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Abstract: Motivated by considering structurally dynamical properties of reaction systems, we
develop an approach to deal with the nonlinear control of an unstable CSTR. More precisely, this
paper shows that the CSTR dynamics can be split into reaction variant and reaction invariant
dynamics modes through the use of linear combinations of system variables (called inventories).
Since the reaction invariant dynamics mode is exponentially stable, the control design for an
exponential stabilization of the reactor is simply solved together with (partial) inventory control
on the basis of controlling the reaction variant dynamics mode. An extension of the approach
to multiple chemical reaction systems is briefly outlined. Simulation results for a first order
chemical reaction with multiplicity behavior are given to illustrate the theoretical development.

Keywords: Inventory control, Lyapunov function, CSTR, Reaction variants/invariants.

1. INTRODUCTION

Open homogeneous reaction systems and in particular,
Continuous Stirred Tank Reactors (CSTRs) belong to a
typical class of nonlinear dynamical systems described by
Ordinary Differential Equations ODEs (Luyben (1990)).
The CSTR is a simple chemical process system but con-
centrates many intrinsic difficulties and theoretical chal-
lenging issues which the system control theory has to over-
come: the system dynamics may be involved with possible
multiple steady states behavior or non-minimum phase
characteristics because of nonlinear constitutive relations
(for instance, chemical reaction kinetics and transport
phenomena etc.) (Hoang et al. (2013b)). The underlying
motivation for controlling the CSTRs is that industrial
chemical reactors may have to be operated at unstable
operating conditions which correspond to some optimal
process performances (Bruns & Bailey (1975)). Over the
years a number of control strategies have been proposed
to deal with the nonlinear feedback control of unstable
homogeneous chemical reactors. Generally speaking, these
strategies are mainly based on mathematical tools such as
Lyapunov methods, differential geometry (Khalil (2002))
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and passive techniques (Van Der Schaft (2000)). Besides,
the physics-based approach through the application of
thermodynamics to the stability analysis and control de-
sign of open reaction systems establishes an active research
area (Georgakis (1986); Ydstie & Alonso (1997); Srini-
vasan et al. (1998)) and is recently extensively considered
in the literature (Ruszkowski et al. (2005); Eberard et al.
(2007); Favache & Dochain (2009); Hoang et al. (2011,
2012a,b); Hoang & Dochain (2013a); Hoang et al. (2013b);
Hoang & Dochain (2013c); Ramirez et al. (2013)).

This paper deals with the nonlinear control of an unstable
CSTR in the context of thermodynamics on the basis of
reaction variant and reaction invariant dynamics of the
chemical reactor together with the inventory control (Yd-
stie & Viswanath (1994); Farschman et al. (1998); Hoang
et al. (2013d)). More precisely, as shown in the pioneering
works of (Asbjornsen (1972); Fjeld et al. (1974)), the ther-
modynamic state variables form linear combinations which
constitute the reaction variant and reaction invariant dy-
namics modes. As a consequence, this state transformation
allows to reduce the dimension of the state space usable
both for the stability analysis and control design of the re-
action system since the reaction invariant dynamics mode
that belongs to a positive invariant is exponentially stable.
On the basis of the reduced state variables, the nonlinear
stabilization of the reactor at a desired reference operating
point (set-point) is simply solved by adopting an inventory
control-related approach. It is shown that the inventory
control is based on the idea of passivity and dissipation of
high order dynamics which are not controlled and renders
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them passive and then dissipative by stabilizing feedback
laws on boundary control inputs.

This paper is organized as follows. The inventory control
strategy is briefly introduced and the way to obtain the
state feedback law is mentioned in section 2. In section
3 the dynamical model of the CSTR is presented and
analyzed. This section is devoted to the design of the state
feedback law insuring the exponential stability of the entire
system. Moreover it is shown that the resulting control is
admissible. Finally, numerical simulation results are given
in section 4.

