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Abstract:
This work is part of a technical study of the French space agency CNES (Centre National
d’Etudes Spatiales) and the French aerospace laboratory Onera for the development of an air-
launch-to-orbit system. The separation between the space launcher and the aircraft must be
studied with a sensitivity analysis to estimate the role of the different uncertainties in the risk
of collision and improve the robustness of the controller. As the number of factors is too large
to apply a quantitative method, the qualitative Morris method is first used for factors fixing.
The Morris method is generally used with limited calculations to roughly estimate the factors’
impact, but the quality of its results is rarely discussed. The Morris method is based on the
random sampling of so-called trajectories or, less frequently, radial points. The representativity
of the trajectories and radial points is analyzed and improved with a new solution based on
a discrete Latin hypercube. Extensive tests are used to compare the quality of the results of
various procedures with five common test functions. A new quality indicator, more sensitive, is
developed. It shows that the new solution greatly improves, at no additional cost, the estimation
of the factors’ impact by the Morris method. The classic radial points appear to be more efficient
than the commonly used classic trajectories. From a more global perspective, this study raises
the question of the convergence in the Morris method. The application of the new solution to
the air-launch-to-orbit separation provides results with a much better quality indicator than in
the previous campaign of sensitivity analysis.

Keywords: air-launch-to-orbit, store separation, sensitivity analysis, screening, elementary
effects, sampling

1. INTRODUCTION

The French space agency CNES and the French aerospace
laboratory Onera are developing an air-launch-to-orbit
system in a program called Perseus to launch space rockets
using an aircraft carrier rather than a land-based space-
port. A sensitivity analysis can help to understand the
influence of the different factors of uncertainty during the
separation of the aircraft and launcher. The separation is
complex. It involves an important number of dynamics,
it results in important mass and inertia variations, but it
must be safe and accurate. Its sensitivity analysis will be
used in the design of robust control laws. A simulation
has been developed for this work. It integrates various
problems faced in the history of store separation and
outputs the minimum distance between the launcher and
the carrier during the separation.

The number of uncertainty factors in this simulation is
too large to apply a classic quantitative sensitivity analysis
method like the Sobol’s method (Sobol, 2001). In the case
of the air-launch-to-orbit separation, the Sobol’s method
would typically require at least 50000 simulations, each
of them lasting 15 seconds in average. In such case, a
qualitative screening is used for factors fixing, that is

fixing the less important factors. The Morris method is
commonly used (Saltelli et al., 2004) (Ratto et al., 2007).
This step is very sensitive as important factors can be
underestimated and fixed, while negligible factors can
be overestimated and included in the Sobol’s method.
The former case alters the Sobol’s results and leads to
wrong conclusions, while the latter case results in useless
calculations.

The Morris method is classically based on random trajec-
tories in the discretized factor hyperspace (Morris, 1991).
The factors variations along each trajectory are used to
assess the factors’ importance. Because of the complete
randomness they are based on, the trajectories may not
properly cover the factor hyperspace. This issue is ad-
dressed in (van Griensven et al., 2006) with trajectories
covering local areas of a continuous Latin hypercube. This
idea of a Latin hypercube is adapted to the Morris’ recom-
mendation to use trajectories covering large areas of a dis-
cretized hypercube. In (Campolongo et al., 2007), the issue
of the trajectories definition is addressed with a new norm
used to estimate the distance between the trajectories.
The improvements derived from this distance are tested
for comparison purpose in this paper. Random radial
points also appear as an alternative to random trajectories
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(Campolongo et al., 2011). They are less frequently used
but their benefit has been shown for the Sobol’s method
(Saltelli et al., 2010). This paper studies their benefit in
the Morris method, both with a random sampling and
the adaptation of the Latin hypercube sampling. A new
indicator of the quality of the Morris method’s results is
defined in order to overcome the sensitivity limitations of
the indicators based on the proportion of important factors
correctly identified (Campolongo et al., 2011).

