Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

A thermodynamic approach towards
Lyapunov based control of reaction rate

N. Ha Hoang ***Denis Dochain ** Nicolas Hudon **

* Faculty of Chemical Engineering, University of Technology,
VNU-HCM, 268 Ly Thuong Kiet Str., Dist. 10, HCM City, Vietnam
** CESAME, Université Catholique de Louvain, 1348
Louvain-la-Neuve, Belgium (e-mails:
{ha.hoang,denis.dochain,nicolas.hudon} Quclouvain.be)

Abstract: This paper proposes a Lyapunov-based approach for the control of reaction rate
involved in chemical reactors through the use of irreversible thermodynamics. More precisely,
the reaction rate is structurally derived as a nonlinear function of the reaction force in order
to ensure the inherent non-negative definiteness property of the irreversible entropy production
due to the reaction. On this basis, it allows to cover a large class of reaction rates described by
the mass-action-law. As a consequence, the control of the reaction rate consists in controlling
the reaction force through the support of an affinity-related storage function to operate the
entire system at a desired operating point. Besides, the convergence condition is given.
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1. INTRODUCTION

A number of control strategies have been proposed to
deal with the nonlinear feedback control of homogeneous
chemical reactors, and in particular of unstable continuous
stirred tank reactors (CSTRs). Several applications of non-
linear control methods to CSTRs can be found in a large
number of references, e.g. nonlinear feedback control under
constraints (Viel et al. (1997); Bayer et al. (2011); Hoang
& Dochain (2013d)), Lyapunov-based control (Antonelli
& Astolfi (2003)), nonlinear PI control (Alvarez-Ramirez
& Morales (2000)), port (pseudo) Hamiltonian framework
(Hudon et al. (2008); Hangos et al. (2001); Dorfler et
al. (2009); Hoang et al. (2011); Ramirez et al. (2013)),
power/energy-shaping control (Favache & Dochain (2010);
Alvarez et al. (2011)) and inventory control (Farschman et
al. (1998); Hoang et al. (2013e)).

As shown in the works of (Georgakis (1986); Favache &
Dochain (2009)), the reaction kinetics plays a central role
as the source generating the abnormal dynamical behavior
of the reaction system (for example, multiple steady states
or non-minimum phase behaviors (Hoang et al. (2013c)))
through the influence of its inherently nonlinear character-
istics. In that respect, the results presented in (Dammers
& Tels (1974); Tarbell (1977); Ydstie & Alonso (1997);
Eberard et al. (2007); Ederer et al. (2011); Hoang et al.
(2012); Hoang & Dochain (2013a,b)) were dedicated to
an active research area where the use of thermodynamics
for the stability analysis and control design of chemical
reaction networks is considered.

This paper deals with the nonlinear control of the unsta-
ble CSTR via controlled reaction rate in the context of
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thermodynamics together with Lyapunov-based approach.
More precisely, the objective of this paper is to explore
some previous results given in (Couenne et al. (2006);
Favache & Dochain (2009); Hoang et al. (2011)) in order
to characterize more precisely the dynamics of the CSTR
which is inherently associated with the irreversibility prop-
erty along all dynamical trajectories. On this basis, it
allows to propose a structured representation of the re-
action rate as a nonlinear function of the reaction force
involved in the reaction course in order to guarantee the
sign constraint of the irreversibility (such as the non-
negative entropy production (Hoang & Dochain (2013a))).
Consequently, the stabilization of the reaction rate is
equivalently treated by controlling the reaction force to
operate the overall system at a desired operating point.

The paper is organized as follows. Section 2 presents the
CSTR model, some thermodynamic concepts and instru-
mental properties required for the present work. The irre-
versible entropy production due to the reaction as well as
its non-negative property is considered in Section 3. This
property is central to derive a structured representation of
the reaction rate through the use of conjugated reaction
force. Section 4 proposes a candidate Lyapunov function
usable for the stabilization of the unstable CSTR, via con-
trolled reaction rate. An example is included to illustrate
the proposed developments.

