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Abstract: The characteristics of the dynamics and control of oscillations in a micromechanical ring 
resonator gyro that uses inertia properties of elastic waves are considered. A functional diagram of the 
gyroscope with a ring resonator is presented. Further, the scheme has a loop oscillation excitation and a 
measurement channel. This model is studied under the excitation of the resonator, which automatically 
provides maximum vibration amplitude with minimum control. It is shown that the using the schemes of 
stabilization of of the excited amplitude or normalisation secondary oscillations significantly reduces the 
non-linear characteristics of the transformation. To achieve the desired dynamic characteristics of the 
gyroscope, it is proposed to use feedback in the measuring channel by the velocity of radial displacement 
of the ring resonator in the output zone. The technique allows the calculation of the envelope of the 
fundamental mode oscillation from appropriate differential equations. That is a convenient tool for a 
comparative investigation of the gyro’s characteristics while studying the direct measurement type and 
the compensation type. 

Keywords: MEMS, micromechanical gyroscope, elastic wave resonator, basic theory, direct conversion 
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1. INTRODUCTION1 

Most of currently used micromechanical angular velocity 
sensors are constructed according to the scheme of vibratory 
gyroscope (Ayazi F., Najafi К. 2000), (Zarabadi S. A 1999), 
(Hopkin I. 1997). A construction, in which the inertia 
properties of the ring resonator excited into standing waves is 
exploited, has received relatively much less attention.. At 
present, the company Silicon Sensing (UK) specialize in the 
production of such gyroscopes (MMG R- type). Developers 
find that R-type gyroscopes have the best characteristics of 
noise and vibration resistance in class devices. Gyroscopes 
work like  angular velocity sensors when excitation resonator 
is positional. It means that the profile of the radial forces is 
rigidly attached to the case and corresponds to the basic 
oscillation elliptical shape see, for example, (Zhuravlev V.F., 
Klimov D..M. 1985), (Matveev V.L. 1998), (Lunin B.S. 
2005), (Merkuriev I.V. 2009). There are two types of 
oscillations (primary and secondary) for different 
micromechanical vibratory gyroscope designs. Primary 
oscillations generated by the excitation system, and the 
secondary ones appear because of the Coriolis force during 
rotation of the base. The frequency difference between the 
primary and secondary oscillations is a parameter that 
significantly affects the main metrological characteristics of 
the device. Therefore, it is necessary to take special measures 
to stabilise the frequency difference, or combine them. In 
wave gyroscopes no such problem is encountered, since the 

                                                 
1  This study was supported by Russian Foundation for 
BasicResearch, project 13-08-01016 

primary and the secondary oscillations have the same 
frequency. These are benefits of the standing wave gyroscope 
concept over of the vibrating gyroscopes. On other hand, the 
dynamics of bending oscillations for ring resonator are 
described by the non-homogeneous partial differential 
equations. In this case, the heterogeneity of equations is 
determined by a continuous action of the excitation 
oscillations and other control forces (if the device is in the 
compensation mode). The peculiarity of the wave gyroscopes 
is that the angular velocity to be measured enters into the 
wave equation in the form of changing coefficients. General 
solution of this equation does not exist. To evaluate the 
dynamic characteristics of wave gyroscopes, the most 
convenient forms of approximate solutions of the wave 
equations are to study the dynamics of the main modes of 
oscillations and to get the original model for the formation 
reading the values systems and control fluctuations. The 
present article addresses the key issues of the wave theory of 
micromechanical gyroscopes with a ring resonator and 
explores ways to achieve the required metrological 
characteristics of the devices in the direct measurement and 
compensation type, the source of measurement errors for 
such gyros.   

2. FUNCTIONAL SCHEME OF THE ANGULAR 
VELOCITY SENSOR 

 The generalized block scheme of a micromechanical sensor 
of angular velocity, which as a sensing element used in the 
form of a ring resonator, is shown on Fig 1. The resonator is 
circumferentially surrounded by eight electrodes as numbered 
in the figure. The electrodes 1 and 5 form a capacitive sensor 
of radial displacement of the ring in a zone of primary 

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 2679



oscillations, and with the electrodes 3 and 7 are electrically 
forces ensuring the generation of the primary oscillations. 
Similarly, the electrodes 2 and 6, as well as electrodes 4 and 
8 form a system used for measuring and controlling the 
secondary oscillations. 

 

 

 

 

 

 

 

 

 
The circuitry of the excitation system and control primary 
oscillations and the measurement system and control of 
secondary oscillations depends on the choice of the primary 
ways of exciting variations and ways to generate output 
signals of the device. This may be implemented as a direct 
conversion mode thus  compensating the measurement mode. 

