26)

Finally, the Mean Speed (MS) is obtained as MS =
TTD/TTS.

Table 1. Performances (without constraints).

Scenario ∆Emain
1 ∆Etot

1 ∆Emain
2 ∆Etot

2 ∆Emain ∆Etot

1 -45.53 -16.92 -49.56 -13.51 -46.41 -16.18

2 -28.66 -7.30 -36.36 -1.47 -30.37 -6.00

3 -24.89 -5.45 -32.35 +0.81 -26.53 -4.07

Scenario ∆TTD ∆TTStot ∆MS

1 0.00 -9.90 10.99

2 0.00 -6.56 7.02

3 0.00 -5.42 5.74

In Table 1 the performances of the three considered sce-
narios are evaluated in the case without queue constraints.
In particular, each column reports the percentage improve-
ment of the previously cited indexes with respect to the
open-loop case. The same percentage improvement indexes
are reported in Table 2 for the case with queue constraints.

Table 2. Performances (with constraints).

Scenario ∆Emain
1 ∆Etot

1 ∆Emain
2 ∆Etot

2 ∆Emain ∆Etot

1 -33.64 -12.61 -33.77 -4.59 -33.67 -10.87

2 -25.06 -6.34 -31.54 -6.47 -26.50 -6.37

3 -22.78 -5.03 -29.47 -4.62 -24.25 -4.94

Scenario ∆TTD ∆TTStot ∆MS

1 0.00 -4.62 4.85

2 0.00 -5.83 6.19

3 0.00 -5.25 5.54

By analysing these percentage improvement indexes with
respect to the open-loop case, it can be seen that the
system performance gets better when the proposed ramp
metering control strategy is applied, both in terms of
traffic emission reduction and in terms of total time
spent reduction (or total mean speed increase). Hence,
it can be concluded that adopting the proposal control
scheme yields an improvement of the considered system
performance also in the case in which queue constraints
are imposed.

5. CONCLUSION

A two-class ramp metering strategy for freeway stretches
has been designed in the paper. By extending the
METANET model and the PI-ALINEA regulator to the
two-class case, it is possible to improve the freeway sys-
tem performance both in terms of pollutant emissions

and in terms of traffic behaviour. Such results have been
described and shown in the paper through a detailed
simulation analysis.
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