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1. INTRODUCTION

Time scales is introduced as a PhD thesis by Stefan Hilger
in 1988 which unifies continuous and discrete time systems.
Recently, time scales has gained attention in control the-
ory (Jackson et al. [2009], Pawluszewicz and Bartosiewicz
[2005], Gravagne et al. [2009], Davis et al. [2009b], Davis
et al. [2010], Bartosiewicz and Pawiuszewicz [2004], Sevim
and Goren-Sumer [2012]).

In computer controlled systems, constant sampling periods
may not be achieved due to some practical problems like
jitter, computational delays, communication delays, etc.
They often result in undesired system behavior including
instability. The concept of isolated time scales provides a
natural framework and a powerful tool to analyze systems
under nonuniform sampling.

We provided the fundamental system theoretical results
for dynamical systems defined on isolated time scales,
namely controllability, observability and duality. Since
controllability (observability) does not imply arbitrary
eigenvalue assignment on time scales, a new concept
7assignability” is introduced. Also, we gave a design
method based on the time scales model of a continuous
system for eigenvalue assignment via a time scales state
feedback (output injection) controller.

In the second section we gave a summary of the time scales
concept and provide the necessary theoretical results. Defi-
nitions and results on controllability, observability, duality
are given in the third section. Section four is devoted
to eigenvalue assignment via state feedback and output
injection. Some illustrative examples are given in Section
5. Also, a discussion about open questions are given in
Conclusion.

2. TIME SCALES SUMMARY
In this section, elementary definitions and theorems are

given. Most of the definitions and results are summarized
from Bohner and Peterson [2001], Hilger [1990], Agarwal
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et al. [2002], Bohner and Lutz [2001] and Gravagne et al.
[2007]. The proofs of these results can be found in the cor-
responding references. Some new results used throughout
this paper are also developed in this section. The proofs
of these results are also given.

2.1 Time Scales

Time scales is defined as a nonempty subset of real num-
bers (T # @, T C R). Time scales systems become contin-
uous systems for T = R and become discrete time systems
for T = hZ 2 {hk|k € Z} for any h > 0. But any subset
of real numbers can be arbitrarily selected as time scales.

Definition 1. The functions o, p : T — T are defined as
o(t)Zinf{s € T|s >t} and p(t) 2 sup{s € T | s < t}

and called as forward jump operator and backward jump
operator respectively. Also, inf ) = sup T and sup ) = inf T
are assumed.
Definition 2. Any selected point t € T is called

i) right-dense if o(t) =t
it) right-scattered if o(t) >t
i1) left-dense if p(t) =t
) left-scattered if p(t) <t
v) isolated if p(t) <t < o(t)
vi) dense if p(t) =t = o(t)
Definition 3. The graininess function u : T — [0,00) is
defined as p(t) = o(t) —t.
Definition 4. A time scales with all points are isolated, is
called isolated time scales and denoted as T, . In another
way,

T, = {tx|k € Z},t, € R and t}, < tpy1,Vk € Z.

Then, we can find graininess function of T as follows:

e = p(te) = o(ty) — te = tge1 — t, Vk € Z.
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Definition 5. The set of all possible graininess values of a
time scales T is called graininess set of T and denoted as
M(T).
A few examples of graininess sets can be given as follows:
i) M(R) = {0}.
it) M(hZ) = {h} for some h > 0.
ii6) M(Ty) = {pr = tgr1 —tx | k € Z,t,, € Ty} for any
isolated time scales T .

Note that M (T) is a countable set for any time scales T.
2.2 Delta Derivative

Definition 6. We define the set T" as follows:

T 2 {']I‘\(,o(sup’]I‘),sup']T] if supT < o0
T if supT = o0
Definition 7. Let f : T — R and ¢t € T*. f is called delta
differentiable at t, if there exists an « such that, for any
given £ > 0 a neighborhood of t (N = (t —§,t+6)NT for
some § > 0) exists with the property
[f(o(t)) = f(s) —alo(t) = s)| < elo(t) — 5|, Vs € N.
In this case, a is called as delta derivative of f at t
and denoted as fA( ). If f is delta differentiable for all
t € T%, then f is called delta differentiable (or simply
dzﬁerentwble) on T and f® : T" — R becomes a new

function.
If f is differentiable on T, delta derivative of f becomes as
follows:
lim M ,if p(t) =0
fA(t) _ s—t,s€T t—s
flo(t) = £(t) .
e Jif p(t) >0
u(o) "

Note that delta derivative becomes classical derivative for
T = R, and forward difference for T = Z.