2. INVENTORY CONTROL STRATEGY

Throughout the paper, we focus our attention on the
CSTRs model which is affine in the control input u and
whose dynamics are given by the following set of ODE’s
by considering the energy and material balance equations :

dx

= f@)+ 9()
where z = z(t) € R" is the inventory vector?, f(z) € R
represents the smooth nonlinear function with respect to
z, g(x) € R™™™ is the input-state map and u € R™ is the
control input.

z(t =0) =z (1)

The central objective of the inventory control is to control
some process inventory such as x to its (constant) set-
point x4 by choosing the manipulated input variable u so
that the candidate Lyapunov function of the dynamics (1)
decreases. A particularly useful candidate for that purpose
is the following function (Ydstie & Viswanath (1994);
Farschman et al. (1998); Hoang et al. (2013d)) :

1
() = 50— 2)" (@~ 22) 2)
One can show that its time derivative is then given by
d¥(x) rdz
R 3)
From the inventories dynamics %% (1), (3) becomes :
d¥(x)

o= w—a) (f@) rg@)u) @)

If the following non linear PF-F (Proportional Feedback-
Feedforward) control input u is chosen so that

u=g@)7 (9(x)9@)") " (= f(2) = Kela) (2= 20)) (5)

then,

dwdfsx) = —(z — 2a)TKe(2) (2 — 24) ©)
and d\IJ(LU)
— < ok () (7)

where K (z) in (5) is a positive definite gain matrix and
ke (7) is its smallest eigenvalue.

It is shown that the candidate Lyapunov function ¥(z) (2)
is positive definite and its time derivative (7) is radially
bounded via the feedback law (5). As a consequence, the
Lyapunov function ¥(z) globally exponentially decreases.

2 The inventory of a chemical reaction system is a non-negative
integral measure that calculates physical properties such as internal
energy and total molar number or total mass of each present chemical
species (Ydstie & Viswanath (1994); Farschman et al. (1998)).

3. THE CSTR CASE STUDY

Let us consider a CSTR with one irreversible reaction in-
volving two chemical species A and B. The stoichiometric
relation that represents the (molar) mass conservation of
the reaction is given as follows :

vaA — vpB (8)

where the stoichiometric coefficients v4 and vg are signed:
vy < 0 and vg > 0 (Ruszkowski et al. (2005); Hoang &
Dochain (2013a); Ramirez et al. (2013)). The reactor is fed
by species A and B and Inert at a fixed inlet temperature
Tr. The jacket temperature T; (assumed to be uniform)
together with the inlet molar numbers (Nas, Npy) are
considered as the manipulated process inputs.

The following modeling assumptions are considered here :

(A1) The reaction mixture is ideal, incompressible and
under isobaric conditions.

(A2) The heat flow rate @) coming from the jacket is
modelled by the following relation :

Qr=\NT;-T) 9)

where A > 0 is the heat exchange coefficient and T is
the reactor temperature.

(A3) The specific heat capacities cya, ¢pp and Cpmert are
assumed to be constant.

(A4) The molar number of two active species A and B
in the reactor and in the inlet molar flow are very low
compared to the molar number of the Inert. Hence the
reaction volume V can be written as follows :

Vo~ UIncrtNIncrt = const (10)
where vnert denotes the (constant) molar volume of
species Inert. The volume V is supposed to be constant.
As a consequence of the constraint on the constant
volume, the inlet and outlet volumetric flow rates are
equal (i.e. Ff = Fp = F).

(A5) The reaction rate is described by the mass-action-
law :

roV = k(T)N /! (11)

where the liquid phase reaction kinetics k(T) is as-
sumed to be monotone, non-negative and bounded in
accordance to the thermodynamic constraints by (Luy-
ben (1990); Favache & Dochain (2010); Alvarez et al.
(2011)) :

lim k(T) =0 and

T—0

lim Ak(T) = kmax

T—+4oc0

(12)

We can easily check that the above conditions hold for
the Arrhenius law,

=) (13)

where F, and R are the activation energy and the ideal
gas constant, respectively. The positive scalar kg is the
reaction kinetic constant.

k(T) = kg exp(

The physical variables of the CSTR model are introduced
in Table 1.
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Table 1. The physical variables of the CSTR

Notation  Unit

hir Jmol~!  Inlet molar enthalpy of i (i = A, B, Inert)
h; Jmol~™1  Partial molar enthalpy of i (i = A, B, Inert)
Nar mol Inlet mole number of species A

Npr mol Inlet mole number of species B

Ninerts mol Inlet mole number of species Inert

Ny mol Mole number of species A

Np mol Mole number of species B

Nnert mol Mole number of species Inert

d= g st Dilution rate

rvV mols™1! Reaction rate

Notations: Let S = {A, B} be the set of active chemical
species involved in the reaction (8). Let Z =S U {Inert}
denote the set composed of all present chemical species.

3.1 The CSTR modeling

The system dynamics are given by considering the en-
ergy and material balance equations. When the isobaric
conditions are considered (Assumption (A1)), the energy
balance is written using the enthalpy H instead of internal
energy U. The balance equations are then of the following
form (Favache & Dochain (2010); Hoang et al. (2013e)) :

dH .

