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Abstract: Individual pitch control (IPC) is gaining increasing acceptance as a method for mitigation
of periodic disturbances in wind turbines. This paper aims at formulating a repetitive control (RC)
methodology capable of adapting online to changing turbine dynamics. This is achieved by performing
system identification in a reduced-dimensional space using basis functions and using the identified
parameters to synthesise an RC law to reject periodic disturbances: this methodology is termed Subspace
Predictive Repetitive Control (SPRC). The method is tested on an industrial simulation test bench and is
able to identify and perform load control on the turbine without affecting its power production.
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1. INTRODUCTION

While wind energy deployment has risen significantly, the as-
sociated capital costs remain an impediment to its continued
growth. Active control of turbine loads is currently under re-
search to enable lighter and more cost-effective turbine design.
Individual pitch control (IPC), Bossanyi (2003), is a readily
implementable method to reduce the dynamic loading in wind
turbines which is periodic in nature, with the dominant load
frequency equal to the rotor speed (1P). IPC is implemented via
the Multi-Blade Coordinate (MBC) transformation to decouple
and linearise the multivariable periodic wind turbine system.
The other periodic loads at the harmonics 2P, 3P.... can be
attenuated by additional control loops for each harmonic and
residual periodic loading, Van Engelen (2006). The effective-
ness of the method has been shown on a research turbine, Stol
et al. (2006).

Despite substantial load reduction potential, this IPC method
demands a drastic increase in pitch activity. Modern wind
turbines enforce hard limits on pitch activity to avoid costs
related to pitch system breakdown; these limits reduce the
achievable load alleviation, Kanev and van Engelen (2009).
Another disadvantage in this approach is the lack of control
over the frequency content of the actuation signals, which also
reduces pitch actuator reliability. To minimise control effort
for load reduction, the periodic nature of the loading should
be exploited. Further, the current approach is not multivariable
and entails an increasing number of tuning parameters and
decoupling complexity for additional load components.

Iterative Learning Control (ILC), Bristow et al. (2006), is a
multivariable control method designed to reject periodic dis-
turbances. Repetitive Control (RC), Longman (2000), is the
extension of ILC to continuously operating systems that do
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not undergo initial condition resets. RC is directly applicable
to turbine load reduction, and has been applied to a simulation
model in Tutty et al. (2013). It is also possible to project the
inputs and outputs into a basis function space, Van de Wijdeven
and Bosgra (2010), so that the shape of the actuation signals
can be precisely controlled. Using sinusoidal basis functions,
a simulation study for IPC using RC was done in Houtzager
et al. (2013), which showed promising load reductions while
maintaining strict control over the frequencies in the input.

Although RC is fairly insensitive to uncertainties, the controller
design requires a linear time-invariant (LTT) model that approx-
imates the true system. An RC law can also be formulated in the
lifted domain, Dijkstra and Bosgra (2002), for a system (like a
wind turbine) whose model parameters vary periodically over
time. Obtaining such a model for a turbine can prove difficult,
since the dynamics depend on slowly changing parameters such
as the wind speed, which are difficult to measure. Further,
field experience shows that turbine dynamics can be strongly
influenced by factors such as site location and manufacturing
differences (e.g. rotor balancing effects). An adaptive RC law
capable of reacting to such factors would be able to enhance
load reduction potential. The Subspace Predictive Repetitive
Control (SPRC) methodology, Navalkar et al. (2014), com-
bines online subspace identification with RC implementation
for wind turbine IPC.

The main contribution of this paper is a novel online closed-
loop identification paradigm that estimates system parameters
in the lifted domain. This is combined with RC law formulation
and implementation. For the first time, basis functions are used
for online identification in conjunction with repetitive control,
to drastically reduce the dimensions of the problem. Compared
with existing system identification methods, this strongly re-
duces computational complexity and ensures control over the
frequency content of the actuator signals. Further, the new lifted
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domain identification algorithm extends the applicability of the
SPRC technique to a larger class of systems, such as wind
turbines, that admit a periodic linear time-varying model for-
mulation. With the use of basis functions for identification, the
requirement for persistency of excitation for identification, Ver-
haegen and Verdult (2007), is relaxed such that persistently
exciting input is required only along the basis vector directions,
minimising its negative effect on control performance. Also, for
the first time, equality constraints on the actuator input signal
are translated to constraints on the basis functions; this can be
used to enforce perfect decoupling of the load alleviation con-
troller from the nominal power production of the wind turbine.