2. IMPROVEMENT OF THE MORRIS METHOD

2.1 Description of the Morris method

Let y be the output of a function f which depends on k
input factors {x1, x2, ..., xk}:

y = f(x1, x2, ..., xk) (1)

The objective of the sensitivity analysis is to estimate the
influence of the factors uncertainty on the output. The
factors are considered as scalar and their uncertainties
are represented by probability distributions. In the Morris
method, m discrete values are chosen for each factor. It is
now frequent to consider the factors in the quantiles hyper-
space (Saltelli et al., 2004). The values of the cumulative
distribution function (c.d.f.) are typically chosen equally
spaced, such that:

Fi(X
j
i ) =

2j − 1

2m
(2)

where Xj
i is the j-th discrete value of the factor xi, and

Fi its c.d.f.. In the Morris method, the function is studied
by varying one factor at a time. The elementary effect ei
associated to the factor xi is defined by:

ei =
f(X

(l)
1 , .., X

(l)
i−1, X

(l+1)
i , X

(l)
i+1, .., X

(l)
k )− f(X(l))

Fi(X
(l+1)
i )− Fi(X

(l)
i )

(3)

where X
(l)
i and X

(l+1)
i represent two different values of xi,

both in {X1
i , .., X

m
i }, and where X(l) = {X(l)

1 , .., X
(l)
k }.

The denominator represents the distance separating them
in the quantiles hyperspace. In this paper, m is chosen
even and the following classic configuration is used:

Fi(X
(l+1)
i )− Fi(X

(l)
i ) = ±0.5 (4)

It derives from the recommendation of Morris to use a
distance of m/[2(m−1)] for discrete values equally spaced
between 0 and 1, given that the values used are between
1/(2m) and (2m− 1)/(2m). The value +0.5 is used when

X
(l)
i < 0.5, and −0.5 when X

(l)
i > 0.5. One elementary

effect for each factor requires 2k computations of the
function f . To reduce this number, Morris developed the
concept of trajectories represented in the left part of Figure
1 for k = 3 factors. After the random definition of an initial
point A, one of the factor, randomly chosen, is varied to
obtain B. Another factor is then varied from B to obtain
C, so forth so on. Another method, less common, is based
on the concept of radial points represented in the right
part of Figure 1. In this case, all the factors are varied

Trajectory Radial point

Fig. 1. Example of a trajectory and a radial point for three
factors

from A. In this paper, A is called the initial point of the
trajectory or the center of the radial point. One trajectory
or one radial point provides an elementary effect for each
of the k factors with (k+ 1) computations of the function
f . A number n of trajectories or radial points are used,
with n typically equal to 4, 6, or 8. The importance of
a factor is classically estimated with the average and the
standard deviation of its n elementary effects. However,
it has recently been shown that the average µ∗ of the
absolute values of the elementary effects could also be
used alone and compared to the Sobol’s total indexes St

used as a reference (Campolongo et al., 2007). This paper
focuses on the case n = m which appears to be a good
compromise between the coverage of each factor’s interval
and the inspection of the hyperspace. However, the method
developed can easily be adapted to the case n ̸= m.

2.2 Improvement of the Morris method

Because of the randomness of the trajectories and radial
points, the elementary effects of a factor may be calculated
at similar locations of the factor hyperspace and result in
a non-representative µ∗. In (van Griensven et al., 2006),
the trajectories are built by applying small variations to
initial points sampled in a continuous Latin hypercube.
If larger variations are used, as recommended by Mor-
ris, the trajectories reach other volume divisions of the
Latin hypercube and get close to other trajectories. This
problem is reinforced if the space is discretized, as also
recommended by Morris. In this case, the variations cannot
be smaller than the division of the Latin hypercube. If
A[x, y] and B[x + ∆, y + ∆] are two initial points, the
application of the variations [∆, 0] and [0,∆] to A results
in the same elementary effects as the application of the
variations [0,−∆] and [−∆, 0] to B. If the factors are
changed in the same order, the application of [∆, 0] and
[0,∆] to A[x, y] and the application of [−∆, 0] and [0,−∆]
to B[x+2∆, y+∆] result in one common elementary effect.
In (Campolongo et al., 2007), a different method is used.
A distance between the trajectories is defined with the
Euclidian norm. For example, the distance dp,q between
two trajectories p and q is:

dp,q =


∑k+1

l=1

∑k+1
h=1

√∑k
i=1

[
X

(l)
i (p)−X

(h)
j (q)

]2
for p ̸= q
0 otherwise

(5)

where X
(l)
i (p) is the value of the i-th factor at the l-

th point of the trajectory p. N trajectories are gener-

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7955



0 0.125 0.375 0.625 0.875 1
0

0.125

0.375

0.625

0.875

1

Fig. 2. Example of problematic trajectories or radial points

ated and the group of n trajectories with the largest

D =
√∑

p

∑
q>p d

2
p,q is used. This method requires the

calculation of N !/(n!(N − n)!) different D, which can be
long. For example, selecting n = 8 trajectories out of
N = 25 already requires the calculation of more than 1
million D. Test are carried out in Section 3 with both the
Euclidian norm and the Manhattan (L1 distance) norms,
as suggested in (Campolongo et al., 2007).