The physical basis of the occurrence of secondary oscillations 
are described in the literature (Panferov A.I., Ponomarev 
V.K., 2011). 

3. THE DYNAMIC EQUATIONS OF THE RING 
RESONATOR 

In the linear theory of elasticity the dynamics of the ring 
resonator is described the following  partial differential 
equation (Zhuravlev V.F. Klimov D.M. 1985), (Severov L.A. 
1996) which is second order in time and fourth order in the 
variable φ. 
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where  w  is the radial displacements of points on resonator 

center line; 
dt

dw
w  ;  





w

wI ;   - sensed angular 

velocity; pB and pK – reduced forces of the excitation and 
controlled factors. 
Structural parameters being part of equation (1) determining 
elastic and damping forces at ring rectangular cross-section 
are found under the formulas: 
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where   Е,   are the elasticity modulus and the ring material 
density,  R and  h  are the center line radius and the thickness 
of ring,   is the coefficient of viscous damping forces. 

The general solution of equation (1) is represented by an 
infinite series of harmonics (vibration modes), each of which 
retains the properties of inertia in space. The greatest weight  

in the radial displacement of the points of the ring makes a 
second mode of oscillation. To obtain the equation for the 
second (main) modes of oscillation, Bubnov-Galerkin 
solution will be sought in the following form 

      .sintScostC,tw  22                           (3) 

and reduced external forces are expanded in a similar form 
but with two new time-varying coefficients: 

         .sintfcostf,tf  22 21                       (4) 

After evaluating the partial derivatives of equation (3) and 
substituting them into equation (1) with regard to the 
expression (4) while noting that Ω= Const, we  have: 
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Separating oscillations two modes of oscillations 
corresponding to the sines and the cosines respectively, we 
obtain the following set of two coupled ordinary disfferential 
equation in the time variable and note that the spatial variable 
has been eliminated from the dynamics because of the 
application of the Bubnov-Galerkin approach 
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The first equation describes oscillations relative axes OX and 
OY, the second one - relative the axes rotated by an angle of 
45°. The first of these axes are the excitation axes of the 
primary oscillations, while the latter are measuring axes (axes 
of the secondary oscillations). 

In the absence of angular velocity term equation (5) can be 
integrated independently as the two equations decouple – 
thus illustrating the gyroscopic coupling between the two 
motions which arise from Coriolis effects.  

Equation (5) can be written in a standard form: 

                 1
2 2.026.1 ftCtCtStC   ;             (6) 

                 ,2.026.1 2
2 ftStStCtS                (7) 

where 
5

6
- own frequency of the second oscillation 

mode;  




 156.0  - rate of oscillation. 

Equations (6) and (7) describe vibrations of the resonator and 
can be treated as the mathematical model for the analysis and 
design of a micromechanical gyroscope as a single 
electromechanical system. 

Gyroscopes with a ring resonator, as well as other micro-
mechanical gyroscopes, are  modulation type devices.  The 
information parameter is the amplitude (envelope) of the 
oscillations. To obtain the equations describing the dynamics 
of envelope, the forced oscillation being at the  excitation 
frequency in the steady state and the own frequency of the 
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Fig.1 Functional scheme of the angular velocity sensor 
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resonator, the general solution of equation (1) will be sought 
in the form: 
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 Electrostatic excitation forces and control of oscillations can 
be expressed in the following form  
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Substituting (8) and (9) into equation (1) and dividing the 
oscillation modes, the  system of equations are obtained as a 
set of four second order coupled ordinary differential 
equations with constant coefficients   const : 
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In the steady state, and in the absence of control forces, the 
oscillation will be: 
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Parameters m and n are the amplitudes of the resonator in the 
excitation and measurement modes. 
The  dependences obtained above show that the angular 
velocity amplitudes of the base causes the resonator in the 
measuring zone, and in the zone of excitation. Moreover the 
non-linear nature of these relationships are apparent. 

4. THE EXCITATION OF THE RESONATOR'S 
OSCILLATIONS 

The wave resonator oscillation is excited by the application 
of a periodic force from the force sensors located in the 
excitation zone. The amplitude of the excited oscillations will 
be maximised if the frequency of the periodic excitation force 
coincides with the natural frequency of the mechanical 
resonance. There are two possible ways to provide excitation 

to achieve resonance in  micromechanical vibratory 
gyroscopes: 

- excitation of oscillations in self-maintained mode;  

- excitation with master or reference generator whose 
frequency is automatically tuned to mechanical resonance 
frequency.  

