
     

Modelling of the ultrasonic disintegration of activated sludge 
 

N. Lambert*, I. Smets**, J. Van Impe**, R. Dewil* 

*KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5 – 
BE-2860 Sint-Katelijne-Waver - Belgium 
(e-mail: nico.lambert@cit.kuleuven.be). 

**KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Process Technology and Control Division – 
W. de Croylaan 46 – BE-3001 Heverlee - Belgium (e-mail:ilse.smets@cit.kuleuven.be) 

Abstract: Ultrasonic treatment of waste activated sludge is one of the possibilities to reduce excess 
sludge production through the mechanism of sludge disintegration and cell lysis. In the past, several 
attempts have been made to model the process of solubilisation of the particulate volatile suspended solid 
part of the activated sludge (VSS) into soluble COD (sCOD). However, the focus of these models was 
predominantly on predicting an efficiency factor for the release of sCOD (Disintegration Degree, DDCOD) 
and provided no information on the release of nutrients and the instantaneous reduction of VSS. 
Moreover, often insufficient influential variables were included in the model equations, making the 
models only applicable on the training dataset of their own experimental research. This paper, therefore, 
seeks to build a simple model, which contains all influential input variables, that can predict not only the 
sCOD release but also the nutrients release (ortho-PO4-P and soluble Kjeldahl nitrogen) and VSS 
reduction simultaneously. Therefore, in first instance, a Principal Component Analysis (PCA) is carried 
out on the input and output data matrix of obtained experimental observations that will be used as 
training data. In this way, certain correlated input variables and independent output variables can be 
removed from the model, in order to increase its simplicity and predictive nature. Then, the model is built 
on the basis of Partial Least Squares Regression (PLS-R) and a part of the observations is used to validate 
the predictive strength of the model. 
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1. INTRODUCTION 

Focused on considerably reducing the generation of excess 
sludge in activated sludge wastewater treatment plants, cell 
lysis and cryptic growth of microorganisms has been found 
very effective to reduce Waste Activated Sludge (WAS). 
Ultrasonication of WAS and RAS (Return Activated Sludge) 
is capable of destroying the flocs within their matrix of 
extracellular polymeric substances (EPS) to result first in 
much smaller flocs and afterwards in cell death and lysis  
(Xiaoxia Wang, 2010). Cell lysis is a process in which the 
cell disintegrates after which the organic, nitrogen and 
phosphorus constituents of the cell provide an autochthonous 
substrate that contributes to the organic loading of the 
wastewater. Growth on such lysis products is described as 
cryptic growth and results in a reduced overall biomass 
production (Low and Chase, 1999). In most of the scientific 
publications on the topic of ultrasonic sludge disintegration 
the efficiency of the process is assessed by the release of 
sCOD in the supernatant liquid of the activated sludge. It is 
assumed that the solubilisation of particular COD (pCOD) 
into soluble COD (sCOD) involves first deagglomeration of 
the active sludge flocs (floc disintegration), and, second, the 
release of the cellular material in the supernatant liquid as a 
result of the breakage of the cell wall (cell lysis) (Si-Kyun et 
al.). However, in current literature little attention is given to 
the release of nitrogen and phosphorous compounds in the 