The notation f7(t) = f(o(t)) will be used in the rest of
the paper.

Definition 8. F : T — R is called antiderivative of f :
T* — R if F2(t) = f(t) holds for all ¢ € T*. In this case,
the definite antiderivative is denoted as

/ f(r)Ar = F(t) - F(s) (1)
for s,t € T.

Note that antiderivative becomes classical integral for
T =R and sum for T = Z. On an isolated time scale,

th k—1
/ F)AT = wif(t) 2)
to i=0

can be written where ¢t; € T4 (1 =1,2,3,...).

Definition 9. A function f defined on T is called rd-
continuous if it is continuous at all right-dense points and
has a left limit on all left-dense points.

Theorem 10. (Hilger [1990]). Every rd-continuous function
has an antiderivative.

2.8 Linear Dynamic Equations

Definition 11. Let A(t) be a n x m matrix valued function
defined on T.

i) A(t) is called rd-continuous if all elements of A(t) is
rd-continuous.
it) A(t) is called differentiable if all elements of A(t) is
differentiable. In this case, the delta derivative of A(t)
is defined as
AR () = (aj3(t) , (1=1,2,..
where A(t) = (a;;(t))-
Definition 12. Let A(t) be a n x n matrix valued function
defined on T. A(¢) is called regressive if the matrix
I+ p(t)A(t)
has an inverse for all t € T*.
Definition 13. Let A(t) be a regressive n X n matrix val-
ued function defined on T. Then the unary operator & can
be defined as

OA(t) & —A)[I + p(t)At)] .
Theorem 14. Let A(t) be a regressive n X n matrix valued

function defined on T. Then the following properties hold
for all t € T:

Ln)(J=1,2,...,m)

i) ©A(t) is regressive.

i) SEAM) = AW

iii) S(AT (1)) = (OA(t))

) A+ p®) A = —[I + ut)A®)] " A(t)

Proof. The results follow by just writing the definitions.
The only trick used is writing
I=[I+p&)ADI + u) A

Theorem 15. (Bohner and Lutz [2001]). Let A be an x n
regressive, matrix valued function defined on T. Suppose
f : T — R"™is a rd-continuous function, t, € T and
2o € R™. Then, the initial value problem

a® = Az + f(t), =x(to) = zo (3)
has one and only one solution.
Definition 16. Let to € T and A be a n X n regressive,
matrix valued function defined on T. Then, the unique
solution of the initial value problem

XA =At)X, X(tg) =1 (4)

is called the matriz exponential function and denoted as
€A ('7 tO)
Theorem 17. (Bohner and Peterson [2001]). Let t,s,r €

T and A be a n X n regressive, matrix valued function
defined on T. Then,

i) eo(t,s) =1 and ex(t,t) =1

it) ea(o(t),s) = (I + pu(t)A(t))ea(t, s)
i) e ( ,s) has an inverse.
w) e (t s) = eAT (t,s)

v) eA(t s) = e, (s,t)

vi) ea(t,s)ea(s,r) =ealt,r)

Theorem 18. (Bohner and Peterson [2001]). Let A be a
n X n regressive, matrix valued function defined on T.
Suppose f : T — R™ is a rd-continuous function, tg € T
and xg € R™. Then, the unique solution of the initial value
problem (3) can be given as

t

z(t) = ea(t, to)zo —I—/ ea(t,o(r))f(T)AT. (5)
to

2.4 Time Scales Models of Continuous Systems

In order to derive a time scales model of a continuous time
system, the following definitions and theorems are given.
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Definition 19. Let X be a real square matrix. Then, the
expc function is defined as follows:

X X2 anl

expe(X) = I-l— T 3l +...—|—T+... (6)

Theorem 20. Let X be a real square matrix and t,s €
R are constants. Then, the expc function satisfies the
following equations:

z) eX =expe(X)X +1
i) expe(X)X = Xexpc(X)
ii1) texpc(tX) f e Xdr
) (t+ s)expc((t +38)X) = texpc(tX) + setX

iv expc(sX)

Proof. Only the sketch of the proofs are given.

i) Tt easily follows from the series expansion of eX and
the definition of expc.