The second approach, for instance, is implemented in Silicon 
Sensing (Ayazi F., Najafi К. 2000). 

To implement the first method, a technically simple way of 
positive feedback by sign of resonator element motion speed 
in the area of excitation electrodes location is ensured.  
Additional energy added by this way should prevail over that 
of   dissipative forces resulting in oscillations development. 
Amplitude of steady oscillations is restricted by maximum 
exciting force. The maximum use of output performance of 
force sensors will be achieved by this way, in which the force 
sensor works in a relay mode (Severov L.A., Ponomarev 
V.K. 2011). A functional scheme of self-oscillating field 
system that implements the method of formation of the 
excitation pulses is shown in Figure 2. 

 
 
 
 
 
 
 

 
 
Fig.2  Functional scheme of the  resonator excitation  
self-oscillator sistem 

In  Fig. 2, two gyroscope electrodes located at axis y and 
connected in parallel are used for the measurement of 
resonator displacement, and two electrodes at  the х-axis – as 
a force sensor. 

In the autogenerating exciting force (as mentioned) is formed 
under the law  

   tCftf sign01  .         (14) 

Thus, the model of resonator in self-maintained mode is 
described by the following equations: 
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where 0f - the maximum value of the specific force 

excitation electrodes. 
When 0 , the excitation process describes only the first 
equation of system (15). For a first approximation of its 
solutions, keeping in mind the physical picture of the circuit, 
we assume that the sensor applies a force to the resonator 
harmonic effects with a frequency equal to the natural 
frequency of the resonator [Hopkin I. (1997)]. Then the 
above equation becomes: 

             .sin2.02 0
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Given the smallness of the parameter , the solution of 

equation (16) can be found in the form: 
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The same result can be obtained in case of equation (10) for 
the envelope of the resonator. In this case, the reduced 
excitation force should be written as  

).sign(00 maff    

Since the implementation of the autogenerating way to excite 
oscillations disturbing force is not harmonic signal, and a 
binary sequence, the result should be corrected by adjusting 
the shape of the excitation signal. 

Thus                 ,
1.0

2


 dK

Ac  

where               25.1
2



dК . 

The temporal response showing the build-up of the amplitude 
within an envelope, of the physical resonator whose 
dynamics  are described by by equations (16), is presented in 
Figure 3.  Figure 4 shows changes in the amplitude of 
oscillations,  resulting from the numerical solutions of 
equations (10) for the envelope fluctuations. Both graphs 
correspond to the case of an unmoving base ( 0 ). 
 
 
 
 
 
 
 
 

 
 
 

Fig.3 The temporal development of oscillations of the 
resonator in the absence of base rotation 

 
 
 
 
 
 
 
 
 

 
Fig.4 Change of amplitude of oscillations in the absence of 
rotation of the base 

If base is rotating ( 0 ), the oscillation amplitude of the 
resonator are given by equation  (12). A comparison of the 
envelope as numerically calculated from the direct numerical  

integration with those obtained analytically for the envelope 
can be made from Fig.5 and Fig.6. respectively. 

The results of studies suggest that besides the dependence of 
the amplitude of the excited oscillations and the angular 
velocity of the base the time to build up the oscillations is  
large enough which  affects the time the device operational 
readiness. 

 

 

 

 
 
 
 
 
 
 
 

 
Fig.5 The development of oscillations in the presence of the 
rotation of the base 

 
 
 
 
 
 
 
 
 
 
 

Fig.6 The change in the amplitude of oscillations in the 
presence of rotation base 

5. FORMATION OF THE MEASUREMENT CHANNEL 
TO THE ANGULAR VELOCITY SENSOR DIRECTLY 

MEASURING 

As MEMS vibratory gyroscopes produce a velocity signal as 
a response to the rotation of the base,    synchronous 
detection with a reference oscillatory signal generated in the 
excitation  circuit is necessary. However,  a significant non-
linearity in the characteristics of transformation must be 
considered. This is given by a formulaic relationship (13). 
Using (12) and (13) we obtain 

                



136

8
mn . 

Thus, when no rotational angular velocity of the base 
oscillation is present, the amplitude of the resonator in the 
excitation zone is maintained constant and is equal to the 
nominal value; the amplitude of vibrations in the 
measurement zone is related to the linear dependence of the 
measured quantity 
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             
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 пkmn
1

0 36

8
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where пk  - conversion factor of the resonator. 