supernatant liquid during the process of sludge disintegration 
although, e.g., Bougrier et al. (2005) highlight that nitrogen is 
mainly released as proteins and amino acids and that, at 
moderate specific energies, a solubilisation degree of 40% 
can be expected. Several previous research papers reported 
relevant models for single alkaline activated sludge 
treatment, single ultrasonic sludge disintegration and the 
combined treatment process (e.g., Li et al., 2010; Wang et al., 
2005 and Kim et al., 2010). All these models use a different 
combination of independent predictive variables to determine 
the sCOD release in the supernatant liquid of the activated 
sludge. It is evident that there are still a lot of questions that 
remain unanswered. In the first place, it can be said that the 
choice of the appropriate predictor variables to describe the 
untreated activated sludge itself and to characterize the 
process conditions of the ultrasonic sludge treatment is of 
great importance to generate an appropriate ultrasonic sludge 
disintegration model. For example, it seems logical to 
characterize the treated sludge on the basis of both the initial 
(biomass quantity related) MLSS0 and MLVSS0 
concentration. In this way it will be taken into account 
whether or not we are dealing with a more organic or more 
inorganic activated sludge or whether the sludge sample is 
highly thickened or not. The ultrasonic reactor design can be 
described by the ultrasonic density (DS - W/cm2) and the type 
of ultrasonic horn or transducer can be quantified by the 
ultrasonic intensity (IS – W/mL). To have a global view on 
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the energy that is dissipated into the sludge, the sonication 
time or the specific energy (ES – kJ/kg DS) of the 
disintegration process can be used as independent input 
variable.  The specific energy (ES) is preferred over the 
sonication time (t) because this parameter contains more 
information on the overall process conditions of the 
disintegration process as displayed in Equation (1).  
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   (1) 
where: 
ES = specific acoustic energy [kJ.kg DS-1] 
tr = residence time in ultrasonic reactor [s] 
Vsample = sample volume [L] 
CDS = dry solids concentration [g.L-1] 
 
The ultrasonic specific energy is expressed as the associated 
amount of energy that is transferred to the activated sludge, 
expressed per kg of activated sludge. Equation (1) clearly 
indicates that the specific energy is calculated on the basis of 
the residence time in the ultrasonic reactor and takes into 
account the power of the ultrasonic generator and the sludge 
concentration of the activated sludge.  
 
Because it appears from a number of publications that the pH 
at the start of the disintegration process has a significant 
influence on the disintegration efficiency, this parameter 
should also be part of the set of independent variables and is 
important to ensure an adequate predictive model.  
 
In addition, it is also important that the lysate is not only 
described by the sCOD release but that also the release of 
nutrients and the instantaneous reduction in MLSS and 
MLVSS concentration, that proceeds simultaneously, is 
included in the development of the model. This means that 
there should be more than one dependent outcome variable in 
the ultrasonic disintegration model. Generally it can be 
concluded that the development of an ultrasonic sludge 
disintegration model based on a relevant set of independent 
input variables and a model that can predict more than only 
the sCOD release would represent an added value to the 
ultrasound activated sludge disintegration knowledge. 
 

2. MATERIALS AND METHODS 

2.1 Ultrasound equipment and acoustic power measurement 

Two types of ultrasound equipment were used in the 
disintegration experiments. The plug-flow pilot reactor 
consists of a reactor bloc SB® with an array of 20 
transducers and an ultrasound generator (LG 1001 T). The 
system has a fixed frequency at 25 kHz, and a variable power 
output with a maximum of 1000W. The stirred vessel batch 
reactor that is used for the execution of the experiments on a 
laboratory scale is a 20 kHz ultrasonic generator and horn 
system, type Bandelin Sonoplus® HD3200. The frequency is 
fixed at 25 kHz and the power output of the generator can be 
set up to a maximum power of 150 W by an adjustment of 
the amplitude. 

2.2 Experimental methods 

All sludge samples were taken from the sludge recycle in the 
full-scale municipal wastewater treatment plant of Mechelen-
Noord (Belgium) at several times during a period of 4 
months. The activated sludge samples had an MLSS 
concentration between 2.4 and 15.2 g DS/L, an average pH of 
6.9 and a mean supernatant liquid soluble COD (sCOD) of 47 
mg O2/L. To assess the impact of the ultrasonic treatment on 
the sCOD, nitrogen and phosphorus release and instantaneous 
sludge reduction, ultrasonic experiments were performed on:  
 
1. 30 L activated sludge samples in the plug-flow recycle 

reactor. This sludge is continuously flowing back and 
forth between the ultrasound device and a storage vessel 
at a flow rate of approximately 500 L/h. It was always 
ensured that the samples were taken from the sludge that 
flows back to the storage vessel and not of the sludge 
volume of the storage tank itself. Samples were taken at 
intermittent time intervals over a wide range of specific 
energy inputs (i.e., from 3000 to about 50000 kJ/kg DS). 
 