The outline of the paper is as follows: in Section 1 the back-
ground of the problem was established. In Section 2, the plant
and simulation environment are described. In Section 3, the
theoretical extensions to the SPRC methodology are described.
Simulation results are presented in Section 4 and conclusions
are drawn in Section 5.

2. TURBINE MODEL & SIMULATION ENVIRONMENT

To test the proposed control strategy in a high-fidelity sim-
ulation environment, the software GH Bladed™ was used.
This software is used by manufacturers and certification bodies
for load analysis of new turbine designs. Research on load
control strategies has also been done using Bladed, Navalkar
et al. (2014). The turbine is modelled in Bladed with a multi-
body representation, with flexible blades and tower. Station-
ary realisations of turbulent wind fields can be generated
and marched through the turbine model. An extended bladed-
element-momentum (BEM) theory is used to define the interac-
tion of the turbine with the wind. The controller is designed in
Simulink and compiled into a DLL file that can be read directly
by Bladed, Houtzager et al. (2013). The turbine loads over the
duration of the simulation are then made available for post-
processing.

The wind turbine model of the XEMC Darwind XD115 turbine
was provided by the manufacturer and used for the simulations.
General details of this turbine are given in Table 1.

Table 1. XD115 Wind Turbine specifications

Description Symbol Value
Rated power Prated 5000kW
Rotor diameter dro 115m
Cut-in wind speed Veutin 4m/s
Rated wind speed Vrated 12m/s
Cut-out wind speed Veutout 25m/s
Rated rotational rotor speed Qo 18rpm
Gearbox ratio \% 1.0 [Direct-Drive]
Pitch-rate limit Orimic 6°/s

A baseline controller was designed for the turbine to control the
generator torque and collective blade pitch. This controller also
incorporates active damping of structural modes. However, the
dynamic loading of the major components occurs mainly at the
1P frequency (or rotor speed) and its harmonics; this loading
cannot be addressed by torque or collective pitch control. For
this loading, an adaptive IPC controller will be designed using
the SPRC methodology in the next section.

3. THEORETICAL FRAMEWORK

The extension of Subspace Predictive Repetitive Control (SPRC)
with reduced-dimension identification is presented below.

3.1 Problem Formulation

An ideal IPC controller should be able to satisfy the following:

(A) Asymptotically reject periodic disturbances

(B) Adapt online to changes in system dynamics

(C) Produce smooth pitch control input signals

(D) Not interfere with the power production process.

The first three requirements are satisfied by SPRC, Navalkar
et al. (2014), however, the present paper uses a novel lifted
domain technique with basis functions to reduce the compu-
tational complexity of the algorithm. The last requirement will
be satisfied by enforcing constraints on the basis functions. The
SPRC approach entails online identification of the requisite
system parameters and the formulation of an RC control law
which produces an optimal feedforward sequence that can be
repetitively applied to attenuate periodic disturbances. Each of
the steps involved in SPRC is explained in the next subsections.

3.2 Step 1: Predictor Formulation

The wind turbine system can be modelled as a discrete-time
system, which admits the following description in the predictor
form:

X1 = Axg + Bug + Fdy + Ky (1)
Vi = Cxy. + Duy + ¢y 2)

Here, x; € R" is the state, u;, € R" is the vector of the three pitch
inputs, y; € R’ are the three blade load signals, dj, € R’ are the
periodic disturbances with period P, induced by wind loading,
and ¢; € R is white noise sequences representing measurement
noise. The system matrices A, B, C, D, F and K have the
appropriate dimensions. In this predictor form, the matrix A is
equal to A — KC, where A is the state-transition matrix of the
system in the innovation form given in Ljung (1999), and K
is the Kalman gain. Per definition, the matrix A is stable. The
system matrices are not constant, but vary with time and should
be indicated as such by the subscript ;. For brevity, the system
matrices have been shown constant, but the analysis can easily
be extended to time-varying system matrices. Now, the stacked
output vector is defined as:

Yk

Yi+1
Ye=| " . 3)

k+P—1
Similarly, the stacked input and disturbance vectors are repre-
sented by Uy, Dy and Ey. Since the length of the stacked vector
is the same as the period of the periodic disturbance dy, the
stacked vector Dy, is constant and will be denoted by D. In a

manner similar to Bamieh et al. (1991), the time-domain system
is “lifted” to the iteration or trial domain:

Xprp = APx + AU+ HD + A5Y,
Yo =Txy+HU+ #D+E;.

