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Abstract: When the state dimension is large, classical approximate dynamic programming
techniques may become computationally unfeasible, since the complexity of the algorithm
grows exponentially with the state space size (curse of dimensionality). Policy search techniques
are able to overcome this problem because, instead of estimating the value function over the
entire state space, they search for the optimal control policy in a restricted parameterized
policy space. This paper presents a new policy parametrization that exploits a single point
(particle) to represent an entire region of the state space and can be tuned through a recently
introduced policy gradient method with parameter-based exploration. Experiments demonstrate
the superior performance of the proposed approach in high dimensional environments.
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1. INTRODUCTION

Stochastic optimal control problems arise in several ap-
plication contexts such as communication networks, man-
ufacturing systems, air traffic management, and power
networks. Such problems are particularly challenging due
to the stochastic hybrid dynamics of the system, which
involves a tight coupling of continuous dynamics, discrete
dynamics, and uncertainty. In particular, the computa-
tional complexity of the problem increases rapidly with the
system size, motivating the quest for efficient algorithms.
In this paper, we investigate the problem of designing
an optimal control policy for large scale stochastic sys-
tems and determining an approximate solution through
a scalable computational procedure. We consider systems
that can be modeled as discrete time Markov Decision
Processes (MDPs) (Puterman, 1994) with a continuous
state space component, and focus on the case where the
control space is discrete. The assumption of dealing with
MDPs is not restrictive, since they include quite general
classes of systems such as discrete time stochastic hybrid
systems (Abate et al., 2008).

An MDP is a probabilistic dynamic model where the
state evolution is governed by transition probabilities that
depend on the control input. If the objective is to maximize
some additive reward function along a future time horizon,
the optimal control policy that maps each state into the
appropriate control action can be characterized through
the Dynamic Programming (DP) approach. The rationale
of the DP control design methodology is to take into
account the immediate impact of the decisions taken at
each stage (through some instantaneous reward) as well
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as their expected future impact over the residual look-
ahead time horizon. The maximum expected return that
can be obtained starting from any given state is expressed
by the optimal value function. If the horizon is infinite
and the rewards are discounted, the optimal value function
can be characterized as a fixed point of the Bellman opti-
mality equation (Sutton and Barto, 1998). For any MDP,
there always exists at least one optimal policy that is a
deterministic, i.e., where the state-control input map is
deterministic.

Unfortunately, the fixed point of the Bellman equation
cannot be determined analytically, neither can it be finitely
represented, due to the continuous component of the state
of the system, and computing the policy calls for some Ap-
proximate Dynamic Programming (ADP) method (Sutton
and Barto, 1998; Powell, 2007; Busoniu et al., 2010). ADP
methods typically consist in an iterative scheme for succes-
sively improving the quality of the approximation of the
optimal value function (value iteration methods) or of the
optimal control policy itself (policy search methods). Para-
metric approximate representations of the value function
or of the control policy are typically introduced to solve
the well-known curse of dimensionality afflicting DP. In
particular, Reinforcement Learning (RL) approaches (Sut-
ton and Barto, 1998) approximate the expected values
involved in the value function computation and policy
evaluation using empirical averages over data obtained
through the direct interaction between the learning algo-
rithm and the system to be controlled. Such approaches
allow to learn optimal or near—optimal policies, even when
the system dynamics are unknown or in high dimensional
problems.

Policy search methods are among the most effective learn-
ing algorithms for dynamical stochastic tasks with con-
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tinuous state and action spaces, and they have been suc-
cessfully applied to several real tasks (Peters et al., 2003).
These methods exploit optimization techniques to search
for an optimal policy that maximizes the expected return
over some parameterized policy space. In particular, policy
gradient methods perform at each iteration a local search
in the policy space guided by the gradient of the expected
return, that can be estimated from the system trajectories.
Unfortunately, standard gradient—based methods, such as
REINFORCE or G(PO)MDP (Peters and Schaal, 2008),
need to search in the space of stochastic policies, thus
suffering from high variance in the gradient estimates,
which in turn leads to slow convergence rates.