2. 150 mL to 1000 mL activated sludge samples in the 
stirred vessel batch reactor. It was always endeavoured 
to immerse the ultrasonic horn 1 cm beneath the liquid 
surface level. In addition, the samples were always 
cooled with ice, such that temperatures above 45 ° C are 
avoided and a disintegration effect due to heating of the 
activated sludge is prohibited.  

 
There are two main differences when comparing the 
ultrasonic horn system with the ultrasonic plug-flow recycle 
reactor in terms of the geometry and hydrodynamics of the 
reactors. Firstly, the ultrasonic horn is immersed directly into 
the solution, where the sonication takes place. In the plug-
flow reactor, an array of transducers is fixed to the external 
surface of a tube and in this way the tube itself becomes the 
source of ultrasonic energy. Secondly, the ultrasonic power is 
more intense when compared with the plug-flow recycle 
reactor (Santos and Capelo, 2007). Samples were taken and 
sCOD, MLVSS and MLSS and soluble Kjeldahl Nitrogen 
(KN), NH4

+-N and ortho-phosphate measurements were 
performed in accordance with the Standard Methods for the 
Examination of Water and Wastewater (2008). The sludge 
samples were centrifuged immediately after sampling in 
order to separate the supernatant from the active biomass, so 
that further biological reactions have been avoided.  

2.3 Partial Least Squares regression (PLS-R) 

For the prediction of the ultrasonic release of sCOD, nitrogen 
and phosphorus in the supernatant liquid, a model is 
developed based on a Partial Least-Squares approach. The 
aim of Partial Least Squares (PLS) is to develop a linear 
model that relates the input variables xi (i = 1 ... K) (denoted 
as a whole by vector X) to the output variables yj (j = 1 ... M) 
(denoted as a whole by vector Y), as is illustrated in Equation 
(2) (Appels et al., 2011). The idea of PLS regression is to 
create, starting from a table with N observations described by 
K input variables, a set of H components with H < K. In other 
words, PLS aims at finding uncorrelated linear 
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transformations (latent components) of the original predictor 
variables, which have high covariance with the response 
variables. In our case we have 75 observations (= N), with 6 
independent input variables (= K) and 6 dependent outcomes 
(= M) as described before. 60 observations are originating 
from the stirred vessel batch reactor with ultrasonic horn and 
15 from the pilot plant plug-flow system. 16 observations 
were used for validation of the model. 
 

!! = !! + !!!! + !!!! +⋯+ !!!! !!!!!"#!! = 1,… ,!  (2) 
             
PLS regression is preferred over principal component 
regression (PCR) and traditional multiple linear regression 
(MLR), given its advantage of being able to handle more than 
one response at once (Dahlén et al., 2000). Another 
advantage of PLS regression modelling is its inherent ability 
to detect outliers and if the number of latent variables or 
components is selected with care, modelling of noise will be 
avoided. The commercial statistical program XLSTAT was 
used for the development of the PLS model and to identify 
the regression coefficients.  
 

3. RESULTS AND DISCUSSION 

3.1 Analysing the training data 

Before moving to the development of the PLS model it is 
advisable to study the training data in more detail. Because 
PLS models assume a set of independent input data and 
dependent output, it is necessary to verify whether the input 
data (X) of the model are uncorrelated with each other, but in 
particular it should also be checked whether the output data 
(Y) are correlated with each other. 

3.1.1 Correlation check of the Y-matrix 

If the output data is correlated with each other than it is 
possible to model and analyse several Y’s together, which 
has the advantage to give a simpler overall picture than one 
separate model for each Y-variable. Hence, one could 
evaluate the correlations in the Y-matrix by performing a 
Principal Component Analysis (PCA) of just the Y-matrix. 
By carrying out the PCA it can be examined how many 
components or factors, FPCA, are necessary to describe the 
data. If this is small compared to the number of Y-variables 
(M), the Y’s are correlated. In the best case, all the variables 
are described by the first component of the PCA, and a single 
PLS model of all Y’s is warranted. If, however, the Y’s 
cluster in strong groups, which is seen in the PCA loading 
plots, separate PLS models should be developed for these 
clustered groups (Wold et al., 2001a). To facilitate the 
interpretation of a loading and/or biplot, the analysis often 
involves a rotation of the components that were retained 
(Abdi, 2003). When the data follow a model stipulating (i) 
that each variable loads on only one factor and (ii) that there 
is a clear difference in intensity between the relevant factors 
(whose eigenvalues are clearly larger than or equal to one) 
and the noise (represented by factors with eigenvalues clearly 
smaller than one), then the rotation is likely to provide a 
solution that is more reliable than the original solution. The 
Varimax rotation, developed by Kaiser (1958), is an example 

