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Abstract: The paper presents a fault tolerant control (FTC) strategy for maintaining the lateral stability 
of a 4WS4WD autonomous vehicle in presence of an unknown component fault. It is designed using the 

flatness theory and the backstepping technique, and consists in actively controlling the vehicle’s rear-

wheel steering system. In a normal situation, only the front-wheel steering actuator is used since it is able 

to ensure the desired tracking performances on its own. However, for different faulty scenarios, it is 

needed to use actively the vehicle rear-wheel steering system in order to preserve the system’s lateral 

stability. We prove that, by using this strategy, faults on the traction and the steering systems can be 

tolerated. The main advantage of our fault tolerant scheme is that these faults can be compensated by 

online computing new references for the control loops without changing the controller, providing the 

necessary time for a diagnosis system to precisely isolate the faulty component. This method is tested and 
validated on a realistic vehicle dynamic model co-simulated using CarSim and Matlab-Simulink 

softwares. 

Keywords: Automated guided vehicles, autonomous control, trajectory planning, fault-tolerant systems, 

active control, four-wheel steering, dynamic reference generator. 



INTRODUCTION 

The control of standard and overactuated vehicles has 

been subject of intensive investigations in recent years 

(Kiencke U. et al. 2006, Li, X. et al. 2010). It is proved that 

overactuated vehicles are superior over traditional ones in 

different scenarios (Song J. and al 2009). These types of 

vehicles give the possibility of combining front-wheel 
steering control with rear-wheel steering control, as well as 

active differential control. 

The four-wheel steering four-wheel driving (4WS4WD) 

vehicle safety and stability were recently studied in the 

literature (Casavola, A. et al 2008, Yang, H., et al. 2010, 

Wang, R et al. 2011). It is demonstrated that, in specific 

faulty scenarios, the vehicle stability cannot be ensured by 

controlling only the front-wheel steering system (Haddad A. 

et al., 2012, Zheng B. et al., 2009). In this paper, we present a 

fault tolerant strategy to preserve the lateral stability of a 

4WS4WD autonomous vehicle in presence of an unknown 
component fault. In normal situation, the path tracking is 

maintained by using only the front wheels steering system. 

As soon as an abnormal behaviour is detected, i.e. a lateral 

deviation of the vehicle trajectory, the rear-wheel steering 

system is activated. In the considered control strategy two 

loops are designed: an outer loop and an inner loop. In the 

outer loop, a dynamic reference generator for rear-wheel 

steering is designed based on the flatness theory (Fliess, M. et 

al., 1997). This generator computes desired rear-wheel 

steering references for the inner loop. In the inner loop, the 

real input for the rear-wheel steering system is computed 

using the backstepping technique (Kirstić et al., 1995) for a 

nonlinear vehicle model. 

The active use of the rear-wheel steering system reduces 

energy consumption (Chen, Y. et al., 2011, McCoy, G. A., et 
al., 1996) compared to passive fault tolerant control that 

would use both front and rear wheels steering actuators in 

normal and faulty situations. We show that the elaborated 

strategy is efficient for maintaining the lateral stability of the 

vehicle in presence of faults such as sensor fault on the 

traction system, fault on the wheels braking system, actuators 

drop of efficiency, front-wheel steering blocking... 

The paper is organized as follows: Section 2 describes 
the kinematic model of a 4WS4WD vehicle. Section 3 

describes the strategy used for controlling the rear-wheel 

steering system. Section 4 presents simulation results. 

Conclusions and future work are presented in section 5.  

 

2. VEHICLE NONLINEAR MODEL 

A nonlinear model is presented in order to model the 
overactuated 4WS4WD autonomous vehicle as in (Gillespie, 

T. D., 1992, Sotelo, M.A., 2003). This model is valid under 

the assumption of planar motion, rigid body, non-slipping 
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tires, and considering that the two front wheels (resp. two 

rear wheels) turn at the same angle. These assumptions give 

the possibility of determining the position of the rotation 

center using kinematic rules.  