) It follows from the definition.

i4) Expand the e™ to infinite series and take integral of
each component to obtain the result.

) Use the previous relation to obtain

t t+s
(t+ s)expe((t + s)X) = / e Xdr + / e dr.
0 t

Then the result follows by changing the boundaries
of the second integral.

Theorem 21. (Gravagne et al. [2007]). Let A, B,C, D are
constant real matrices with the sizes n X n,n X m,r x n
and r x m, respectively. The point-to-point time scales
model of the continuous time linear dynamic system

z(t) = Ax(t) + Bu(t), z(to) = xo )
y(t) = Cz(t) + Du(t)
can be given as
2B (t) = F(p(t)z(t) + G(u(t)u(t), z(to) = o ()

y(t) = Ca(t) + Duft)
where
Fu(t)) 2 expelAp(t)]A and G(u(t)) £ expc[Au(t))B
Proposition 22. The state transition matrices of (7) and
(8) are exactly same, meaning

eAt=t0) — (¢, 1) (9)

for all tg,t € T, where T is any selected time scales.

Proof. It easily follows from the e4 formula for isolated
time scales and definition of F'(u(t)).

Proposition 23. F(u(t)) in (8) is always regressive.

Proof. From the definition of F(u) and properties of
expc, we can write
eAnt) _ 1

(I B F(u(0) = 1+ () — e =

which is always an invertible matrix.

Remark 24. F and G depend on the value of u(t) at a
point ¢ € T rather than the ¢ itself, ie. F': M(T) — R™*"
and G : M(T) — R"*™. Hence, we will drop ¢ and write
F(u) and G(p), but keeping in mind that actual values of
w depend on ¢, while p is an element of the set M (T). With
this description, it is possible to regard an isolated time
scales system model as some collection of time invariant
system models at each time ¢ € T..

3. CONTROLLABILITY AND OBSERVABILITY

In this section definitions of controllability and observabil-
ity and related conditions available in the literature are
given. Also some new results developed for special cases
in this study, are provided. Furthermore, dual system is
defined for a system on time scales in the general case.

3.1 Controllability

€ R*»*™ be rd-
n. The

Definition 25. Let A(t) € R™*™ and B(t)
continuous matrix valued functions on T with m <
linear regressive system

2 (t) = A(t)z(t) + Bt)u(t), z(te) =z (10)
is controllable on [to,t] if for any given z, there exists a
rd-continuous control signal u(t) such that xz(ty) = x.

Theorem 26. Let the linear regressive system (10) be de-
fined on an isolated time scales T and ¢y, ¢y € T4. Then,
the system is controllable on the interval [to, tf] if and only
if

rank [Py Pp ...
where Pz = GA(tf, tZJrl)B(trL)

Py 4] =

Proof. The solution of (10) given as in (5) becomes
f-1
a(ty) =ea(ty to)zo+ Y piea(ty, tis1)B(t:)u(t;)
=0
f-1
= ealty,to)zo+ Y miPoult;)
=0
on an isolated time scale, where t; € T4 (i = 0,1,2,...).
By defining zy = z(ty) and u; = u(t;) we can write
i
U
frp-1Pp-1]

xyp —ealty,to)zo = [oPo p1Fr ...

Uf—1
It is well-known that a solution exists to this equation for
all zg,zy € R™ if and only if
p-1Pra] =n.
Since u; are positive scalars, their multiplication does not
affect the rank of the matrix. Hence, the result follows by
the definition of controllability.