The time index k is replaced by the iteration index j, such that
(k,k+Pk+2P,...)—= (j,j+1,j+2,...):

xXjp1 =ATxj+ U+ HgD + AY; “)
Yj=Tx;+HUj+ #D+E;. (5)
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Here the extended controllability matrix .7, is given by:
Hy=[AP7'B AP72B ... B]. (6)
The matrices .%; and J%Z; are defined in the same way, replacing

B by F and K respectively. The extended observability matrix
I" and the Toeplitz matrix H are given by:

C D 0 ...0
CA CB D ...0

= : H= : : ol D
CAP-1 CAP=2B CAP=3B ... D

The Toeplitz matrix _¢ is obtained by replacing B in the above
equations by F, and replacing D by Oy ,. Now, to remove the
effect of the initial state, the assumption is made that A/ ~ 0 for
J > P. For an adequately large P, this would be valid since A is
stable. Hence, equation (4) reduces to:

Uj

(A, Ay, HaD] | Y (8)

Xj+1 =

Substituting this in equation (5) to predict the output over the
next period:

U j—1

Y= [, Tty H, (Tt + 7)D] | ']

J

1

The noise sequence E; is uncorrelated with the input-output
data of the previous iteration. Further, since an RC control
law is used, the lifted control input U; for the next iteration
is determined at the end of the current iteration (j — 1). Hence,
Uj is correlated with the lifted noise sequence E;_; but it is
not correlated with E;. So, in the lifted domain, the sequence
E; forms an uncorrelated zero-mean white noise sequence.
Equation (9) can be used to determine the system parameters
T, T, H, (Tt + _#)D] if input-output data is available.

+E;. (9

This identification problem is typically large in dimension,
since the input-output data is stacked over the period P.

3.3 Step 2: Basis Function Space Projection

This step addresses the requirements (C) and (D), while it also
reduces computational complexity of the controller by reducing
the dimensionality of the problem. This is done by projecting
the stacked input-output data into a basis function space. The
identified system will then have reduced dimensions and will be
able to describe the system behaviour only in the reduced basis
function space. The use of input basis functions is desirable
in the current application, since the shape of the input signal
is required to be precisely controlled; this can be done by
constraining the input signal to remain within the user-defined
basis function space. Output basis functions are used to indicate
that only a restricted subspace of the lifted output space is
amenable to be controlled by the restricted control inputs.

Consider that 6; is the control input projected into the input
basis function space and ¥; is the output projected into the
output basis function space. The projection matrices are ¢, and
¢, respectively:

6=0U;  Ti=0 (10
Here, the projection matrices are composed of basis vectors:
T
q)u: [(Pg? ¢1Ta Tty (PZ} )

where the basis vectors are ¢; € R, i =0, 1,...,b. The number
of basis vectors is thus b and b < Pr. Typically b is much
smaller than Pr, so that the dimensions of the lifted input are
drastically reduced through the projection. By defining ¢, =
Ip,« pr the original full input space can be recovered. Hence, the
case of non-projected input can be considered to be a special
case of projection with the projection matrix equal to identity.

To ensure that the IPC algorithm does not interfere with power
production, it is necessary to constrain the summation of all
input signals at any time instant to equal O, as in Bossanyi
(2003). This results in an equality constraint on the actuator in-
put signals, which can be enforced via the input basis functions.
Defining the matrices:

TeR™ I=1,1,..,1]7,
: 0r><1
iERPrXP, I= |: rx1 : 0r.><1
0rx1 0r><1 e I
The constraint posed on each input basis vector is given by:
&l =0 (11)

In the current application, it is desired to restrict the control
input to sinusoids with frequency equal to P and 2P. This
analysis can also be extended for higher harmonics in the load
signal, e.g. 3P, 4P,... However, it is seen from simulations that
under ordinary conditions, these harmonics are not dominant in
the load spectra. Hence the analysis covers only the 1P and 2P
components of the loads. The input basis functions are chosen
as sinusoids of frequencies 1P and 2P that are 120° out of phase
with each other, so that Equation (11) is satisfied for r = 3:

01 02 --- Op
b0 = G & G
"oy 04 - O2p|”

C2 C4 CZP

where the constants 6, and , form = 1,...,2P are given by:

4

m

O = [sin(ZM), sin(Z + 2Z) sin(2m + 4T,

G = [cos(222), cos(2E2 + 2F), cos(2Z2 +4X)].