— =d(H— H

Cﬁ{f (Hr )+ Q. 14
E:d(N]—N)‘FVT'VV

where d = £, N; = (Nar, Np;)T and N = (N4, Np)"
are the dilution rate and the vectors composed of inlet
and outlet mole numbers, respectively. v = (va,vp)7T is
the stoichiometric vector.

Remark 1. Since we suppose the ideality of the reac-
tion mixture, the enthalpy of species i can be expressed
as hi(T) = cpi(T — Trey) + hiref, Vi € I where Tyy and
hirey are the reference temperature and reference molar
enthalpy, respectively. The total enthalpy H of the reaction
system can then be written as follows :

H =Y Nihi(T)

i€l

(15)

Thanks to the local equilibrium hypothesis, the energy
balance %I given in (14) can also be rewritten in terms of

temperature. This is done by using the expression of the
enthalpy H (15), we obtain (Favache & Dochain (2010);
Hoang et al. (2012a, 2013e)) :

dr .
Gy = (= ApH )V +d (T, = T)Cp + Qs (16)
where AgH = Y v;h;(T) is the reaction heat® and

i€S
Cp =Y ¢ N; is the total heat capacity, respectively.
1€T
Remark 2. The similar expression of the dynamics of Inert
is given as follows :
dNInert
dt

3 Following usual thermodynamic notations (—AgrH) > 0 for
exothermic reactions and (—ArH) < 0 for endothermic reactions.

=d (NlnertI - NInert) (17)

From (10) it follows that the constraint on the constant
volume can only be guaranteed only if % = 0 or
Ninert = const with respect to time. This condition
holds by imposing some appropriate initial condition (i.e.
Ninert(t = 0) = Nipertr). Even the species Inert does not
participate to the chemical reaction (8), its presence in the
reactor should be considered when calculating the total
heat capacity C), as well as the total enthalpy H (15).

3.2 Reaction variant and reaction invariant dynamics

The central core of a decomposition the system dynamics
(14) that emphasizes reaction invariant and variant dy-
namics modes in the sense of (Asbjornsen (1972); Fjeld
et al. (1974)) is based on a size-preserving transformation
of the reaction matrix (Hoang et al. (2013e)). It is worth
noting that the energy balance % given in (14) implicitly
depends on the reaction rate®. In such an instance, it
can be considered as an implicit reaction variant. As a
consequence for the case we are concerned with here, the
reaction matrix reduces to the stoichiometric coefficient
vector v = (va,vp)T

Let v' and v+ are the (pseudo) invertible and removal
elements of v, respectively so that :

viv=1 and vir=0 (18)
It follows that :
1 1 \T 1 1,\7T
T:(77> d l:(_7—> 19
v 2v4’ 2up an g va' vp (19)
Let us now define a state transformation :
M=TN (20)

where M = (M, M)7T and the transformation matrix 7
is defined as follows :

11
; N
v
T(;ﬁ)_ va 2vm (21)
va ve

Remark 3. Since the vectors v and vt (18)(19) are
linearly independent, it is straightforward to show the
square matrix 7 (21) is non singular. As a consequence
of (20), we have :

N=T"'M (22)
where :
va
vA ——
T = 7 (23)
vp 7
Remark 4. Thanks to the thermodynamic relation (15)
and since Nipert = const, the temperature T can be

derived as a (nonlinear) function of (H, M, M), i.e. T =
T(H, M, M) (see Hoang & Dochain (2013a)) through the
use of the (inverse) state transformation (22)(23) :

T — H - h?efT_lM - hInertrefNInert LT
CETflM + CpInertNInert ref

(24)

Let us state the following proposition.

4 Indeed the alternative expression of the energy balance in terms
of temperature (16) is strongly related to the reaction kinetics. This
is of course due to the thermodynamic relation (15). However, (16)
is not considered in this work since the temperature 7' is not an
inventory (or an extensive quantity).
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Proposition 1. The state transformation defined in (20)(21)
transforms the system dynamics (14) into reaction variant
and reaction invariant dynamics modes. Their explicit
forms are given as follows :

dH .

T =d(H;-H)+Q,

M _ g (M;— M) +7,V (25)
£

o d (M;— M)

where the reaction rate r,V is a nonlinear function of

(H, M, M).