Further improvement of the Morris method requires a
better understanding of the possible problems faced with
classic trajectories and radials points. Figure 2 represents
the projection of 4 trajectories or radial points in a plane
of the quantiles hyperspace corresponding to two of the
k factors studied, xi1 and xi2 . This figure reveals two
kinds of problems. The first one is related to the couples
of points (B1, C1) and (B3, C3). These couples, used to
calculate the elementary effects of the factor xi2 , are
both such that Fi1(xi1) = 0.125. The representativity
of the results could be improved if two different values
of Fi1(xi1) were used. Indeed, if n = m, the number
of couples of points used to calculate the elementary
effects of xi2 is equal to the number of possible values
for Fi1(xi1). The second kind of problem is related to the
four couples (B1, C1), (B2, C2), (B3, C3), and (B4, C4).
In each couple, the two values of Fi2(xi2) can either be
{0.125, 0.625} like for (B1, C1) or {0.375, 0.875} like for
the three others. Thus, three couples out of four share the
same values of Fi2(xi2). The representativity of the results
could be improved by equally using the different possible
values of Fi2(xi2). In this paper, the initial points of the
trajectories or the centers of the radial points are sampled
by considering the quantiles hyperspace as a discrete Latin
hypercube. As it is considered that n = m, the number
of points in a discrete Latin hypercube with m values in
each dimension is equal to the number n of trajectories
or radial points. As presented at the beginning of this
subsection, an initial discrete Latin hypercube sampling
may still lead to representativity problems, including the
calculation of the same elementary effect with different
trajectories. With variations of 0.5, the representativity
problems are avoided by varying the factors in a given
order instead of a random order. Typically, the second
point of a trajectory is obtained by varying the first
factor, the third point is obtained by varying the second
factor, so forth so on. Figure 3 shows all the projections
of n = 4 trajectories generated for k = 3 factors.

Fig. 3. Projections of improved trajectories

None of the problems previously presented appears. The
application of this new method to radial points is direct.
The radial points centers are generated like the trajectories
initial points, and the elementary effects are then normally
calculated from these centers. The generation of the n
points used as initial points for the trajectories or centers
for the radial points is fast. Let M be an [n ∗ k] matrix
such that each row corresponds to a point and each column
corresponds to a factor. The i-th column can be obtained
with a random permutation of the vector [X1

i , .., X
m
i ].

Thus, the generation of the matrix M only requires k
permutations.

3. APPLICATION

3.1 Calculation of the quality indicator

As a consequence of the limited number of calculations it
requires, the Morris method is considered as qualitative. It
is used to compare the relative importance of the factors.
The results of the Morris method are also not normalized,
contrary to the results of the Sobol’s method. To develop
a quality indicator, the way the results of the Morris
method are analyzed must be clearly defined. Indeed, the
indicator shows if the way the results are analyzed leads
to wrong conclusions or not. The results are considered
as perfect if the factors are in the right order, and the
overestimation or underestimation of a factor is measured
with both the number of factors involved and the relative
difference of µ∗. The values of µ∗ are first normalized. Let
the linear regression of the µ∗ be expressed as a1St + a0,
the normalized µ∗ are such that µ∗

n = (100/a1)(µ∗ − a0).
The linear regression is 100St for the µ∗

n. In Figure 4, the
point P7 should be higher than the points P5 and P6 to
respect the order of the St. A measure of this problem
is R = r257 + r267 where r57 = (µ∗

n(P5) − µ∗
n(P7)) and

r67 = (µ∗
n(P5)− µ∗

n(P7)). More generally:

R =
∑
i

∑
j

r2ijδij (6)

where δij = [(St(Pj)−St(Pi)) > 0]∩ [(µ∗
n(Pj)−µ∗

n(Pi)) <
0].

3.2 Test functions and store separation

Five typical test functions of the literature of sensitivity
analysis are first used. The results are then analyzed
to improve the application of the Morris method to a
separation between a space launcher and an aircraft. The
five test functions and the store separation problem are
briefly presented.