A similar analysis can be done for the output basis functions
¢y. Since the disturbances and the control input have energy
primarily concentrated at the 1P and 2P frequencies, and the
system is approximately linear, the output will mainly contain
energy along the same basis vectors as the control input. Hence,
for this application, the input and output basis functions are
taken to be identical ¢, = ¢,.

To cast equation (9) in the basis function space, it is also
required to be able to reconstruct the original signals in the full-
dimensional space. Since the control input is restricted to have
energy only along the basis vectors, the full-dimensional input
can be directly constructed as:

= ¢J 6
Here f represents the Moore-Penrose pseudo-inverse. When
projecting the output and the noise in the basis function space,
it must be noted that these signals have energy in the basis
function subspace as well as its null space. For the output,

Y= q))TY/ + q)LYL
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The residual output signal, le, lies outside the basis function

subspace, while (})yL is the projection matrix that maps the
output into the null space of the basis vectors. This matrix can
be obtained from the singular value decomposition of ¢y

6 =U[Z 0] [&i} ,

o =Va.
Since q)yq)yL is identically 0, we obtain once again ¥; = ¢,Y;.
Thus, the effect of the input on the residual output le that lies
outside the basis function subspace is projected away by using
¢y. Since the control effort is not targetted at reducing the norm
of this signal, the transfer between 6; and Y J.L does not need to
be identified and the signal will not be considered further. The

same treatment can be done for the noise E; and the effect of
the periodic disturbance (I'¢; + _#)D.

Projecting the equation (9) on the basis function space, we have:

9j71
5 ~1 |V
Vi = [0l 6TA00 6HOL (T Ao+ 7)D] | T
1

+ OyE;.
The objective of the identification step is to model the transfer

between the projected input 6 and the projected output ¥, so
that it can be used to formulate the control law.

3.4 Step 3: Identification

Now that the dimensionality of the system description has been
reduced, a novel online identification method is implemented
to estimate the reduced-dimension system parameters at re-
duced computational complexity. This step addresses require-
ment (B): the controller is herewith able to identify changes
in the system dynamics. This identification scheme is valid for
both linear and periodic linear time-varying systems. Denoting
the matrix of unknown coefficients in the equation (9) by =:

E = [(P)’F'%/H¢Ja ¢yr%¢;7 ¢)7H¢J7 (P)(Ft%/d + /)D}
If input-output data is available at iteration j, then system iden-
tification can be done to arrive at an estimate of the matrix, ) jat
this iteration. To minimise interference with the operation of the
plant, it is desirable to perform this identification recursively,
online and in a closed loop.

The identification problem can now be stated: given the relation
between input-output data and system parameters,

61
- i—1
=275 | +0E, (12)
1
arrive at an estimate = j» recursively, for every iteration j:
2
j—1 QQ*l
. — ; v = |tq1
_j_argrnilnz Y,—-= 9, (13)
q=0
1 2

Since ey is a white noise sequence in the time domain, Ej
is a white noise sequence in the lifted domain. The term E;

represents both periodic and non-periodic disturbances arising
out of wind stochastics. As discussed in Section 3.1, it is un-
correlated with 6, Yj,l and 6;_. The product of uncorrelated
white noise with a non-zero constant matrix ¢, will remain un-
correlated white noise. So, equation (12) constitutes a standard
least squares regression problem, per Verhaegen and Verdult
(2007). The parameter estimate Ej will then be asymptotically
unbiased, Verhaegen and Verdult (2007) , and an increase in
turbulence intensity (the variance of E;) will directly lead to

increased variance of =;.

To ensure that a unique parameter estimate is obtained, the input
should be persistently exciting of a sufficiently high order. This
condition is applicable to the control input in the basis function
space, thus 6; has to be persistently exciting. This translates to
smoother control inputs in the time domain. Further, since the
persistency of excitation is required in the lifted domain, the
energy of the persistently exciting control input is concentrated
to a lower frequency band.

For system identification, recursive least squares using a square
root algorithm, Van der Veen (2013), is implemented. At itera-
tion j, an estimate =; then becomes available:

[

1= (0Tl 0Tl ol orrv £10]

It is possible to arrive at (¢,T.%,¢s) P (& Ty ); and

(¢yH 0):{) i by partitioning Z ;- These estimates can now be used
to formulate an RC control law.