Proof. The proof immediately follows. Indeed, one ob-
tains from (20)(21) :

dmM 1
where the dynamics - in (14) have been used. Finally,
we conclude the proof by considering the reaction rate r, V'
(11)(13) with (22)-(24). |

dIN

In what follows, let (Hy, Nag, Npq) be the desired station-
ary state of the dynamics (14) corresponding to nominal
operating conditions :

TJ :Tyo, NAIZNX? and NB[ :Ng(} (26)
Equivalently, the dynamics (25) has its desired set-point

(Hg, Mg, M) calculated by considering the state trans-
formation (20)(21) at N = Ny :

— 1 1
Mg=—Npag+ —NBa
21/,? 2VB (27)
My=——Nyq+ —Npyg
va vp
In particular, let us also note from (25) that
My =M; (28)
where :
M _ i no + LNTLO (29)
L= At VB

Remark 5. Since v4 < 0 and N > 0, from (20)(21) it
follows that M is positive. The dynamics of M in (25)
represents a simple form of the (molar) mass conservation
in the reactor. Since d > 0, it is shown that M exponen-
tially converges to M,; = M;. Futhuremore, the domain

Q= {M(t) 0<M(t=0)< MI} is positively invariant.

The central objective of this work is to design state feed-
back control laws for the variable process inputs 1y, Nay
and Npy in order to stabilize the reactor dynamics (14) at
the desired operating point (set-point) (Hg, Nag, Npq). In
the following, we show that the control design can simply
be solved by using the equivalent dynamics (25) through
the elimination of the reaction invariant dynamics (i.e.
model reduction).

3.8 Controller synthesis

Let us state the following proposition that allows to reduce
the dimension of the dynamics (25).

Proposition 2. Since the reaction invariant dynamics are
(exponentially) stable, the dynamics (25) reduce to a lower
dimensional ones described by (1) with :

e (B) o (8) s (A7)

(30)
s0)=(§4) (31)

Furthermore, g(z) is invertible.
Proof. The proof immediately follows. a

In what follows, the control design is realized through the
application of the inventory control strategy to derive a
feedback control law for u (30) that allows to stabilize the

reduced dynamics (1)(30)(31) at x4 = (Hg, Mg). Let us
state the following proposition.

Proposition 3. The following state feedbacks :
Qs= —K\(H—-Hy)—d (H;—H)
{MI = (- Ko(M ~ F) ~ V) + M
with the tuning parameters K; > 0 and K5 > 0, exponen-

tially globally stabilize the reduced dynamics (1)(30)(31)
at the desired state x4 = (Hgq, My).

(32)

Proof. The proof immediately follows by using (2)(5) of
the inventory control with K. (z) = diag(K7, K2). O
Remark 6. As a consequence of Proposition 3, the nonlin-
ear state feedback laws considered for the physical inputs
of the process (i.e. the jacket temperature T; and the
inlet molar number vector N7 = (Naz, Np;)") are of the
following expressions through the use of the (inverse) state
transformation (22)(23) and (9) :

1.
Ty= T+ XQJ
N =T 'M;
where M; = (M, M;)T and Q are given in (29)(32).
Remark 7. Let us consider a CSTR involving n,. indepen-
dent chemical reactions with n. (active) chemical species
S; (j = 1...n.). The stoichiometric representation of such

a reactions network is expressed as follows (Ruszkowski et
al. (2005); Hoang & Dochain (2013a)) :

(33)

Ne

> 1S =0, i=1...n, (34)
j=1
Let us note that the following condition,
n.+1<mn, (35)

holds for industrial chemical reaction networks.

As previously shown, the reaction matrix v is completely
formed by stoichiometric coefficients. We therefore have :

y= (Vij)ncm (36)

Since n, < n. (35), it follows that rank(v) = n,.. In other
words, there exists a non singular square matrix 7 so that
(Hoang et al. (2013e)) :

- (glese )
(ne—ny)Xn, N X
where I, xpn, and O(,__pn,)xn, are the identity and the zero

matrices, respectively. The state transformation defined by
M = TN (20) therefore gives :

M _ (Mn,,‘xl )
M(nc_nr)X1 neX1

(37)

(38)
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where the dynamics of the (generalized) inventories M
and M allow to emphasize the reaction variant and
reaction invariant dynamics modes of the original system
dynamics, respectively. Finally, the control design of the
non isothermal reaction network is then solved on the
basis of the lower dimensional dynamics associated to z =
(H, M) (5, +1)x1 by using the inventory control strategy.

4. SIMULATION

In this section, the exothermic chemical reaction (8) is
considered for simulation with v4 = —1 and vg =1 (i.e. a
first order reaction (Viel et al. (1997); Favache & Dochain
(2010))). The numerical values of the CSTR model can
be found in (Hoang et al. (2013e)). The objective of this
section is to illustrate the application of the proposed
control laws (33) for the stabilization of the CSTR at a
desired operating point.