of orthogonal rotation and is the most popular rotation 
method and is also used for the interpretation of our loading 
plots. For the Varimax rotation method a simple solution, that 
is consequently easily interpretable, means that each 
component has a small number of large loadings and a large 
number of zero (or small) loadings. This simplifies indeed the 
interpretation because, after a Varimax rotation, each original 
variable tends to be associated with one (or a small number 
of) component(s), and vice versa each component represents 
only a small number of variables.  

Looking at the graphs in Figure 1, it can be concluded that a 
limited orthogonal rotation of the axes of the PCA improves 
the ease of interpretation of both first two components of the 
loading plot. In Figure 1 (a) the loading plot before Varimax 
rotation is represented and in Figure 1 (b) the loading plot after 
Varimax rotation is plotted. It is clear from these figures that 
the Varimax rotation ensures that there are high loadings for 
both the first and second factor, which is not the case in Figure 
1 (a). The loading plot, which is represented in Figure 1 (b), 
reveals the relationship between the output variables in the 
space of the first two components. We can see that 
KN/MLSS0, sCOD/MLSS0 and ortho-P/MLSS0 have positive 
high loadings and MLVSS/MLVSS0 and MLSS/MLSS0 
negative high loadings for principal component 1 (D1). NH4-
N/MLSS0, however, has a similar high loading for principal 
component 2 (D2). It can be very clearly established from the 
loading plot (Figure 1) that all the variables that are described 
by the first component of the PCA (D1) can be predicted all 
together by only one PLS-2-model and that the variable NH4-
N/MLSS0 must be separately estimated by a different PLS-1 
model. Although there is a shift in the percentage of the 
variability that is described by the first two separate factors 
due to the Varimax rotation, the total percentage of the 
variability that is described by the first two factors (D1+D2) 
is still 90.9 %.  
 
From the above analysis it is inferred that the concentration 
of ammonium that is possibly released by the ultrasonic 
sludge disintegration is uncorrelated with the release of the 
other components (e.g., sCOD, TKN and ortho-PO4). This 
leads to the hypothesis that the limited increase of 
ammonium concentration is not directly attributable to the 
ultrasonic sludge disintegration process itself. These 
observations are in high contrast to the claims formulated by 
Feng et al. (2009), who postulated that the ammonia nitrogen 
concentration of the supernatant rapidly increased with 
increasing energy input as a direct consequence of the 
ultrasonic sludge disintegration. The results are, however, 
confirmed by Khanal et al. (2006), Bougrier et al. (2005) and 
Akin (2008), who claim that the ammonium release is a 
secondary phenomenon due to biological hydrolysis of the 
released organic nitrogen. The rate of hydrolysis is dependent 
on the electron donor available, or rather the oxygen 
concentration in the activated sludge. Thus, the rate of 
hydrolysis is different in aerobic, anoxic and anaerobic 
conditions, as evidenced by the experimental examination of 
Henze and Mladenovski (1991). Therefore, it can be assumed 
that the hydrolysis during the ultrasonic treatment is very 
slow. 
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Figure 1: Loading plot, (a) before Varimax rotation and (b) after Varimax rotation. 