2. THERMODYNAMICS AND ITS USE FOR
MODELING OF THE CSTR

2.1 A general view of the CSTR model

Let us consider a liquid phase CSTR under isobaric

conditions with one reversible reaction involving 2 species
A and B (Hoang et al. (2011)) :
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Ir.
vaA = vpB (1)
Ty
where v4 and v are the stoichiometric coefficients. Note
also that the net reaction rate r of the reaction (1) can
also be expressed as follows :

r=rf—rp (2)
where 7§ and 7, are the forward and reverse reaction rates,

respectively. In that respect, this necessarily implies that
vg <0 and vg > 0 (Ramirez et al. (2013)).

Let us consider the following modeling assumptions (Hoang
& Dochain (2013a)) :

(H1) The fluid mixture is ideal and incompressible.

(H2) The reactor is fed by the species A and B through
the inlet molar flow rates F4; and Fgy, respectively at a
fixed temperature T7.

(H3) The reaction rate r depends only on the temperature
of the reaction mixture, and on the concentrations of
the involved species. The net reaction » > 0 is such
that the species A is consumed, whereas r < 0 if the
species A is produced. The case » = 0 corresponds to
the chemical equilibrium. Furthermore, the reaction rate
r fulfills thermodynamic constraints as follows (Sandler
(1999); Favache & Dochain (2010); Alvarez et al. (2011)) :

limr =0 and T = Tmax (3)

T—0
Notation: Let T = {A, B} denote the set of chemical
species involved in the reaction mixture (1).

lim
T —+ oo

2.2 Thermodynamically consistent CSTR modeling

The continuous stirred tank reactors (CSTRs) belong to
a large class of open thermodynamic systems with mass
and/or energy exchanges with the surrounding environ-
ment. The system variables can be split into an extensive
variables vector Z (composed of the enthalpy H and the
molar numbers N;, Vi € Z) and an intensive variables
vector w (such as the temperature T and the chemical
potentials p;, Vi € 7). The difference between the ex-
tensive and intensive quantities lies in the fact that the
extensive quantity depends on the volume of the system.
Let us write those vectors in a compact form with the
entropy representation (Callen (1985)) :

T _ _ 1\T
7= (NA,NB,H) and w = (;f‘;BT) (4)
The system dynamics is given by considering the material
and energy balance equations on the basis of the extensive
variables vector Z (4) (Favache & Dochain (2010); Hoang
et al. (2012)) :

dN

TtA = Fu;— Fa+varV (5)
dN,

TtB:FglfFB+VB’FV (6)
dH .

— = Firhir — F;h; 7
dt QJ+;( 1 ) (7)

where (Fa, FB)T, (har, hB[)T, (ha, hB)T and Q7 are the
outlet flow rate vector, the inlet and outlet molar enthalpy

vectors and the heat flow rate coming from the jacket,
respectively. The volume of the CSTR is denoted by V.

Remark 1. In equilibrium thermodynamics, the variation

of the entropy S is given by considering the Gibbs’
equation (Callen (1985)) :

ds =w'dz (8)
Consequently,
95(Z)
T _
w(2)" = =2 (9)

As the entropy S is also an extensive variable, it is thus
an homogeneous function of degree 1 with respect to Z 2.
We get by using the Euler’s theorem (Callen (1985)) :

S(Z)=w"Z (10)

This implies that w(Z) (9) is a homogeneous function of
degree 0 with respect to Z.

Let us complete the system dynamics representation by
the entropy balance on the basis of the second law of
thermodynamics (see also (Couenne et al. (2006); Favache
& Dochain (2009); Hoang et al. (2011))) :

ds
- =%+ B and B, >0 (11)
where :
o, = Z (Fusz'l - Fi5i> + @ (12)
1€ TJ
F;
Y, = hir — T'sit — i
; T ( ! ! )
Qs Qg M
= = ) i V=0 (13)
(T T]) ;1/ T

with @&, and X, the entropy exchange flow rate with
surrounding environment (due to convection and thermal
exchange) and the irreversible entropy production, respec-
tively. The source term 3 is always non-negative along
the system dynamics (5)-(7) in accordance to the second
law of thermodynamics (De Groot & Mazur (1962)).