The open and closed loop simulations are carried out
with two different initial condition scenarios, IC; with

(TO = 335 (K), Nao = 0.04 (mol), Ngo = 0.001 (mol))
and 1Cy with (To = 300 (K), Nao = 0.14 (mol), Ngo =
0.03 (mol)).

4.1 Open loop simulation

First of all let us consider open loop simulation with the
nominal operating conditions (26) defined by (39) :

T7° =298 (K),N47 = 0.18 (mol), Ng7 = 0 (mol) (39)
We assume that the additional process inputs
Ty =298 (K) and Nipertr = 3.57 (mol) (40)

are fixed during the reaction course. Details on analysis
of the steady states can be found in (Hoang & Dochain
(2013c)). As shown with the Van Heerden diagram at a
stationary regime (Figure 1), the reaction system exhibits
three steady states denoted by Py, P> and Ps, respectively.
The states P, and P; are (locally) stable whereas the
middle steady state P» is unstable. In the next section,

140 T T T T T T T

— heat generated
——= heat absorbed

120

-

o

o
T

Unstable state

60

Heat generated or absorbed

40
Stable states
20

0 L 1 1 1 1 1 1
300 310 320 330 340 350 360 370 380
Temperature [K]

Fig. 1. The Van Heerden diagram of the CSTR

we propose to operate the reaction system at the unstable
middle steady state P, using the state feedback laws
proposed in (33).

4.2 Closed loop simulation

Let us assume that the system variables are completely
measured. The reaction system is then closed using the
state feedback laws (33) with K; = 0.008 and K5 = 0.005.

In Figure 2 the closed loop phase plane is represented. It
is shown that the system dynamics converge to the desired
operating point P,. Furthermore, the dynamics of the
manipulated process inputs (33) are physically admissible
in terms of amplitude and dynamics as seen in Figure 3.
Remark 8. The convergence speed goes faster when in-
creasing the tuning parameters K; and Ko.

P e trajectory initialized at IC 1

trajectory initialized at IC2

[=]
o
T

1

o.o8} » -

Molar number N A [mol]

o.06} Ay .
0.04} st (o .

0.0z} :
Ps

290 300 310 320 330 340 350 360 370 380
Temperature T [K]

Fig. 2. The representation of the close loop phase plane

320

300

280

260

240

Jacket temperature T J 1K)

220f |

200f -

100 200 300 400 500

Time [s]
0.18 E
E‘ o6 | with IC | |
= — with IC,,
Z 014 .
0.12 N L 1 1
100 200 300 400 500
Time [s]
0.06 T T T
..... with IC |
— with IC,,
200 300 400 500
Time [s]

Fig. 3. The dynamics of the manipulated process inputs

As previously shown, the storage function ¥(x) (2) plays
the role of Lyapunov function. Furthermore, its dynamics
converge to 0 with an exponentially decay (Figure 4).

5. CONCLUSION

In this work, we have shown that the dynamics of a
homogeneous reaction network can be split into reaction
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10 10
“+ —.. with IC - with 1C
1 2
a g a B
\
3.5p 3.5
= 3 > 3
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S S
B 2.5F B 25
= =
3, | 5
& 2 & 2
E=] E=1
P 1.5 P 1.5
1 1
0.5 0.5
% 200 N 400 % 00 400
Time [s] Time [s]

Fig. 4. The dynamics of ¥(z)

variant and reaction invariant dynamics modes through a
size-preserving transformation of the reaction matrix. This
matrix is composed of stoichiometric coefficients. Since the
reaction invariant dynamics which represent the (molar)
mass conservations of each reaction in such a network are
exponentially stable, the control design of the reaction
system is then treated via reaction variant dynamics. In
other words, when a subset of (generalized) inventories
reaches its desired values, the dynamical convergence of
the overall system to its set-point is guaranteed. Conse-
quently, it allows to reduce considerably the dimension
of the original system dynamics, in particular for chemi-
cal reactors involving a large number of chemical species
and reactions. On the basis of the reduced dynamics, the
(partial) inventory control is implemented to design the
state feedback laws for an exponential stabilization of the
reaction system. The simulation results showed that con-
vergence objective is satisfied and that the state feedback
laws are admissible. It remains now to evaluate perfor-
mances and robustness of the proposed results in terms of
perturbations and parameters uncertainty and extend to
the infinite dimensional thermodynamic systems.
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