Recently, a parameter—based exploration strategy (Sehnke
et al., 2010) named policy gradient with parameter—based
exploration (PGPE) has been presented, that allows to
consider deterministic policies and introduces a probabil-
ity distribution over the policy parametrization instead.
Then, it searches for the optimal deterministic policy
by updating the parameters of such a distribution (de-
noted hyperparameters) following the estimated gradient
direction. In this way, the search in the policy space is
replaced by a direct search in the hyperparameter space.
As all classical policy gradient approaches, the PGPE
estimates the gradient via simulation of system trajec-
tories. However, by moving the stochasticity from the
policy to the hyperparameters distribution, it produces
low variance trajectories that yield low variance gradient
estimates (Zhao et al., 2012). An additional feature of the
PGPE is that — differently from standard policy-gradient
approaches — it allows the use of policies that are non-
differentiable in their parametrization, since the gradient
of the expected performance is estimated with respect to
the hyperparameters.

In this paper, we propose a novel parametrization of the
policy that maps the continuous state space of an MDP
onto its finite control space. More precisely, the state
feedback policy is represented through particles positioned
over the state space and labeled with different control
actions. A set of particles defines a policy by partitioning
the state space through the associated Voronoi diagram,
so that in each state the policy chooses the action asso-
ciated to the closest particle. Each particle is positioned
randomly based on a multivariate Gaussian density func-
tion, and a categorical distribution is used to extract the
action associated to it. The mean vector and covariance
matrix of the Gaussian density function, together with the
parameters of the categorical distribution, constitute the
hyperparameters to be tuned.

2. PRELIMINARIES

In this section we briefly recall the concept of discrete—
time MDP. An MDP is a tuple (X, U, f,r,v, D), where
X is the state space, U is the action space, f : X X
X x U — R, is the Markovian transition model where
f(2'|x,u) denotes the transition density between state x
and state ' under u, r : X x U x X — R is the reward
function, such that r(z,u,2’) is the instantaneous reward
obtained starting from state x taking action v and reaching
state a’, v € [0,1) is a discount factor, and D is the
distribution of the initial state.

A stochastic policy is defined by a probability density
function 7(-|z) over the action space U, which represents

the probability of taking action u in state . When the
policy is deterministic, the probability density function
becomes a probability mass function concentrated in a
single action for each state value. In that case, with a
slight abuse of notation, we use w to denote the map
between states and actions, i.e., 7 : X — U. We consider
infinite horizon problems where the future rewards are
exponentially discounted with ~. The value of state x
under policy 7 is expressed as the expected return when
starting in = and following 7 thereafter ! :

V(@) = By < | D07 r(a(h), ulk), a(k+1))]a(0) = o],
z(k) ~ f " =0

Given the initial state distribution D, the policy perfor-

mance can be evaluated through its expected discounted

return:

JB:/XD(:U)V’T(:c)d:c.

Solving an MDP implies finding a policy 7* that maxi-
mizes the expected reward: 7* € argmax . J,, where
IT is the set of all (stochastic and deterministic) policies.
Interestingly, for any MDP there exists at least one de-
terministic optimal policy that maximizes V7 (x), for all
x € X (Puterman, 1994).

In the following, we consider the problem of finding a
policy that maximizes the expected discounted reward
over a class of parameterized policies Ilg = {7r9 10 € Rd},
where mg is a compact notation for 7(u|z, 0). For ease of
notation, we will denote with J(6) the expected discounted
reward of policy mg. In particular, we focus on MDPs with
continuous state space X C R" and discrete action space
U, with |[U| = m.

3. THE PGPE ALGORITHM

In this section we describe the policy gradient approach.
To this aim we need first to introduce some further
notation. Let h = [xg,uo,...,2z7| denote a sequence of
values for states and actions of finite length T (called
history). Given a history h, we define the discounted
cumulative reward along h as:

T—1

r(h) = Z Voo, uk, Tegr)-

k=0

Then, J(6) can be approximated as follows

J(6) ~ /H P (h|0) r(h)dh,

where H is the set of all histories h, and
T—1

P(h|6) = D(wo) [] f(ersilaw, un)m(urla, 0).
k=0

Policy gradient approaches update the policy following the

direction of the gradient of the expected discounted reward
w.r.t. the policy parameters:
T—1

VeJ(0) ~ / P(h|0) >~ Ve logma(ux|zx)r(h)dh.