The state-space model of the nonlinear vehicle dynamics, 
in the frame OXYZ fixed to the ground, can be written as 

follows: 

( ) ( )x f x g u                                                                         (1) 

1 2 3 4

T

wf wr wf wrx X Y            
                (2) 

1 2 3 4

T

f ru U U u u u u   
                                                (3) 

X andY are respectively the vehicle longitudinal and lateral 

positions, 
 

is the vehicle orientation, 
wf

 
and 

wr are 

respectively the front and rear wheels steering angles, i
  is 

the angular velocity of the wheel i  with  1,2,3,4i , 
iU is 

the traction torque applied on the wheel i , and Uf and Ur are 

respectively the torques applied respectively on the front and 

rear steering actuators. 

)(xf and )(ug are expressed as follows: 

1 1 1 1

1

2 2 2 2 1 1 3 3

2 3

( ( ) ( ))
( ) cos( ) sin( )

cos( ) sin( )

cos( ) sin( ) cos( ) sin( )

G wf wr

G G wf wr

f wf Tf x wf y wfr wr Tr

f r

x wf y wf x wr y wr

V Tan Tan
f x V V

L

B M f F R F RB M

J J J

f F R F R f F R F R

J J

 
   

   

     


 


     

     

 

 

 

1 1 4 4

4

cos( ) sin( )
T

x wr y wrf F R F R

J

     





                                (4) 

31 2 4

1 2 3 4

( ) 0 0 0 0 0

T

f r

f r

U UU U U U
g u

J J J J J J

 
  
 
 

      (5) 

In these equations, GV is the vehicle velocity at its center of 

gravity, L  is the wheelbase,
fB and rB are respectively the 

front and rear tires rolling resistances, 
TfM and TrM are 

respectively the total moments applied on front and rear 

steering system, 
fJ  and rJ are respectively the front and rear 

wheels steering inertia, R  is the wheel radius, iJ and if are 

respectively the inertia and the friction of the wheel i , and 

ixF and
iyF are respectively the longitudinal and lateral forces 

applied on the wheel i . 

The vehicle lateral position Y is monitored in order to 

detect undesirable deviations. A residual is generated based 

on the difference between the reference trajectory and the 

vehicle lateral position measurement. This residual is then 

compared to a threshold. When the considered residual 

exceeds this threshold, the control allocation algorithm is 

activated. This algorithm will generate dynamic references 

for the rear-wheel steering system online in order to maintain 

the vehicle’s lateral stability.  

3. FAULT TOLERANT CONTROL STRATEGY 

 

Our objective is to preserve the vehicle’s stability by 

using the rear-wheel steering system, as soon as a lateral 

deviation is detected. Since the studied system is 

overactuated, the control allocation problem needs to be 

managed.  

Existing strategies dealing with the control allocation 

problem are either based on centralized control or on modular 

control (Levine, W.S., 2010). When applying a centralized 

control strategy, the system is viewed as a whole: a single 
algorithm is used to control all system inputs. The main 

disadvantage of this strategy is the necessity of redesigning 

the entire controller if a single component is modified. As for 

the modular control, the system is divided hierarchically into 

two control loops: outer loop and inner loop (Vermillion, C. 

et al, 2007). In the outer loop, a virtual control input is 

computed regardless of the dynamics of the actuators. It is 

selected depending on the desired optimal system behaviour. 

In the inner loop, the control input is computed in order to 

track exactly the virtual input obtained from the outer loop. 

This strategy, used essentially in aerospace applications 
(Härkegård, O. et al., 2005, Luo, Y. et al. 2004) is applied to 

the studied vehicle system.  

Let’s first express the equations describing the vehicle 

lateral behavior (derived from equation (4)) as follows: 

1 1 1( , , )wf wrx f x                                                                   (6) 

2 2 2( , )fx f x U                                                                      (7) 

3 3 3( , )rx f x U                                                                       (8) 

with 1 ( )Tx Y Y  , 2 ( )T

wf wfx    , and 3 ( )T

wr wrx     

In order to obtain a global steering control strategy, we will 

design two controllers as shown in figure 1: the first one for 

the outer loop and the one second for the inner loop. In the 

outer loop, the controller is designed using the flatness theory 

based on the model described in equation (6). As for the inner 

loop, the controller is designed using the model described by 

equations (6) and (8) in order to obtain a global lateral 

stability.  We consider that a nominal control strategy is 

previously designed for the front-wheel steering system. 

 
3.1 Outer loop controller design 

 

The desired rear-wheel steering reference 
wrdes  is 

generated in the outer loop of the allocation control strategy. 