• The Morris function fM depends on factors xi uniformly
distributed on [0, 1] (Morris, 1991). The configuration
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Fig. 4. Determination of the quality of the Morris method
results

used, based on k = 20 factors, is also used in (Campolongo
et al., 2011) and (Campolongo et al., 2007):

fM (x1, .., xk) = β0 +
20∑
i=1

βiwi +
20∑
i<j

βi,jwiwj

+

20∑
i<j<l

βi,j,lwiwjwl +

20∑
i<j<l<s

βi,j,l,swiwjwlws (7)

where wi = 2(xi − 0.5) for all the values of i except for
i = 3, 5, 7. In these cases, wi = 2[1.1xi/(xi + 0.1) − 0.5].
Some of the coefficients β are set to relatively large values,
increasing the importance of the corresponding factors:

First order : βi = +20 for i = 1, ..., 10

Second order : βi,j = −15 for i, j = 1, ..., 6

Third order : βi,j,l = −10 for i, j, l = 1, ..., 5

Fourth order : βi,j,l,s = +5 for i, j, l, s = 1, ..., 4 (8)

The remaining first and second order coefficients are gen-
erated from a standard normal distribution, the remaining
third and fourth order coefficients are set to zero.

• The Sobol function fG (Archer et al., 2007) also depends
on factors xi uniformly distributed on [0, 1]. The number of
factors is set to k = 8 with ai = {0, 1, 4.5, 9, 99, 99, 99, 99},
a configuration for example directly implemented in the
software Simlab (Saltelli et al., 2004). A larger coefficient
ai reduces the importance of the corresponding factor.

fG(x1, .., xk) =

k∏
i=1

gi where gi =
|4xi − 2|+ ai

1 + ai
(9)

• The modified Sobol function f∗
G introduces a shift δi and

a curvature αi in fG (Saltelli et al., 2010):

f∗
G(x1, .., xk) =

k∏
i=1

g∗i where

g∗i =
(1 + αi)|2(xi + δi − I[xi + δi])− 1|αi + ai

1 + a1
(10)

The number of factors is set to k = 20 with a configu-
ration used in (Campolongo et al., 2011). It results in 10
important factors. The δi are generated in U(0, 1) and:

ai = {100, 0, 100, 100, 100, 100, 1, 10, 0, 0,
9, 0, 100, 100, 4, 100, 100, 7, 100, 2}

αi = {1, 4, 1, 1, 1, 1, 0.4, 3, 0.8, 0.7,
2, 1.3, 1, 1, 0.3, 1, 1, 1.5, 1, 0.6} (11)

• The Bratley function fK (Bratley et al., 1992) also
depends on factors xi uniformly distributed on [0, 1]. As
in (Campolongo et al., 2011), k = 20 factors are used:

fK(x1, .., xk) =

k∑
i=1

(−1)i
i∏

j=1

xj

 (12)

• The Saltelli function fB (Saltelli et al., 2008) depends
on factors xi following normal distributions N(xi, σi).

fB(x1, .., xk) =

k/2∑
i=1

xixk/2+i (13)

The number of factors is set to k = 20 and the configura-
tion used in (Campolongo et al., 2011) is applied:

xi = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 2, 2, 2, 3, 3, 1.5, 3, 2, 2}

σi = {0.5, 0.5, 1, 1, 2, 2, 1, 0.5, 1.5, 2,
2, 2, 1, 1, 1, 3, 3, 3, 5, 5} (14)

• The simulation of the air-launch-to-orbit separation is
used to evaluate the risk of collision. The output is the
minimum distance between the launcher and the aircraft
over all the time steps. It depends on 49 factors uniformly
distributed. 48 of them are classic scalar factors and
represent for example a mass, an inertia, a distance, or a
time. The last factor is multidimensional and represents
the evolution of the white noise used with the Dryden
model for the wind turbulences. Using multi-dimensional
factors in the Morris method is complex and leads to a
variability of the results. Thus, any improvement of the
Morris method is particularly important.