H k=0

Since integrating over all the possible histories is practi-

cally unfeasible, the previous gradient can only be esti-

L The time dependence of stochastic variables is indicated in brack-
ets, e.g., x(k), whereas zj denotes a possible extracted value of z(k).
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mated, e.g., by means of Monte Carlo simulations as in
the REINFORCE algorithm (Williams, 1992):

N T-1
VeoJ(6 Z Z Ve logme(u )|x,(€n))r(h(")),
n 1 k=0

where the histories h(Y) are extracted at random according
to P(h(?]@). The Monte Carlo estimate of the gradient
suffers from high variance (Peters and Schaal, 2008) due
to the stochasticity introduced at every transition step by
the stochastic policy, which involves sampling the action at
every step and, hence, produces several different histories.
The PGPE algorithm (Sehnke et al., 2010) is able to reduce
the variance problem by replacing the stochastic policy
with multiple deterministic policies whose parameters 6
are drawn from a probability distribution P(@|p) that is a
function of a hyperparameter vector p. PGPE updates p
following a gradient ascent approach, in order to increase
the probability of drawing deterministic policies with
higher expected returns. Its main advantage comes from
the low variance of the expected returns of histories
produced by deterministic policies: the stochasticity is
moved to a higher level with the goal of guiding the
exploration of the policy parameters 6. Indeed, Zhao
et al. (2012) have shown that the gradient estimate in
the PGPE has a lower variance than in REINFORCE.
Another advantage of the PGPE is that no assumption on
the differentiability of the policy w.r.t. to the parameters
0 is required.

The performance measure in the PGPE is the expected
value of J(0) with respect to the distribution P(:|p):

J(p) = Eonp(|p)[J(0)]-
The goal is to find the best parametrization, i.e., the

hyperparameters p* € argmax,cp J(p). According to the
gradient—based optimization:

// (h|6) P (0]p) r(h)dhd,

and the hyperparameters p are updated following the
gradient direction:

Piy1 = P+ BiVpJ(p,),

where, using the equivalence (P(0|p)V,logP(0|p) =
V,P(8|p)), we can write:

V,J(p) = /@ P(6]p)V, log P(6]p) /H P(h|0)r(h)dhdo,

The previous equation cannot be solved directly because
the integration over the entire space of histories and policy
parameters is unfeasible. However, a sampling method can
be exploited for the gradient estimation:
N
r(h")V, log POp).
=1

1
VpJ(p) = N

where the pairs (0(”) h(™) are extracted independently
according to the following mechanism: parameter 0™ is
drawn first from P(-|p) and then history h("™) is drawn from
the conditional distribution P(-|0™). As a consequence,
the PGPE implementation requires to generate at every
iteration a dataset D = {8 R(MIN_

To further reduce the variance of the gradient estimation,
a baseline b, can be introduced (Zhao et al., 2012):

N
Z (h™) = b,)V , log P(0™|p).

4. POLICY PARAMETRIZATION VIA PARTICLES

To the best of the authors’ knowledge, the PGPE method
has only been applied to policy parametrizations that
are linear in the parameters: mo(z) = ¢(z)'6, where
0 are drawn from a multivariate Gaussian distribution.
Such parametrizations have been shown to be effective
in high dimensional continuous problems. However, they
are not directly applicable in the case when the action
space is a finite discrete set. In this section, we present
a new parametrization of a policy with discrete actions,
and we incorporate the parametrization into the PGPE
framework. The idea behind the adopted parametrization
is inspired by clustering. We use particles labeled with
actions to identify the regions of the state space X that
are mapped to different control actions. More precisely, a
particle is a point in the state space X with a label in U,
and the policy deterministically associates to x € X the
action defined by the label of the particle that is closest
to z. By increasing the number of particles, one can in
principle reproduce the map associated with the optimal
policy with arbitrary accuracy.

More formally, mg is a deterministic policy described by a
set of p labeled particles 6§ = {9 }7_

0 = [I(i),u(i)]T belongs to the joint space X x U 2.
Given x € X, the action u associated to z by policy mg
is obtained via the k~NN (k—nearest neighbors) algorithm
with k equal to 1:

mo(z) = {u Z)|A (z,29) < Az, 29),Vj # i},
where A (:U, ac(’)) is the Euclidean distance between state

z and the state component z(? of the i—th particle. As a
result, the state space is partitioned in polyhedral sets as
shown in Figure 1.