It is elaborated using the flatness property of the studied 

system. We recall that a system is flat if we can find a set of 

outputs (equal in number to the number of inputs) such that 

all states and inputs can be determined from these outputs 

without integration (Chamseddine et al., 2012, Fliess, M. et 
al., 1997). 

A flat nonlinear system may be transformed into a linear one 

by using a special type of feedback, namely endogenous 

feedback, and controlled using linear systems control 

methods. The drawback of transforming a nonlinear system 

to a linear one could be the zero dynamics resulting from the 

choice of the linear submodel. 
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The zero dynamics represents the dynamics of the submodel 

of maximal dimension that can be made unobservable by 

feedback. We will show that this is not the case in the 

proposed strategy since the relative degree of the output is 
equal to the number of states of the considered system. 

We will use the model presented in equation (6) for 

generating
wrdes . In this model, the measured output Y of the 

considered system is the vehicle lateral position. We will 

prove that the state variables and the system inputs expressed 

in (6) can be presented using only the output Y of the system 

and its time-derivatives verifying the flatness property. Once 

verified, we will control this output and its derivatives in 

order to control all system variables expressed in (6) and 

track a desired nominal trajectory. 
Let’s first demonstrate that the system presented in (6) is 

flat. From the model expressed in (4), the output Y of the 

system can be written as follows: 

1

0

sin( ) ( , )

t

GY V dt t                                                     (9) 

Deriving equation (9) with respect to time leads to: 

)sin(GVY                                                                        (10) 

We consider that the vehicle’s velocity VG is constant. Yaw 

angle  can be written as follows:                                                                     

2sin( ) ( )
G

Y
Arc Y

V
  


                                                    (11) 

And (24) can be rewritten as follows: 

1 1 2( , ) ( , ( ))t t Y Y                                                      (12) 

Deriving equation (10) with respect to time leads to:           

  )cos(GVY                                                                   (13) 

For:  

1 ( ) ( )wf wrdesu Tan Tan                                                    (14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

and   written as in equation (4), equation (13) can be 

rewritten as follows: 

2

1cos( )GV u
Y

L


                                                               (15) 

When substituting  in (15) with the expression obtained in 

(11) we can write: 

2

1cos( sin( ))G

G

Y
V Arc u

V
Y

L




                                                   (16) 

and 1u can then be expressed as follows: 

),(

))sin(cos(

3
2

1 YY

V

Y
ArcV

YL
u

G
G





                                   (17) 

Since the system variables and input 1( , , )t u can be 

expressed using ( , , )Y Y Y  , the studied nonlinear system is flat 

and therefore controllable. We can also conclude that the 

system does not have zero dynamics since the relative degree 

of the output is equal to the number of states. 

Our objective is to compute in the outer loop a desired 

rear-wheel steering reference which, if it is exactly followed 

using the inner loop, will ensure the lateral stability of the 
vehicle as well as desired nominal performances for the 

system. 

Let us first define the following errors:  

1 1 1, sin( ), cos( )ref ref G ref Ge Y Y e Y V e Y V               (18) 

The lateral stability of the vehicle is obtained if 1 1( , )e e  point 

converges to (0,0) , meaning that ( , sin( ))GY V 
 
converges to 

( , )ref refY Y . For this purpose, we will elaborate a Lypunov 

function that verifies the following conditions: 

C1: 1 1 1( , ) 0V e e 
 
for 1 1( , ) 0e e  , and 

1(0,0) 0V  .             

+ 

- 

Fig.1. Global steering control system 

system 

Front-Wheels Steering Control 

 

Trajectory 

Reference 

 

+ 

- 

0

0

ref

ref

ref

ref

ref

ref

X

X

X

Y

Y

Y

 
 
 
 
 
 
 
 
 
 
 
 
 









 

FD 



















XX

YY

ref

ref  

Alarm 

Rear-Wheel 

Steering 

Controller 

 

 

 

Inner Loop 

0

0

X

X

X

Y

Y

Y

 
 
 
 
 
 
 
 
 
 
 
 
 









 

Uf 

Ur 

 
 

Vehicle 

Dynamics 

 

Outer Loop 

Rear-Wheel 

Steering 

Reference 

Generator  

 
δwf 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8578



 

 

  

 

C2: 1 1 1( , )
0

dV e e

dt




 
for 

1 1( , ) 0e e  .
  

If obtained, )0,0(),( 11 ee 
 
is then an asymptotically stable 

equilibrium point for the system. 