Remark 2. The non-negative property of the entropy pro-
duction ¥, (13) represents the so-called irreversibility de-
gree of the system dynamics. Its transcription in terms of
Lyapunov stability theory (Khalil (2002)) for the control
design of open reaction systems is not obvious because
the negative definiteness condition on the entropy pro-
duction variation has only been emphasized with linear
phenomenological laws provided by the Onsager symmet-
ric relations (De Groot & Mazur (1962); Tarbell (1977);
Ydstie & Alonso (1997)). Let us note that the non isother-
mal CSTR is a special but important case of open reac-
tion systems where nonlinear phenomenological laws, and
in particular, nonlinear reaction kinetics are considered

(Favache & Dochain (2009)).

Remark 3. The partial molar enthalpy and entropy of the
chemical species ¢, Vi € Z within an ideal isobaric mixture
are given by the following expressions (Sandler (1999)) :

2 Let f : R™ — R, the function f is said to be homogenous of degree
kif Vo € R™ and v € R*t, f(yz) = vF f().
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hi(T7 xz) = Cpi(T - Tref) + hi,ref

T
si(T,x;)=c -ln(

Z( 74) pt Tref
where Trcf, hirer and s; .y are reference values. The
heat capacity and gas constant are denoted by cp; and
R, respectively. The molar fraction of species i given by z;
is expressed as follows :

(14)

) + Siref — Rlna; (15)

N; .
r,=—,Viel

i (16)

with N = > N, the total molar number. Consequently,
i€L
the enthalpy and the entropy can be expressed as follows :

H=> Nih (17)
i1€T
S = ZNiSi (18)

It is worth noting that the entropy S (10) can be recov-
ered from (18) by using (17) together with the chemical
potential (De Groot & Mazur (1962); Sandler (1999))

2.3 The irreversible entropy production X

Let us first rewrite the expression of the entropy produc-
tion X4 given in (13) by :

Y= Z F?l ((hu —hi) = T(si1 — Si))

i€T

T T (20)

+<& - @) +Zz/i_iﬁirV >0
i€l
where the chemical potential (19) has been used. We
have the following property which represents the source
of contributions to X (20).

Property 1. The irreversible entropy production 3, (20) is
expressed as the sum of four thermodynamically separate
contributions as follows :

Es _ E;nix. + E];leat conv. + E];leat ex. + E;eao > 0
where :

(21)

Smix. :RZFH<1H (]X[I) —In (]]VV)> (22)

I

1€
at conv. 1 17
Z?etco :ZCpiFiI(T—l—ln (T)) (23)
i€l
Zheat ex. _ <@ o &) 2
and
¥reac = Z v _j'lfirV (25)

i€T
are the irreversible entropy productions due to mixing,
heat convection, heat exchange and chemical reaction,
respectively. Furthermore, these physical effects are in-
trinsically independent from each other, each constituent

entropy production is therefore non-negative thanks to the
second law of thermodynamics.

From a mathematical point of view, it is straightforward
to show the non-negative definiteness properties of X
(22), yheat conv. (93) and yheat ex- (24) (see also (Hoang et
al. (2011)) for more details). Contrary to the entropy pro-
ductions due to mixing Y™ heat convection Yheat conv.
and heat exchange Z};eat % the entropy production re-
sulting from the reaction X5 (25) depends only on the
system state variables (i.e. the intensive variables vector
w (4)) and the reaction rate rV. It is probably worth
noting that the sign constraint on 3%1°* can be proved but
restricted to the neighborhood of the (stationary) equilib-
rium states when considering a linear phenomenological
law for the reaction rate (De Groot & Mazur (1962)).
In general, this sign constraint is difficult to be proven
mathematically and it remains an open problem for the
trajectories which are governed by the reaction system
dynamics (5)-(7) subject to a given initial condition. Up
to now, no general proof is available for the nonlinear
case. Consequently, the non-negative property of 3¢
(25) has been largely accepted as an a priori postulate of
irreversible thermodynamics (Favache & Dochain (2009)).