3.3 Results of the test functions

The classic random generation of trajectories and radial
points is called ”Normal”, while the new improvement
presented in Section 2.2 is called ”Distinct”. The methods
based on the verification of the Euclidian and Manhattan
distance between trajectories are called ”Euclidian” and
”Manhattan”. These four methods are tested with n = 4,
6, and 8 trajectories, and the Normal and Distinct methods
are also tested with the same numbers of radial points.
In the Euclidian and Manhattan methods, the number of
initial trajectories is set to N = 25 for n = 4, and N = 15
for n = 6 or n = 8. For each test, 1000 applications are
used for the Normal and Distinct methods, while only
100 are used for the Euclidian and Manhattan methods
because of the time they need. The quality indicator R
requires the Sobol’s total indexes. They are obtained with
the Sobol’s first order indexes by running 86016 times the
functions based on k = 20 factors, and 36864 times the
function based on k = 8 factors.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7957



Table 1. Average and maximum values of R for trajectories - Minima underlined

Normal (1000app.) Distinct (1000app.) Euclidian (100app.) Manhattan (100app.)
Function

4 6 8 4 6 8 4 6 8 4 6 8
avg 1240 733 522 1170 585 386 1010 702 493 969 643 450

Morris
(max) (17400) (9730) (4300) (32900) (5040) (4580) (4780) (6460) (3380) (5850) (2710) (3460)
avg 0.553 9490 4.77 2.61e-5 0.205 0.0617 0.329 95.8 0.737 0.240 388 0.774

Sobol
(max) (36) (8.28e6) (1830) (6.16e-4) (9.87) (0.977) (5.69) (3710) (24.5) (2.58) (37600) (16.2)

Modified avg 7400 4950 4038 2270 2290 1640 6120 6850 3520 6890 4710 3050
Sobol (max) (1.81e5) (1.65e5) (1.44e5) (38700) (34000) (29800) (1.31e5) (1.27e5) (64100) (1.01e5) (34700) (24600)

avg 31.3 9.63 5.26 2.00 0.991 0.585 25.4 7.14 5.61 14.7 12.9 5.41
Bratley

(max) (4310) (709) (578) (109) (63.6) (20.7) (362) (95.0) (110) (369) (211) (282)
avg 1170 607 424 6.94 3.64 2.85 909 480 418 770 362 325

Satelli
(max) (19600) (6830) (4760) (6.94) (11.5) (11.4) (79400) (3070) (2600) (4980) (1470) (1470)
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Fig. 5. Results with 8 trajectories

In Figure 5, the x-axis represents the estimator R and the
y-axis represents the percentage of applications resulting
in a larger R. The faster the curves decrease, the more effi-
cient the corresponding method is. In Figure 5, the curve
”Distinct” quickly decreases for the five test functions.
The lowest benefit of the new improvement is obtained
with the Morris function as the curve ”Distinct” is close
to the others, and its highest benefit is obtained with the
Saltelli function as the curve ”Distinct” decreases much
faster than any other.

Table 1 shows the average and the maximum values of
R for the tests based on trajectories. The best results,
which have been underlined, are mostly obtained with
the new Distinct improvement. It reduces all the aver-
age and maximum values of more than 50%, except for
the Morris function. In several cases, the benefit of the
Distinct method is considerable. For example, one of the
average values for the Saltelli function changes from 1170
to 6.94. Using more applications for the Euclidian and
Manhattan methods would simply be likely to increase the
corresponding maxima. Table 1 also shows that using 6
trajectories instead of 4 is a major advantage for most
of the functions, both for the classic and the Distinct
methods. The Sobol function is an exception because of its
special shape leading to very good results with 4 discrete
values per factor and 4 trajectories.

Table 2. Average and maximum values of R for
radial points - Minima underlined

Normal (1000app.) Distinct (1000app.)
Function

4 6 8 4 6 8
avg 1250 676 505 1080 571 397

Morris
(max) (17900) (6530) (3490) (12100) (6400) (4150)
avg 3.17e-5 370 2.89 1.12e-5 0.210 0.0536

Sobol
(max) (2.79e-4) (56600) (954) (1.26e-4) (15.1) (0.420)

Modified avg 4680 2770 2460 2500 2290 1430
Sobol (max) (1.66e5) (49800) (52100) (64100) (33300) (35100)

avg 13.2 5.68 2.57 2.15 0.794 0.891
Braltey

(max) (2050) (965) (955) (93.4) (48.2) (119)
avg 1160 609 424 6.94 3.67 2.79

Saltelli
(max) (21100) (7120) (3900) (6.94) (12.6) (13.0)

Table 2 shows the results for the radial points. The best
results are underlined. 29 out of 30 are obtained with the
Distinct method. It also appears that 22 of the 30 results
obtained with the Normal radial points are lower than with
the Normal trajectories of Table 1. Using 6 radial points
instead of 4 appears again as a good recommendation.
The results of the Distinct radial points and the Distinct
trajectories are equivalent. The Distinct radial points and
trajectories both have lower results in half of the cases.