A basic strategy consists in selecting a sufficiently high

number of particles, each one with an associated fixed
action, and learn the optimal position of each particle.
However, this approach can be very inefficient in complex
problems where the number of particles required by each
action may be different and a priori unknown. A better
approach, that overcomes this “preallocation” problem, is
to exploit a learning process both for positioning the par-
ticle over the state space and determining the associated
action.
According to the PGPE scheme, the policy parameters are
drawn from some joint distribution P(8|p). The p particles
0% are independent, and each one has an independent
distribution over the state and action components, that is
2@ ~ N (5 @ 8D and u® ~ B(-;a?), where:

(4)
e™

1 where each particle

B(ug; o) =

is a Boltzmann distribution (u; denotes the [-th action
in U). The hyperparameter vector p is then defined as
follows: p = [u®, 2@ o@)F_

A graphical representation of the hyperparameters distri-
bution P(0|p) is given in Figure 1, together with a policy

2 From now on, superscript (i) denotes the i—th particle.
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[0.0042 0.9952 0.0006]
[0.0004 0.0004 0.9992]
[0.9599 0.0126 0.0275]
[0.0009 0.9969 0.0022]
[0.9567 0.0417 0.0016]
[0.9982 0.0006 0.0012]

O

® & m+ X ¥

. 0
(O

Fig. 1. Tlustrative picture of a policy parametrization and of
an extracted policy in a two dimensional state space (X C
R?) with 3 actions (|U| = 3). Top: Gaussian distributions
of 6 particles (the red symbols and the ellipses represent
the mean values and the standard deviation isolevel curves,
respectively), with the associated action probabilities. Bottom:
Voronoi diagram of a deterministic policy extracted from the
distributions of the particles.

with parameters extracted from P(0)p).

In order to reduce the number of parameters, we discard
the cross-correlation terms in the covariance matrix, so
that 20 = diag(E(lzl),E(;Q), .. .,Esf,)l). Moreover, in order
to prevent the variance from becoming negative we exploit
the parametrization presented by Kimura and Kobayashi
(1998), where 2(‘1) is represented by a logistic function
). (1)

2 EOR
1+e J

The total number of hyperparameters is then 2n - m - p,
where n is the dimension of the state space X, m is the
number of actions in U, and p is the number of particles.
The partial derivatives of logP(0|p) with respect to u(®,

Y@ and o) are given by:
Vo log P(8Y|p) :5ij(g(j))71

parameterized by 0(1

(x (4 _ M(j))
o

(o)
x (@ - <J>>%<2§R> t-1
Va® logP(8'7)|p) =76, (%mul — B(w; a(j))) ,

where d;; = 1 when ¢ = j, and 0 otherwise.

V o log P(0Y)|p) =0
l

5. SIMULATION EXAMPLE

We next present the results of a computational study for
the multi-room heating benchmark described by Fehnker
and Ivanci¢ (2004), and addressed also in (Abate et al.,

2007, 2008; Prandini and Piroddi, 2012). The problem
concerns the simultaneous temperature regulation in n
rooms, assuming that each room has a heater, but that
at most one heater at a time can be active. A switching
control strategy must be designed that decides at each
time step which room should be heated, depending on the
temperature values in all the rooms. If the temperature
of one or more rooms exits the prescribed range, the
control strategy should automatically recover the desired
condition in the shortest time possible. A nice feature
of this benchmark is that it is suitable for testing the
scalability of the proposed policy gradient approach, since
the problem dimensionality can be easily increased by
adding more rooms.

5.1 Model of the multi-room heating system

The multi-room heating system can be modeled as a
stochastic hybrid system with hybrid state s = (g, z),
where the discrete state component ¢ identifies the ac-
tual room being heated, while the continuous state z =
(21,...,2,) € X = R" represents the (average) temper-
ature in each room. Accordingly, the discrete state space
is defined as Q@ = {1,...,n + 1}, where in mode ¢ = %,

i = 1,...,n, the -—th room is heated, while no room is
heated when ¢ = n + 1. The control space is given by
U=A{1,...,n+1}, where u =14, i=1,...,n, corresponds

to the command of heating the i—th room, while u = n+1
is the command to switch the heater off. The average
temperature in room i is ruled by the following stochastic
difference equation, obtained by Euler discretization of
the corresponding continuous time dynamics with constant
time step At:

l‘z(k + ].) = l‘z(k) + bz(l‘a Zz(k))At + Czhz(k)At (1)
+ Z aij(xj(k) acz(k:))At—i-nl(k), 1=1,...,n,