3. TOWARDS A THERMODYNAMICALLY
STRUCTURED FORM OF THE REACTION RATE

In chemical reaction engineering, it is shown (Grmela
(2012); Hoang & Dochain (2013a)) that any reaction
taking place in the reactor is induced by the chemical
affinity (called the thermodynamic driving force (De Groot
& Mazur (1962))). This force acts on the reaction rate
when the system is outside the chemical equilibrium,
through the generation of the interaction of the reactants
(Sandler (1999)). Let us now introduce the definition of
the total chemical affinity of the reversible reaction (1) :

o =y — o, (26)
where :

ﬁff = —VAM?A and JZZ« = Z/BM?B (27)

are the chemical affinities of the forward and reverse
reactions, respectively.

The expression of X1 (25) can thus be rewritten with
(26)(27):

oAt = ofrV (28)
which is non-negative as previously mentioned. Note that
the sign constraint of X:°¢ (28) holds for any reaction
kinetic constant. From this it is straightforward to show
that the affinity &/ and reaction rate rV have the same
sign for any evolution; if & > 0 (resp. & < 0) then
rV > 0 (resp. ¥V < 0) and if & = 0 then 'V = 0
when the chemical equilibrium is reached. In other words,
the reaction always evolves in the direction of decreasing
affinity.
Remark 4. Note that the affinity </ (26)(27) is also an
intensive variable since ”7 is an intensive variable, Vi € 7
(see Remark 1). Consequently, it is shown that & is a
function of the extensive variable vector Z given in (4),

ie. of = (7).

Let us restate the following lemma. This result is inde-
pendent from the reaction kinetics. A complete version of
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this lemma dedicated to multi-component mixtures can be
found in (Hoang & Dochain (2013a)).

Lemma 1. The chemical affinity (26)(27) of the reversible
reaction (1) fulfills the following inequality :

o0 x4
VAs~— tVB-— <0

ON 4 ONgp — (29)

The following proposition gives a sufficient condition on
the chemical reaction rate rV in order to guarantee the
sign constraint of 3% (28) along the dynamical trajec-
tories regardless of (29).

Proposition 1. The irreversible entropy production 3:%*¢
(28) is non-negative if a structured representation through
the reaction force is considered for the reaction rate rV
subject to (H3) as follows :

S G ERE)

where the kinetic constant of the reversible reaction (1) is
commonly given by the Arrhenius law :

k(T) = ko exp ( - %) >0 (31)

where ko and E, are the kinetic constant and activation
energy, respectively.

(30)

Proof. The proof immediately follows. O

As a consequence of Proposition 1, we have the following
corollary.

Corollary 1. The explicit expression of the reaction rate
rV (30) presents the (generalized) mass-action law and is
given as follows :

B Ng\—va Np\vB
W=k () - RO(F) (32)
where the forward and reverse kinetic constants are :
Jo
kp(T) = koy(T)exp ( — —22
! ! ( T ) (33)
ky (T) = kor(T) exp ( - RT)
with
bor(T) = ko () 7 exp (TALRA = Sarer)
0f 0 Trer p R

Eaf = VA(*CpATref + hA,ref) + Eq

_ T \—% vB(cpB — 5B,rey)
N (R e
re

Ear = 7I/B(7CPBTr6f =+ hB,ref) + Ea’

(34)
Proof. Let us first rewrite V (30) by using (27) :

v =toe (- ) (e (G e (T 7))

(35)
1(*112;1(1189) WE have &% = h—T7 — 84, Vi € Z. By considering
we have :
M T
T = —Cpiln (E) + (cpi — Siref) 36)
+7CpiTre];_‘+ hi,ref +Rln (%)’ VieT
(35)(36) end the proof. O

Remark 5. In the neighborhood of the (stationary) equi-
librium, it is shown by considering the first-order Taylor

expansion (of the exponential functions exp (%) and

exp (%)) together with (26) that there exists a positive
constant K, such that (30) reduces to :
rV =K, (37)

with K, = 2 > 0. On the one hand, (37) typically form
an usual connection between the flow variable (reaction
rate) and corresponding effort variable (reaction force) re-
quired for Bond-graph modeling of the underlying physical
phenomena (Couenne et al. (2006)). On the other hand,
(37) represents the linear phenomenological law of irre-
versible thermodynamics for the chemical transformation
(De Groot & Mazur (1962)).