The non-parametric Kolmogorov-Smirnov test is used to
compare the distributions of R obtained with the different
methods. The null hypothesis is that the distributions are
equivalent, and it is rejected at the 5% significance level.
When the hypothesis is rejected, the differences which
appear in the figures and tables cannot be considered
as random. The null hypothesis is rejected when the
Distinct method is compared to the Normal method for
the different numbers of trajectories and radial points in 29
out of 30 cases. The case which is not rejected corresponds
to the analysis of the Modified Sobol function with 6
Distinct or Normal radial points. The null hypothesis is
also rejected in most of the cases when Distinct trajectories
are compared to Euclidian or Manhattan trajectories.
The Morris function is a first exception. The difference
between the Distinct trajectories and the Euclidian or
Manhattan trajectories is not clear for any number of
trajectory with this function. Another exception reveals
that the difference between 6 Distinct trajectories and 6
Manhattan trajectories is also not clear for the Modified
Sobol function. The null hypothesis is conserved in 26 out
of 30 cases when the Euclidian and Manhattan trajectories
are compared to the Normal trajectories, and always
conserved when the Euclidian and Manhattan trajectories
are compared to each other.
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Fig. 6. Results for the store separation

3.4 Results of the store separation

A sensitivity analysis of the store separation problem had
been carried out before the work presented in this paper.
The Morris method was applied with 4 classic trajectories.
It is now applied with 6 Distinct radial points. Indeed,
the Distinct method showed particularly good results with
the test functions, and the use of a 6 radial points or
trajectories appeared as particularly effective. The radial
points and the trajectories gave similar results with the
Distinct method, but the radial points gave better results
with the Normal method, which could be an argument for
final selection.

The Morris method is always applied twice with the same
radial points or trajectories but with different samples of
the multi-dimensional factor. The results of the two ap-
plications are averaged and the relative difference 2(µ∗1 −
µ∗2)/(µ∗1 + µ∗2) is shown as a percentage in Figure 6.
The Sobol method is used as a reference, but it is only
applied to the 17 main factors in order to limit the number
of simulations required to 2304. Fixing the other factors
has limited consequences as the µ∗ of the 18th factor
is more than 10 times smaller than the µ∗ of the 1st

factor in both studies. The new study first improved the
identification of the 17 main factors. For example, the 7th

most important factor of the new study is not amongst
the 17 main factors of the past study. As a consequence,
the new study required a new application of the Sobol’s
method. Figure 6 shows that the points of the new study
are closer to the regression line, revealing a better quality
of the results. The new study avoids two errors from the
past study, one overestimation and one underestimation of
a factor. The indicator R equals 6180 for the past study
and only 610 for the new study. Figure 6 finally shows
that using a larger number of radial points also reduces
the variability due to the multi-dimensional factors, shown
in brackets.

The most important factor appears to be the interaction
force on the y-axis of the launcher with a µ∗ of 0.0199.
A group of three factors, all related to the aerodynamics,
also appears as particularly important with different µ∗

in [0.0125, 0.0138]: the uncertainty on the center of pres-
sure of the launcher, the modification of this center of
pressure by the interactions, and the wind turbulences.
Finally, a group of six factor also has a non-negligible µ∗

in [0.0066, 0.0076]: two of them represent the initial orien-

tation of the launcher under the aircraft, one represents
the interaction force on the z-axis of the aircraft, and the
last one represents the hooks’ opening time. It would be
necessary to design a guidance law robust to variations of
these parameters.

4. CONCLUSION

This paper presents a method based on the Morris method
improving the estimation of the main sensitivity factors of
a system at no additional computational cost. Classic ra-
dial points also appear to be more effective than the more
common classic trajectories, but the difference fades out
when the Distinct method is applied. Six radial points or
trajectories are much more efficient than four, in particular
when multi-dimensional factors are involved. It raises the
question of the convergence, that is how much the results
can be improved with more calculations. The identification
of the main factors of an air-launch-to-orbit separation has
been improved, helping to the development of new robust
controllers.
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