3.1.2 Correlation check of the X-matrix 

In the same way as for the Y matrix, also the X-matrix, with 
the input data for the development of the PLS model, should 
be analysed in detail. All input variables should in principle 
be independent to have a proper input data matrix. In the 
loading plots after Varimax rotation a clear picture can be 
sketched about the independency of the various input 
variables. In the case that each input variable loads high on 
each another principal component dimension, it can be 
concluded that all variables are independent. As a loading 
plot can only display two factors simultaneously, 3 loading 
plots should be prepared to evaluate the six dimensions in the 
principal component analysis. The three loading plots are 
depicted in Figure 2. In loading plot 2(a), the first dimension 
is determined by both the initial MLSS (MLSS0) and the 
initial MLVSS concentration (MLVSS0). The second 
dimension on the other hand is determined by the specific 
energy (ES). From loading plot 2(b), it can be deduced that 
the third and fourth dimension are represented by 
respectively the pH and the ultrasonic density (DS). In the last 
loading plot 2(c) only the fifth dimension has a high loading 
coming from the ultrasonic intensity (IS). In principle, one of 
the two input variables, MLSS0 and MLVSS0, can thus be 
omitted from the PLS model to develop. It is deliberately 
chosen not to do so. The reason of maintaining both variables 
lies within the fact that the ratio of the MLVSS/MLSS 
concentration is a good measure of the organic content of the 
activated sludge. Since activated sludge has almost always an 
MLVSS/MLSS ratio between 60 and 80 percent, the two 
parameters are strongly connected to each other, which could 
be derived from the Principal Component Analysis indicating 
that both parameters are dependent on each other. Because it 
is expected that the organic content of the activated sludge 
can have an influence on the solubilisation efficiency, both 
parameters are nevertheless included as input variables of the 
PLS model. 

3.2 Building the PLS model for ultrasonic sludge 
solubilisation 

It is the intention to build an empirical model that fits the 
training data perfectly, but that will also well predict new 
data samples, which are not included in the training data set. 
The number of latent components to use in the PLS-model is 
a very important issue because too few components will 

generate an under-fitted model while too many components 
induce overfitting. 
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Figure 2: Loading plot after Varimax rotation, (a) for the first 2 
components, (b) for the 3th and 4th component, (c) for the 5th and 6th 
component. 

For the response variables (M) in Y, the multiple correlation 
coefficient (R2Ycum) or goodness of fit is given by (Wold et 
al., 2001a): 
 

!!!!"# = !! !!   (3) 
     
where, R2Ya is the sum of squares of all the Y’s explained by 
each extracted component a (Amaral and Ferreira, 2005). 
Selection of the most appropriate latent components, is, 
hence, the most difficult but also the most important task 
within PLS modelling, with the ultimate objective to filter the 
noise from the model. 
 
In order to determine the optimal number of latent 
components used in the PLS regression model, different 
methods can be found in the domain-specific literature on 
PLS modelling (Baumann et al., 2003). Unfortunately, there 
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is no clear directive about which method should be selected 
to determine the correct number of components to prevent 
both under-fitting and over-fitting. Many scientific 
publications have been devoted to study the different 
methods of cross-validation to yield highly predictive models 
and to guide the modeller in choosing the right number of 
latent components. It is proven that the commonly applied 
leave-one-out and n-fold cross-validation method has a strong 
tendency to over-fitting, and thus underestimating the true 
prediction error (Baumann et al., 2003). Therefore, it is 
chosen to use a combined approach, based on the above-
mentioned leave-one-out principle and wherein an external 
validation is incorporated. All of the samples for modelling 
were split into a calibration set with full cross-validation 
(leave-one-out) (N = 75) and prediction set (n = 16). To 
evaluate the results, the root-mean-square error of calibration 
(RMSEC) and the root-mean-square error of prediction 
(RMSEP) were considered; the former is a measure of how 
well the model fits the calibration data, the latter is a measure 
of predictive ability of the model when the model is applied 
to new data (Xie et al., 2009). The RMSE is calculated by 
squaring individual errors of the training or validation 
observations, summing them, dividing the sum by the total 
number of observations, and then taking the square root of 
this quantity. Good models should have low RMSEC and 
RMSEP, but small differences between the RMSEP and 
RMSEC value. Six distinct PLS models, based on a different 
number of components were built. A first internal validation 
of the predictive nature of the different models is carried out 
by the assessment of the course of the R2Ycum, Q2

cum and 
RMSEC values as a function of the number of components 
on which the models are built (the R2Ycum and Q2

cum evolution 
is displayed in Figure 3(a)). The Q2

cum index measures the 
global contribution of the H first components to the 
predictive quality of the model and of the sub-models if there 
are several dependent output variables, like in our case. The 
Q2

cum(H) index writes: 

!!"#! ! = 1− !"#$$!"!
!!!