Consider the following continuous differential function 

verifying C1:  

2 2

0

1 1 1

( ) ( sin( ))
( , ) 0

2

ref ref GK Y Y Y V
V e e

  
 


                     (19) 

for 01 e  , 01 e and 00 K , and with 
1(0,0) 0V  .  

If 1 1 1( , )
0

dV e e

dt



 we verify C2, and 

1 1 1( , )V e e
 

is then a 

Lyapunov function with )0,0(),( 11 ee 
 

an asymptotically 

stable equilibrium point for the system. 

Deriving 
1 1 1( , )V e e  with respect to time leads to:  

1 1 1
0

2

( , )
( )( sin( ))

cos( )
( sin( ))( ( ( ) ( )))

ref ref G

G
ref G ref wf wr

dV e e
K Y Y Y V

dt

V
Y V Y Tan Tan

L




  

   

  

 

 

   (20) 

Our objective is to ensure that 
1 1 1( , ) 0V e e   verify C2. For this 

purpose, we will calculate desired rear-wheel steering 

position value wr  for equation (20) satisfying this objective. 

A solution for obtaining 
1 1 1( , ) 0V e e   is to have: 

2

0 1

cos( )
( ( ) ( ))

( ) ( sin( ))

G

ref wf wr

ref ref G

V
Y Tan Tan

L

K Y Y K Y V


 



 

    




                                  (21) 

with 01 K .                           

From equation (21), ),( 11 eeV   in equation (20) can be written 

as follows: 

1 1 1 0

0 1

( , ) ( )( sin( ))

( sin( ))( ( ) ( sin( )))

ref ref G

ref G ref ref G

V e e K Y Y Y V

Y V K Y Y K Y V



 

   

    

 

 
          (22) 

From equation (22) we obtain: 

2

1 1 1 1( , ) ( sin( )) 0ref GV e e K Y V                                          (23)     

1 1 1( , )V e e  is then a Lyapunov function and the system is 

asymptotically stable for 1e and 1e equal to zero. 

From equation (21) we obtain: 
2

0 1 1 1

cos( )( ( ) ( ))G wf wr

ref

V Tan Tan
K e K e Y

L

  
                  (24) 

From the vehicle model expressed in (4), we can express the 

vehicle speed as follows: 

2 2

GV X Y                                                                     (25) 

and the vehicle orientation angle as follows: 

( )
Y

ArcTan
X

 


                                                                 (26) 

From (24), (25), and (26), we can compute the desired rear-

wheel steering position 
wrdes  as follows: 

0 1

2 2

1 1

( (

( )cos( ( ))

) ( ))

wr des

ref wf

L
ArcTan K e

Y
X Y ArcTan

X

K e Y Tan





 



  


 





 
        (27)   

The gains 
0K and

1K in equation (27) can later be tuned in 

order to obtain desired performances. 

Remark 1: Singularities exist in equation (27) for 

( )
2

Y
ArcTan

X


 




. These singularities can be avoided by 

changing the basis in the frame OXYZ, when vehicle rotation 

angle does not verify one of the following conditions 

(Rajamani et al., 2003): 

C3: ( )
4 4

Y
ArcTan

X

 
  




 

 C4: 
3 5

( )
4 4

Y
ArcTan

X

 
 




.  

The transition matrix can be expressed as follows: 















 



100

001

010

T                                                                 (28)                                                     

By applying this transformation, controlling the vehicle in the 

frame OXYZ yields controlling it in the frame OYXZ. In that 

case, rear-wheel steering reference can be rewritten as 

follows:  

0

2 2

1

( ( ( )

( )sin( ( ))

( ) ) ( ))

wrdes ref

ref ref wf

L
ArcTan K X X

Y
X Y ArcTan

X

K X X X Tan





  



   


 



  

   (29)   

Remark 2: It is clear that singularities exist also for

( ) 0
Y

ArcTan
X




  and ( )
Y

ArcTan
X




 . A transformation is 

also applied when vehicle rotation angle does not verify C5 :

3
( )

4 4

Y
ArcTan

X

 
 




 or  C6 :  

5 7
( )

4 4

Y
ArcTan

X

 
 




. In 

this case, the transition matrix can be expressed as follows: 



















100

001

010
1T                                                              (30)                                                        

In other words, when conditions C5 or  C6 are not verified, 

the vehicle is controlled in the frame OXYZ .  
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3.1 Inner Loop controller design 

 

After generating the desired rear-wheel steering position 

in the outer loop, we will compute the control input rU
 
to 

track this reference using the backstepping technique. This 

control law will ensure vehicle lateral stability as well as 

desired  performances. 