4. AN AFFINITY-BASED CANDIDATE LYAPUNOV
FUNCTION

Similarly to gravity, (linear) spring and electric forces
which give rise to a potential, the reaction force 7 involved
in chemical reaction systems can also be viewed as the
gradient of a potential function P(&) with respect to the
deviation of the reaction system from its chemical equilib-
rium (i.e. the affinity o) as follows (Grmela (2012)) :

_ dP(«)
T Ao (38)
Consequently, we derive :
1
P() = —5521/2 (39)

Remark 6. The sign < — > in (38) shows that if the
chemical equilibrium of an isolated system is disturbed by
changing the internal conditions, the reaction force acts
in the direction to counteract the change (i.e. pushing
the reaction system back to its chemical equilibrium) in
accordance to the Le Chatelier’s Principle.

Remark 7. The potential function P(<) (39) meets the
so-called thermodynamically stable evolution criterion
(Hoang & Dochain (2013a)) :

OP(F)
( “YATHN,

OP ()
— VB 6NB )TV < 0

(40)

Since the reaction system is open through the material
and heat exchanges at its surrounding surface, the sta-
tionary equilibrium (in the sense of system theory) may
not coincide with the chemical equilibrium (i.e. 7 = 0).
As a consequence and for the sake of coherence with ther-
modynamics through the potential function P(&) (39), a
particularly useful candidate for the stability analysis and
control design of the reaction system dynamics (5)-(7) is
the following function :
2

W (2),/(Z0)) = 3 (#(2) ~ #(Z0)) 20 (a1)
where Z; is the reference stationary equilibrium (i.e.
% =0).
The geometrical property of the non-negative function
W (e (Z), 9 (Z4)) is shown in the following proposition.

Proposition 2. W (o (Z), </ (Z4)) (41) measures the alge-
braic distance between the concave potential function
P(<f) (39) and its tangent hyperplane passing through
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oy = o (Zq). Furthermore, W (o7 (Z), o/ (Z4)) is a convex

function.

T )

Fig. 1. The potential function and its tangent hyperplane

Proof. First note that the tangent hyperplane passing
through 7, of the potential function P(<7) (39) is

dP(<)

From the concavity of the the potential function P (<)

(39), the algebraic distance is given by (see Figure 1) :
WA (Z), (Za)) = T, Aa) = P() = 0

which leads to (41). This concludes the proof. O

T (o, oy) =

Thanks to the non-negative definiteness property (41), the
convex function W(&/(Z), o/ (Z4)) can then be used for
the control design of the unstable CSTR via the controlled
reaction rate.

Theorem 1. Let II = {Z‘W(%(Z),%(Zd)) = 0} be the
(largest) invariant set of the dynamics (5)-(7). We have :
M= {Z’Z:ﬂd, VVGR”} (42)

where the positive scalar + is called the homogeneity
ratio. Consequently, the system dynamics (5)-(7) with
the reaction rate rV (30)(31) is globally asymptotically
stabilized at the desired reference state Z4 if

d
7W<O, Vt>0, Z¢1I
(43)
W—)Oast—%i—oo and Z €1l
and
v=1 (44)

Proof. Due to the homogeneous property of degree 0 of
the chemical affinity <7 (Z) with respect to Z (see Remark
4), it is shown that :
oA (Z) = o (Z), ¥y € R*T

which provides the largest invariant set II as given in (42).
Consequently, the set II is reduced to the only point Z,4
when the ratio of homogeneity ~ fulfils the condition (44).
Together with (43), W (<7 (Z), </ (Zq)) (41) qualifies as a
Lyapunov function. Asymptotic stability follows immedi-

ately by invoking La Salle’s invariance principle (Khalil
(2002)) and (44).