Theorem 27. Let (8) be the time scales model of the linear
continuous system (7) on an isolated time scales T and
to,ty € T4. Then, the system (8) is controllable on the
interval [to,ts] if and only if
rank [Ry Ry ...
where R; = expc(A(ty —t;))B.

rank [poFPo piPr ...

Rya] =

Proof. By using Theorem 26 the system (8) is control-
lable on the interval [to,?/] if and only if

rank [Py Pp ...

where P, = ep(ts, titv1)G(p
of G(u), we can write

P = eA(tf*t"'“)expc(Aui)B

Pf_l] =N
i). By using (9) and definition

Now define
Si & Sip1+ (tig1 — t:) P
where Sy £ 0 by definition. We are going to show that
S; = (ty —t;)expc(A(ty —t:))B
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by using backwards induction, starting from f — 1 to 0.
For ¢ = f — 1 the claim is true by definition. Now suppose
the claim is true for i + 1. Hence we can write

S; =(ty — tip1)expc(A(ty —tis1))B
+ (tig1 — to)e ) expe( At — 1)) B.

By using Theorem 20-iv we can obtain the desired result.
Note that S; is constructed from P; with scalar multi-
plication and addition. This can be interpreted as the
replacement of P; with S; by linear column operations in
the matrix. The rank of a matrix is invariant under these
operations. Also, multiplying columns of a matrix with
scalars does not change the rank. Since, S; = (ty — t;)R;,
it follows that

rank [Ro Ry ... Ry_1] =rank [Py P ..

and the proof is complete.

. Pr_4q]

3.2 Observability

Definition 28. Let A(t) € R™*™ and C(t) € R™*" be rd-
continuous matrix valued functions on T with r < n. The
linear regressive system

acA(t) = A(t)x(t), z(ty) = xo
y(t) = C(t)a(t) D

is observable on [to,ts] if any initial state zo can be
uniquely determined from the output signal y(t) for t €
[to, tf).
Theorem 29. Let the linear regressive system (11) be de-
fined on an isolated time scales T4 and ¢, t; € T4. Then,
the system is observable on the interval [to,t/] if and only
if
Oo
O1
rank

Of_1
where Oz = C(ti)e,q(ti,to).

Proof. The solution of (11) given as in (5) becomes
y(ti) = C(t:)x(t:)
= C(ti)ea(ti to)zo
= OZ‘QZO
on an isolated time scale, where t; € T4 (i =0,1,2,...).
By using the above solution, we can write

y(to) Oo
y(t1) 01
: = R
y(ty—1) Op-1

It is well-known that any zy can be uniquely determined
if and only if
O
Oy
rank

O,
Hence, the result follows by the definition of observability.

Theorem 30. Let (8) be the time scales model of the linear
continuous system (7) on an isolated time scales T and

to,ty € T4. Then, the system (8) is observable on the
interval [to,tr] if and only if

Qo

Q1
rank .
Q-1
where Q; = CeAlti—to),

Proof. It easily follows from the Theorem 29 and (9).

3.3 Duality

Theorem 31. Let A(t) € R™*™, B(t) € R™™ and C(t) €
R"™™ be rd-continuous matrix valued functions on T with
m,r < n. The linear regressive system

22 (t) = A(t)x(t) + B(t)u(t)
u(t) = C(0alt) 12
is controllable on [tg,t¢] if and only if the dual system
2 (t) = AT (t)x(t) + [I + pu(t) AT ()] CT (t)u(t)
T T -1 (13)
y(t) = B> () + pu(t) A" ()] 2(t)
is observable on [tg,tf] where z(tg) = zo € R" and

to,ty € T. Also (12) is observable on [to,ty] if and only
if (13) is controllable on [tg,%y].

Proof. For the first part of the proof, it is sufficient to
show the following equality:

ea(to,o(t))B(t) = egAT (t,to)[I + u(t)A(t)] ' B(t)
for all ¢ € T. But it easily follows from the properties in

Theorem 17.
Similarly, to prove the second part we need to show that

Rt 10)CT (1) = eoar (to, ()T + p(H) AT (D] 1 CT (1)
for all ¢t € T. It also easily follows from the properties in
Theorem 17.