3.5 Step 4: Infinite Horizon Repetitive Control

With the estimated system parameters from the previous step,
an RC law to asymptotically reject periodic disturbances is
formulated, to address requirement (A). The main improvement
here is that the use of basis functions yields reduced compu-
tational complexity of the optimisation routine to arrive at an
optimum feedback law and stacked control input for the next
iteration.

The generic form of the ILC law with basis functions, Van de
Wijdeven and Bosgra (2010), is extended to RC:

9j+1 = (X@j—i—ﬁ [8jj1:| .

The updated control input (in the basis function space) is a
linear combination of the control input of the previous iteration,
the new initial state x; and the disturbance rejection error €;_i.

Here, B € R? *(n+0) is the learning gain matrix, while ¢ is the
“Q-filter” incorporated for robustness considerations.

Now, an RC controller is to be synthesised that minimises the
output error in the basis function space (here simply equal to
I7j since the reference is 0). A Q-filter will not be used, instead,
an infinite horizon cost is minimised to ensure stability for the
case where the true system parameters are made available by
the identification step. The output predictor (9) in terms of the
identified parameters is:

) o - - 61
=0, @rme)), (At 7)D)] fin
T (0,HO) U (14)
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As this is a predictor, the noise sequence E; is omitted. To
eliminate the effect of the periodic disturbance, the operator “5”
is used:

5Yj=Yj—Yj,1, 66j=6j—6j,1, 3(1)20.
Applying this operator to equation (14), we have:

_ — - 60;_
Yi—Yj_1 = (¢yrr%/u¢:{)jv (¢yr%¢;)j} [5?;:]

+(9,HoL) ,8U;. (15)

This is rewritten in a form equivalent to an LQ (linear-
quadratic) problem, the solution of which would yield a sta-
bilising controller for the case with true system parameters. For
brevity, the hat notation is dropped. The LQ form is given by:

Y; [ L (0T (95(TA5)0));
80| = |Opxp Opxb Opxb
5Y; 1065 (¢y(T)08); (90(TA)0)),
——
2y o
Y (0sHY,);
< |86, 1|+ | 1, |86 (16)
|67 OHO, )
—_——— ———
2; B;

A state feedback matrix that acts on the (fully observable) state
Z; can now be synthesised to minimise the weighted norm of
Y, over an infinite horizon. The norm J is:

J=Y(Z5:1) QX1+ (86;) RS8035 (17)
j=0

Here, Qr and Ry are user-defined weighting matrices. This
formulation is similar to an LQ problem, however to be noted is
that this is a trial domain formulation. Also, the norm minimi-
sation is restricted to a reduced-order subspace. To obtain the
optimal state feedback gain, a trial-domain discrete algebraic
Riccati equation (DARE) can be solved. For this, an initial
estimate of the DARE solution, Pg ; is chosen, and the true
solution is iterated to by using the DARE as an update law:

Prji1=Qf + 7] (Pej— Pr %] (Ry
+B) P i B)) " B Pr.j) ),
and the state feedback gain Ky ; is then:

Ky j= Ry + B Pr;jB;) " B Prjt).

This update law is adaptive since .«/; and Z; are not constant,
but recursively estimated in Step 3. The law shows good con-
vergence in practice, although a formal stability proof is not
given here. From the state feedback matrix, it is now possible to
arrive at the optimal control input sequence in the basis function
space that has to be implemented in the next iteration, 6, . The
lifted control input to be applied for the next iteration can be
determined from the previous data in the full input space:

Y;
80j11=Ky; |89 (18)
j
ey
Ujs1=U;j+¢,Ky.; | 9u6U; (19)
yOLj

Normalised Pitch angle [-]

= Blade 1 Pitch

Blade 2 Pitch
Blade 3 Pitch
.

. . .
0.245 0.25 0.255 0.26
Normalised Time [-]

Fig. 1. Persistency of excitation in the lifted domain basis
function space: wind speed 18 m/s, 0% turbulence

In the implementation, the matrix ¢ is synthesised online
based on rotor speed measurements; this reduces the sensitivity
of the method to variations in the period P.

Thus, an adaptive repetitive control law has been formulated,
and the results of implementation in the simulation environment
will be discussed in the next section.