!!"!(!!!)!
!!!

!

!!!
 

 
(4) 

 
The index involves the PRESS statistic (that requires a cross-
validation), and the Sum of Squares of Errors (SSE) for a 
model with one component less. Figure 3(a) gives us a first 
indication that no more than three components should be used 
to avoid noise modelling, because the Q2

cum and RMSEC 

stabilized at the third component. For the evaluation of the 
external validation, two interesting observations can be made 
on the basis of the RMSEP values. First and foremost, the 
prediction results (based on the PLS model with three 
components) of the validation set lead to low RMSEP values 
and agree well with the prediction results from the training 
set, as can be established from Figure 3(b-f). The RMSEP 
and RMSEC values are in the same order of magnitude, but 
the RMSEP errors are approximately two times as large as 
the RMSEC errors (see Figure 3(b-f)). A PLS model with a 
different number of components will not resolve this 
problem. 
 
Eventually, the ultimate objective of this paper was reached 
by the determination of the regression coefficients of the PLS 
model with 3 components (see Table 1). With the aid of these 
regression coefficients it is possible to construct the equations 
to describe the release of sCOD, KN and ortho-PO4-P in the 
supernatant liquid of the activated sludge and to predict also 
the related solubilisation of the VSS and this on the basis of 
the initial characteristics of the activated sludge (MLSS0 and 
MLVSS0) and the operational conditions of the ultrasonic 
treatment (ES, pH, IS and DS). The model is of high quality 
and seems to be very useful for estimation purposes, for the 
characterization of the ultrasonic sludge lysis process and 
predicting ultrasonic waste sludge reduction, without being 
dependent on time-consuming chemical analyses. 
 
Table 1:  Overview of the regression coefficients of the PLS model to 
calculate the release of sCOD, KN and ortho-PO4-P and reduction in 
ML(V)SS. 

Variable MLSS/ 
MLSS0 

MLVSS/ 
MLSS0 

sCOD/ 
MLSS0 

ortho-
P/MLSS0 

KN/ 
MLSS0 

Intercept 1,58E+00 1,66E+00 -7,30E+02 -9,38E+00 -5,04E+01 

Es -3,62E-06 -4,08E-06 5,25E-03 6,93E-05 3,38E-04 

MLSS0 -9,30E-03 -1,24E-02 4,16E+00 1,14E-01 4,69E-01 

MLVSS0 -8,74E-03 -1,23E-02 3,67E+00 1,04E-01 4,16E-01 

IS -1,74E-04 -5,53E-04 1,31E+00 8,81E-03 4,55E-02 

DS -7,82E-05 -4,10E-05 2,98E-02 1,13E-03 5,52E-03 

pH -6,55E-02 -7,45E-02 9,01E+01 1,22E+00 5,91E+00 
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(a) 

 

 
(b)  
RMSEC= 0,066   
RMSEP = 0,133 

 
(c) 
RMSEC= 0,063   
RMSEP = 0,134 
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(d) 
RMSEC= 60   
RMSEP = 133 

 

(e) 
RMSEC= 1,20   
RMSEP = 2,90 

 

(f) 
RMSEC= 4,77   
RMSEP = 8,08 

Figure 3: (a) The evolution of R2Ycum and Q2
cum with an increasing number of latent components of the PLS model and correlation statistics between 

the measured values and calculated values for (b) the MLSS reduction, (c) the MLVSS reduction, (d) the sCOD release, (e) the ortho-PO4-P release, 
(f) the Kjeldahl-N release. The solid black symbols refer to calibration samples, and the open white symbols refer to the validation samples. 
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