If there is power, the margin of force gage of the excitation 
system amplitude stabilization may sufficiently reduce the 
impact on the metrological parameters of the device 
measuring excitation factors.  
One may realize the stabilization of resonator oscillations  
through a change of feed voltage of the key magnifier, which 
principally is shown in Fig.2.  

Controller of the amplitude stabilization system can be 
constructed, for example, according to the scheme in which 
an amplitude detector, a low pass filter correction circuit and 
a buffer amplifier [Severov L.A., Ponomarev V.K., and 
Other, (2011c)] is used. 

Following amplitude stabilization, accumulator register 
stabilization of the error signal is established. Through 
correction contour CC and buffer amplifier BA, at input of 
which current stabilization voltage is formed, signal enters 
the control input of voltage stabilizer VS of key magnifier of 
excitation system. Selection of the structure of correction 
contour provides the required static and dynamic 
characteristics of the system [Severov L.A., Ponomarev V.K. 
(2011)].  

As an illustration, in Fig. 7 shows thetransitive processes in 
the contour of autoexcitation during actuation of contour of 
amplitude stabilization. Fig. 7а shows the pattern of 
development of physical oscillations and Fig. 7b – identified 
by amplitude detector and phase-sensitive rectifier 
enveloping curve (amplitude) of oscillations.  

 
                                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Transitive processes in the contour of autoexcitation 
during actuation of contour of amplitude stabilization 

As can be seen, the time of operational readiness of the 
device significantly decreases. Additional investigations have 
shown that there is substantial smoothing of gyroscope 
calibration. 

The linear conversion characteristic can be obtained via 
normalization operations by selecting the  amplitude to the 
measuring axis vibration amplitude along the axis of the 
excitation 

       .k
m

n
n n 


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If the device is implemented stabilization mode excitation 
amplitude oscillations, the dynamic characteristics of the 
measuring channel will be described by the equation 

         .sin6.12 2 ttAtStStS c          (18) 

The solution of this equation in the quasi-constant function 
  constt  0 will be 
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0 te
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As can be seen, the envelope of fluctuations varies 
exponentially, which makes it possible to describe the 
dynamics of an aperiodic transfer function. 
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where       ,
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A
k     and  .

1

а
Tm   

The transfer function (20) and the corresponding frequency 
response will determine the dynamic characteristics of the 
angular velocity sensor for a direct measurement in the 
frequency band of measurement. 

In an embodiment of the device,  the normalization of the 
output dynamic characteristics can be established only in the 
model experiment, because the procedure of normalization is 
a nonlinear operation. Thus, the dynamic characteristics of 
the gyro will depend on the magnitude of the measured 
angular velocity. To the greatest extent, it is shown in the 
measurement of large angular velocities (Fig. 8) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Dynamics of the output signal in the measurement of 
large angular velocity 

 

а) 

b) 
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6. COMPENSATION MEASUREMENT MODE 
 
The main objective of compensating mode measurement 

is to provide  dynamic performance requirements on the 
device and, in particular, the requirements for the working 
frequency band. This can be obtained by using feedback by 
velocity of ring elements movement in output zone. 
While maintaining the amplitude of the oscillation perturbed 
by constant dynamic measurement channel, taking into 
account the forces that compensate for the Coriolis force, the 
dynamical equation for oscillations relative the axes rotated 
by an angle of 45° to  axes OX and OY is given by 

       .2.0sin6.12
020

2 tSкftAtStStS осc
  (21) 

where 
02f - energy parameter of the force sensor; осk  - 

transfer coefficient of compensation loop. 
The solution of the equation (21) can be expressed as 

               ,cos1
8.0
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1

1 te
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tS tc 


   

where .
2

2.0
02

1 
 осkf

 

The solution shows that time constant of transition is 
increasing when koc decreases. That is why the working band 
frequencies of the device is widening. Using these 
relationships and making the requirements for the working 
frequency band, the necessary coefficient of the feedback 
compensation loop of the Coriolis forces can be found. 

CONCLUSIONS 

The investigation described in this paper shows that the 
angular velocity sensor with ring resonator and positional 
excitation without the system for oscillations control 
possesses unsatisfactory technical characteristics of linear 
transformation, working frequency band, time of readiness. 
These characteristics can be improved when compensating 
measurement mode is employed.  It has been shown that 
another efficient means of improvement of transformation 
linearity and shortening of readiness time is an arrangement 
of stabilization contour of resonator oscillations amplitude in 
the excitation zone. Here, the task of the oscillations control 
contour in the data recording zone (compensation contour) is 
provision of required working band of sensor frequencies.  
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