Jj=1,...,n;5#1

where z;(k) is the average temperature in room ¢ at time
k, x, is the ambient temperature (assumed constant), and
hi(k) is a boolean function equal to 1 if g(k) = i (i.e.,
when room ¢ is heated), and 0 otherwise. Parameters a;;,
b; and ¢; in (1) are non-negative constants representing
the heat exchange coefficients between room i and room
J (a;;), the heat loss rate of room i to the ambient (b;)
and the heat rate supplied by the heater in room i (¢;), all
normalized with respect to the average thermal capacity
of room 4. Finally, the disturbance n,;(k) affecting the
temperature of room 7 is assumed to be a sequence of i.i.d.
Gaussian random variables with zero mean and variance
v2At, independent of n;(k), j # i.

The heaters are controlled by a thermostat that is prone
to delay and switching failures. This is modeled through
a discrete transition probability function that governs the
mode transitions:

1, u=q=¢
fq(ql|qau): 170‘; u#‘]aq/:q ’ (2)
a, u=q,q #q

where « € [0, 1] is the one-step delay /failure probability.
The desired operating region is given by

A={(x1,...,2n): m €[z, 2], i=1,...,n},
where z; and x, specify the lower and upper bounds for
the temperature in each room.
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5.2 Control strategy

In order to design the switching control strategy for the
multi-room heating system we adopt the self-recovery
approach proposed by Prandini and Piroddi (2012) where
the objective is to keep the state of the system within
A and drive it back to A as soon as possible in case of
exit. The control design problem can be formulated as in
Section 2, where the heater is off in the initial state and
the reward function r : X x X — {0,£1,£2,...,+n} is
defined as:
r(z,2’) = g(2') — g(x)

where g(z) = >0 | 11y, 2,)(2i) is the number of rooms
whose temperature is within the desired range [z, z,].
This means that transitions leading the temperature of
one room outside [z, x,] are penalized with —1, transitions
leading the temperature of one room back into [z, x,] are
rewarded with +1, whereas all other transitions do not
provide neither a penalty nor a reward. The discount factor
v re-scales penalties and rewards with time, encouraging
early entrances in and late exits from A, and overall

reducing the duration of periods outside A (Prandini and
Piroddi, 2012).

5.8 Numerical results

The proposed approach has been tested for the n—room
case with n = 1,...,5 with two different objectives. First,
a safety problem has been addressed, optimizing the con-
trol policy starting from the interior of the safe zone A
(all rooms are initially at 19 °C), with the objective of re-
maining inside set A as much as possible. Then, a recovery
problem has been solved, where the starting point of the
optimization procedure is placed outside A (all rooms are
initially at 17 °C), with the objective of reaching the safe
set A as soon as possible, and remaining inside thereof.
The following parameters have been employed in the ex-
periments: At = 1/30, v = 1, 2, = 6, b; = 0.25 and
ci=12fori=1,...,5, a;5 = aj; =033, fori =1,...,4
with j =i+ 1, @ = 0.8. As for the safe temperature range,
we chose [z, 2] = [17.5,22]. A discount factor v = 0.999
was used in the calculation of the total reward. The time
horizon length has been set to T" = 100. The learning rates
are set equal to the variance for the Gaussian parameters
and to 1 for the Boltzmann parameters.

The same problem with n < 3 has been addressed
in (Prandini and Piroddi, 2012) based on an ADP scheme
with continuous state gridding. Based on those results,
where very similar policies resulted for different values
of the discrete mode, the latter has not been considered
in the policy parametrization (which depends only on
the continuous state components), although it enters the
dynamics of the system.

To illustrate the results we first make reference to the
2-room case. The PGPE algorithm has been applied us-
ing 3 particles only (each associated to a specific control
action). Given the simplicity of the underlying control
problem, increasing the number of particles has not pro-
vided significant improvements. The mean values of the
particles have been initialized randomly, while the initial
variance has been set to 9. A maximum of 250 iterations
was allowed to achieve convergence, which is ascertained
through a condition of the type ||V,J(p)|| < €, where

N
i

[\ N
N w

N
-

Room 2 — Temperature PC]
x © S

-
J

—
o

15

16 18 20 22 24
Room 1 — Temperature PC]

Fig. 2. Safety problem. The Voronoi diagram defining the policy
associated to the learned parameter vector p is depicted consid-
ering the mean position p(*) of particles. The ellipses represent
the isolevel curves associated to the standard deviations of the
Gaussian distributions of the particles. The labels represent
the deterministic actions u(9. 200 trajectories obtained follow-
ing the mentioned policy starting from z(0) = [19 19]7 are
reported (blue lines).