In equations (27) and (29) wrdes  represents the desired rear-

wheel steering position, which is not necessarily equal to the 

measured value wr when taking into consideration the rear-

wheels steering actuator dynamics. It is then necessary to 

include these dynamics when computing rU .  

The relationship between the measured rear-wheel steering 

position and the desired one can be expressed as follows: 

wr wrdes wr                                                                  (31) 

where wr  represents the difference between these two 

values. 

After substituting wr value presented in equation (6) with the 

one obtained in equation (29) we can write: 

1 1 1( , , )wf wrdes wrx f x                                                   (32) 

with wr wr wrdes                                                            

Equation (32) can be rewritten as follows:  

1 1 1 1 1

1 1

( , , ) ( , , )

( , , )

wf wrdes wr wf wrdes

wf wr wr

x f x f x

x

    

   

   

  



                 (33)  

with: 

11 1

1 1

12 1

2

( , , )
( , , )

( , , )

sin( )

cos( )( ( ) ( ))

wf wrdes wr

wf wrdes wr

wf wrdes wr

G

G wf wrdes wr

f x
f x

f x

V

V Tan Tan

L

  
  

  



   

  
    

  

 
 

    
 
 

       (34) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

and
1 1( , , )wf wrx   expressed as follows: 

1 1 1 1

1 1

( , , ) ( , , )
( , , )

wf wr wf wrdes

wf wr

wr

f x f x
x

   
  




 

             (35) 

with: 

11 1

1 1

12 1

11 1 11 1

12 1 12 1

( , , )
( , , )

( , , )

( , , ) ( , , )

( , , ) ( , , )

wf wr

wf wr

wf wr

wf wr wf wrdes

wr

wf wr wf wrdes

wr

x
x

x

f x f x

f x f x

  
  

  

   



   



 
   

 

 
 

 

 
 
  





                              (36) 

 

Let us define a continuous differential function as follows:  
2

2

2 1 1 1 1 1

2

( )
( , , , ) ( , )

2

( )

2

wr wrdes

wr wr

wr wrdes

K
V e e V e e

 
 

 


   




 

 
               

(37)
 

with wr wr wrdes     , wr wr wrdes       , and 2 0K  . 

If 2 1 1( , , , )wr wrV e e    
 
verifies condition C1 and C2, it is then 

a Lyapunov function and
1 1( , , , ) (0,0,0,0)wr wre e      is 

then an asymptotically stable equilibrium point.  

 The function defined in (37) verifies condition C1 since

2 1 1( , , , ) 0wr wrV e e     for: 01 e  , 01 e , 0wr  , and 

0wr  , and 2 (0,0,0,0) 0V  . Our objective is to calculate 

rU satisfying condition C2 for 2 1 1( , , , )wr wrV e e     function. 

If it is successfully obtained, then the function expressed in 

equation (37) is a Lyapunov function and the system 

converges asymptotically to the point 

( , , , ) ( , , , )wr wr ref ref wrdes wrdesY Y Y Y      . 

Fig.2. Carsim and Matlab-Simulink Co-simulation 
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Fig. 3 Vehicle lateral behaviour when performing a double lane-change 

maneuver 
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The derivative of the function 2 1 1( , , , )wr wrV e e      with 

respect to time is expressed as follows: 

2 1 1 1 1 1 2( , , , ) ( , ) ( )

( ) ( )( )

wr wr wr wrdes

wr wrdes wr wrdes wr wrdes

V e e V e e K   

     

    

   

  

     
                 

(38) 

In equations (4) and (8), 
wr  is expressed as follows: 

r wr Tr r

wr

r

B M U

J




  



                                                    (39) 

In our study we consider that the wheels sideslip angles are 

small. We can then neglect TrM  moment in equation (39) 

(Gillespie, T. D., 1992). We then introduce 
wr  to equation 

(38). We obtain: 

2 1 1 1 1 1 2( , , , ) ( , ) ( )

( ) ( )( )

wr wr wr wrdes

r wr r

wr wrdes wr wrdes wrdes

r

V e e V e e K

B U

J

   


    

    

 
   

  


    

                 (40) 

Using equations (20) and (33), 1 1 1( , )V e e  can be rewritten as 

follows:

 

1 1 1 0 1 1 1 12

12

2

1 1 12 1

( , ) ( ( , , )

( , , ) )

( , , )

ref wrdes

wr wr

wr wr

V e e K e e e Y f Y Y

Y Y

K e Y Y e



  

  

  

  

    

    



 

                           (41) 

We can verify that if 0wr  , meaning that wrdes wr  , 

equation (41) becomes equal to equation (23).  