4. SIMULATION STUDY

The wind turbine model used for validating the above theory
has been described in Section 2. The simulation model is
equivalent to a high-fidelity representation of a wind turbine
which can only be described fully as a time-varying state-
space system. The baseline controller used with this model
for simulating nominal operation of the turbine incorporates
generator torque control and collective pitch control. SPRC
with reduced-dimension identification was implemented for
IPC specifically for periodic load alleviation.

For the simulations, an average wind speed of 18m/s was
chosen. This wind speed is relatively high such that the loading
is significant, while its probability of occurrence is also high.
The total time of simulation per realisation was 800 seconds.
Two cases were considered:

e Zero turbulence wind field, which leads to perfect period-
icity of loading; in order to understand the behaviour of
the algorithm.

e Turbulence 14%; for a more realistic simulation.

The basis functions chosen are described in Section 3.3. To
fulfill the condition for persistency of excitation, a white noise
sequence in the lifted domain, which contains energy only in
the basis function space, is superposed on the pitch signals.
The persistently exciting input can be seen in Figure 1. It
can be observed that it is much smoother than a white noise
sequence in the time domain. Further, the mean value of the
three pitch angles is exactly equal to the nominal pitch angle for
this operating point, which ensures that the persistently exciting
signals do not affect the nominal power production of the wind
turbine.

For the case with zero turbulence, the identification converges
from a cold start (initial estimate = 0) within 100 seconds, or
30 iterations. White noise excitation is switched off after 300
seconds, so the parameter estimate does not change any further.
The RC law is now able to reduce the blade loading by 95%
within 100 seconds, in this noise-free case.

The case with turbulence intensity 14% is considered next. The
reduction in the blade loads can be seen in Figure 2. Since the
basis functions chosen are sinusoids at the frequencies 1P and
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o

. . . . .
0.86 0.865 0.87 0.875 0.88
Normalised Time [-]

= = = No Control
N —— IPC-MBC
——— |PC-SPRC

Normalised Blade Q0P Load [-] ormalised Blade OoP Load [-]

Normalised Frequency [-]

Fig. 2. SPRC achieves blade load reductions at 1P and 2P
frequencies: wind speed 18 m/s and 14% turbulence

Normalised Pitch Rate [-]

. . . . .
0.74 0.76 0.78 0.8 0.82 0.84

T
= = = No Control |4
2P IPC-MBC

——— IPC-SPRC

Normalised Pitch Rate [-]

Normalised Frequency [-]

Fig. 3. Control inputs required mainly at 1P and 2P; much less
control effort is required as compared to the traditional
controller: wind speed 18 m/s and 14% turbulence

2P, the periodic loading at these frequencies is attentuated by
the use of SPRC. For the sake of comparison, the results of
a “traditional” IPC controller, designed per Bossanyi (2003),
have also been shown in the figure and indicated as “IPC-
MBC”. The overall load reduction achieved by both controllers
is similar. Load reduction of 20% is achieved with the ILC
controller, while load reduction of 27% is achieved with the
MBC controller. In Figure 3, the control action required for
load reduction can be seen. Both controllers demand control
input primarily at the 1P and 2P frequencies, however, the
energy spectrum of the traditional controller input covers a
much broader band. The use of SPRC reduces pitch activity
in this case by 38.65%.

Thus, pitch activity is reduced substantially at the expense of a
small reduction in load alleviation by using SPRC.

5. CONCLUSIONS

SPRC appears to possess several positive characteristics for
wind turbine load reduction using IPC. The dynamics of the
plant can be identified online, recursively. An ideal input se-
quence for rejecting periodic disturbances (which dominate
turbine loads) can be synthesised from the identified parame-
ters. Finally, the use of basis functions ensures that the control
input shape can be constrained. With SPRC, the control effort
is significantly lower than that required with a traditional IPC
controller, while a similar level of load reduction is achieved.

6441

Equality constraints are imposed on input signals by shaping
the basis vectors. Using this, for wind turbine control, it is
ensured that the nominal power production of the wind turbine
is entirely decoupled from load alleviation control.

For the first time, the identification problem is cast into the
lifted domain basis function space, which drastically reduces
the dimension of the identification and RC synthesis problem.
Further, SPRC is extended to be applicable to linear and linear
periodically varying systems (like wind turbines). Finally, the
required persistency of excitation is limited to the basis function
and reduces to a large extent the high-frequency component of
persistently exciting signals.
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