24

23

Room 2 — Temperature PC]
x © O

-
~

e
[}

16 18 20 22 24
Room 1 — Temperature PC]

Fig. 3. Recovery problem. Optimal policy parametrization and 200
trajectories starting from z(0) = [17 17]T.

e = 0.001 is a suitably small threshold (typically, for the
2-room case convergence is achieved much earlier than
the allotted iterations). At each iteration the gradient is
evaluated based on 1000 deterministic policies drawn from
the current hyperparameters distribution. Each policy is
evaluated on a sample trajectory of length 100. Figure 2
reports the hyperparameters of the policy distribution and
the deterministic policy corresponding to the mean values
of the particles. The figure also shows 200 trajectories
starting from x(0) = [19 19]7. All trajectories remain
inside A on average 99.99% of the time (only two isolated
samples are outside A). The policy has been further vali-
dated testing different initial conditions drawn uniformly
inside A, resulting in a 99.77% permanence inside A on
average.

The recovery problem has been also addressed with refer-
ence to the 2-room case. Figure 3 illustrates the hyperpa-
rameters, the mean policy and a set of trajectories starting
from z(0) = [17 17]T. This second problem results in a
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4 rooms

! 5rooms |

Average Reward
|
n

. . .
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Iterations

Fig. 4. Safety problem (n = 1,...,5): reward evolution as a function
of the algorithm iterations.

Table 1. Computational results for the safety prob-
lem: PGPE algorithm.

Number  Particles Iterations CPU Memory
of rooms time [s] [kB]

1 2 29 362 6

2 3 94 1000 33

3 4 175 1500 70

4 5 250 1780 116

5 6 250 1788 162

Table 2. Computational results for the safety prob-
lem: gridding approach.

Number Bins Iterations CPU Memory
of rooms time [s] [kB]

1 30 44 0 20

2 30 36 100 3800

3 30 69 8836 106

wider exploration of the state space, and not surprisingly
the resulting policy is much more similar to the optimal
one according to Prandini and Piroddi (2012). All trajec-
tories of the tested policy terminate inside A. This requires
8.19 steps on average.

Both the safety and recovery problems have been applied
to larger case instances, up to 5 rooms. In each case |U| =
n+ 1 particles have been employed only, each associated to
a specific action, and the same iteration limit and number
of policy extractions have been considered. The policy
evaluation cost increases linearly with the state vector
dimension. Due to the augmented complexity of the opti-
mization problem (the parameter space is larger), a longer
time is typically required to achieve convergence (see, e.g.,
Figure 4). Notice that while the optimal expected reward
value (J(p*) = 0) is achieved for the low dimensional
problems, lower rewards are obtained for n = 4,5. This
is justified by the under-actuated nature of the problem
(only one room at a time can be heated). Finally, Table 1
reports some figures regarding the computational load of
the approach. Both the average computational time and
the memory occupancy are included. Notice that for the
proposed approach the CPU time and the memory occu-
pancy increase linearly with the problem dimension (the
number of particles is chosen equal to n+1), as opposed to
the previously developed ADP approach based on gridding
which scales unfavorably with the state dimension (see
Table 2, where the state is gridded uniformly using 30
bins per dimension).

6. CONCLUSIONS

This paper has investigated a policy search technique
that applies to stochastic systems with continuous state
and discrete action spaces, and appears to scale favorably
with state space size. The presented approach is based
on the PGPE policy-gradient technique, endowed with a
novel policy parametrization using particles to describe
entire areas of the state space associated to the same
action. By encapsulating the policy parametrization in the
PGPE framework, it is possible to automatically learn
both the position of the particle in the state space and
the associated action. This ability comes at the price of
a high number of parameters to be tuned, that scales
proportionally to the number of particles. However, the
number of samples required by the algorithm in order to
estimate the gradient direction is not strictly related to
the number of parameters (i.e., particles) and does not
increase exponentially with the state dimension.
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