Remark 8. From (44), we obtain :
Z H N
Zq H; Nag Npq
The above proportions consequently provide? :

Va (45)

3 A trivial case is to impose H = Hg and/or Ny = Njg4 and/or
Np = Npg on the reaction system. Consequently, no feedback

9121

m N

e N, 1 (46)
From this it is shown that the strict convexity of the
W (et (Z), %7 (Zy)) (41) can be obtained if at least one
extensive quantity (for instance, the total mass m or total
mole number N etc.) is fixed. This analysis meets the
result presented in (Ydstie & Alonso (1997); Jillson &
Ydstie (2007); Hoang et al. (2012)).

Let us illustrate some thermodynamic concepts and the
above developments on a simple example.

Ezample 1. For the sake of simplicity and illustration, let
us consider a vector-valued function in R? as follows :

T
v(x1,12) = (01(5617952),112(1?1,152)) (47)
where :
T
9 = _1 )

vi(@1,22) " <CU1 + 2 (48)

va(z1,22) = —1In 2

2 ’ xr1 + X2

We can check easily that the vector-valued function
v(x1,x2) (47)(48) is homogeneous of degree 0 and con-
sequently, vi(xy1,z2)x1 + va(21,22)x2 is a homogeneous
function of degree 1 with respect to (z1,x2).

The affinity-like function is defined as a weighted sum
(or conical combination) of the homogeneous functions
of degree 0, vi(x1,x2) and vo(x1,x2) (see (26)(27)) as
follows :

%(ml,xz) = 51’01(1‘1,.’)’}2) + 52’02(1‘1,1‘2), 01,00 € R (49)
From this the (non-negative) storage function W (1, x2) =

2
%(Jz%(xl, xg) — Jz%(xld,xgd)) (41) is explicitly given by :

1
W(xl,x2)22<5lln( oL D T

xr1+x x
1 2 1d ) (50)
45, 1n ( T2 T4+ xzd)
T+ X2  Tod

where (48) has been used.

Figure 2 shows the geometrical shape of W(xy,z2) (50)
with a desired reference state assumed to be (214, z2q) =
(15,25). As previously shown, the homogeneity ratio is
determined by the following relation :

1
o (51)
Let © = (x1,72) and assume that the dynamics of the
storage function W (x) is such that (43) holds, the two
following different scenarios can then be involved :

e If z is initialized at 2° (for example, 2° = (20, 3) as
shown with a red-colored point in Figure 2) and no
constraint is imposed then the dynamics of x may
converge to any point lying on the homogeneity ratio
(including the desired point x4).

e If the constraint x1 + x5 = const is imposed and x
is initialized at 2° = (30,10) as shown with a blue-
colored point in Figure 2, then the dynamics of x
asymptotically converges to the only point x4 since
the homogeneity ratio v equals 1.

control law is necessary since the system reaches its stationary
equilibrium.
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10 Desired operating

Constraint on point xd=(15,25)

X, + x2=const

Different departing
points x°

Homogeneity

| ||||Il«¢n.

o

iy,

/’//é/ﬂ/////////////////

© o

40 40 30

Fig. 2. An illustrative example with —d; = d = 1
5. CONCLUSION

In this work, we have shown how to control the reaction
rate (central to generate the dynamical behavior of re-
action systems, and in particular of the CSTR) at any
desired stationary equilibrium by means of the Lyapunov-
based method together with irreversible thermodynamics.
More precisely, a structured representation of the reaction
rate which presents the (generalized) mass-action law is
proposed on the basis of the reaction force in order to
guarantee the sign constraint of the irreversible entropy
production due to the reaction. In this framework, the con-
trol of the reaction rate consists in controlling the reaction
force through the use of an affinity-related candidate Lya-
punov function. Future work will aim at the application
of the proposed results to the stabilization of the unstable
CSTR with possibly multiple chemical reactions. Besides,
a comparison in terms of (uncontrolled /controlled) process
dynamics characteristics with another structured form of
the reaction rate (e.g. (Grmela (2012))) has to be studied.
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