Using the result obtained from equation (41), equation (40) 

can now be expressed as follows: 
2

2 1 1 1 1 12 1

2

( , , , ) ( , , )

( )( )

( )( )

wr wr wr wr

wr wrdes wr wrdes

r wr r

wr wrdes wrdes

r

V e e K e Y Y e

K

B U

J

    

   


  

      

  

 
  

    

 


  

          (42) 

A sufficient condition for verifying C2 is to have rU  

expressed as follows: 

12 1 2

3

12 1 2 3

( ( , , ) ( )

( ))

( ( , , ) )

r r wr r wrdes wr wrdes wr

wrdes wr

r wr r wrdes wr wr wr

U B J Y Y e K

K

B J Y Y e K K

     

 

     

      

 

        

   

 

   

(43) 

With 3 0K  . 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

We rewrite equation (42) after substituting rU  value with the 

one presented in equation (43).  We obtain: 
2

2 1 1 1 1 12 1

2 2 3

12 1

( , , , ) ( , , )

(

( , , ) )

wr wr wr wr

wr wr wr wr wr

wr

V e e K e Y Y e

K K K

Y Y e

    

    

 

      

        

 

    

  

 

          (44) 

From equation (44) we obtain: 
2 2

2 1 1 1 1 3( , , , )wr wr wrV e e K e K                                   (45) 

C2 is then verified as shown in equation (45). We can then 

conclude that 2 1 1( , , , )wr wrV e e    
 
is a Lyapunov function 

and that ( , , , ) ( , , , )wr wr ref ref wrdes wrdesY Y Y Y       is an 

asymptotically stable equilibrium point.  

The gains 2K and 3K expressed in equation (43) can later be 

tuned in order to obtain desired performances. 

 

4.  SIMULATION RESULTS 

 

The elaborated strategy is tested using a co-simulation 

between CarSim, a professional simulator used by 

automobile manufacturers, and Matlab-Simulink software (as 

shown in figure 2). In this test, an overactuated autonomous 
vehicle is circulating with an initial constant speed of 60 

km/h, and performing a double lane-change maneuver on a 

dry asphalt road (friction coefficient max = 1.2). At t=3.6s, a 

drop of efficiency is created at the front-wheel steering 

actuator. Two scenarios are then considered.  

 In the first scenario, the vehicle is controlled using its 

front-wheel steering system only. It can be seen in figure 3 
that the front-wheel steering controller is not able to ensure 

alone the lateral stability of the vehicle. The vehicle exceeds 

the limits of the road at t=4.58s.  

In the second scenario, fault detection (FD) system is 

used for monitoring the lateral deviation. When this deviation 

violates the acceptable security margins (determined based on 
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the width of the road) at t=4.16s, the FD system activates the 

rear-wheel steering controller elaborated in section 3. The 

rear-wheel steering system is then able to maintain the lateral 

stability of the global system in presence of the component 

fault. 

5. CONCLUSIONS 

In this paper, a fault tolerant control strategy is developed for 

a 4WS4WD autonomous vehicle. We demonstrate that this 

strategy can ensure the vehicle lateral stability in presence of 

an unknown component fault. This strategy is developed 

using the flatness theory and the backstepping technique, and 
consists on dividing the control strategy into two loops: outer 

loop and inner loop. In the outer loop, a desired steering 

position is computed for obtaining nominal vehicle 

performances. In the inner loop, the steering actuator input is 

computed in order to follow the desired reference calculated 

in the outer loop. When a vehicle lateral deviation is detected, 

the elaborated algorithm is activated in order to maintain the 

global system’s lateral stability. The efficiency of this 

strategy is then illustrated using a co-simulation between 

Carsim and Matlab-Simulink softwares.  
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