4. EIGENVALUE ASSIGNMENT VIA STATE
FEEDBACK AND OUTPUT INJECTION

In this section, we provide a new definition ” Assignability”
and give a method for eigenvalue assignment via state
feedback and output injection for systems on isolated time
scales.

4.1 Assignability

It is well-known that controllability (observability) implies
arbitrary eigenvalue assignment using static state feedback
(output injection) in linear time invariant systems. How-
ever, this is not true in general in time scales systems.
Therefore, we give a new definition ” Assignability” and
provide a sufficient condition for assignability for systems
on time scales.

Definition 32. Let T be a time scales, F' : M(T) — R"*™
and G : M(T) — R™™ be matrix valued functions.
The pair (F(u), G(p)) is called assignable if there exists a
matrix valued function K : M(T) — R™*™ such that the
characteristic polynomial of the matrix F'(u) — G(u) K (1)
is equal to some nth order polynomial

pc(svlu) =s" 4+ an_l(’u)snfl NS aO(M)

with arbitrarily selected coefficient functions a; : M (T) —
R (i=0,1,2,...,n—1) for all up € M(T).
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Definition 33. Let T be a time scales, F': M(T) — R™*"
and G : M(T) — R™™ be matrix valued functions. The
assignability matriz of F and G is defined as

AF,G)(p) £ [G(p) F(W)G(p) ... F*H(u)G(w)]-
Theorem 34. Let T be a time scales, F' : M(T) — R**"
and G : M(T) — R™ ™ be matrix valued functions. The
pair (F'(u), G(p)) is assignable if

rank A(F,G)(1) =n
for all p € M(T).

Proof. First let g : M(T) — R™ is a vector valued func-
tion and assume that rank A(F, g)(u) = n, ie. A(F, g)(p) is
an invertible square matrix for all y € M(T). Since M (T)
is a countable set we can use the well-known Ackermann’s
formula to obtain k : M(T) — R" as

k') =00 ... QAN E, 9)(wpe(F(p),pn)  (14)
such that the characteristic polynomial of the matrix
F(p) — g(u)kT (p) is equal to pe(s, ) for all u € M(T).
Now to expand this result to the matrix case, it is easy
to show that there exists a vector f : M(T) — R™ such
that rank A(F,Gf)(u) = n. Then K(u) = f(u)kT (n) can
be written where k7' () can be found as in above result.

Criterion 85. Let T be a time scales and A € R™*" be
a constant matrix. (A, T) satisfies the KHN (Kalman-Ho-
Narendra) criterion if

A =) # 2kmj (15)
for any nonzero integer k and for all p € M(T) where A
and v are any pair of eigenvalues of A and j is the pure
imaginary number.

Theorem 36. Let (8) be the time scales model of the
linear continuous system (7) on an isolated time scales
T,. The pair (F(p),G(p)) is assignable if (A4, B) is a
controllable pair and (A4, T, ) satisfies the KHN criterion.
Furthermore, the pair (7' (1), CT) is assignable if (A, C) is
an observable pair and (A, T ) satisfies the KHN criterion.

Proof. Write the definitions of F(u) and (G(p)) in the
expression of the rank condition given in Theorem 34 and
follow the steps given in Chen [1970] Appendix D which
are developed for discrete time systems.

4.2 Eigenvalue Assignment

Note that the eigenvalues of the time scales model of a
system changes with the values of p(t). A natural question
follows that how to select these varying eigenvalues to
achieve desired system characteristics. To do this, we select
the desired eigenvalues for continuous time systems and
convert these eigenvalues to time scales with the map

Xnu -7
S(X,p) 2

where X is any square matrix and pu € M (T, ) for any se-
lected isolated time scales T,. Then time scales controller
can be found as in the proof of Theorem 34, provided that
the time scales system is assignable. This method can only
be used if the following conjecture is true.

(16)

Conjecture 37. Let A € R™ ™ be a constant matrix and
b € R™ be a constant vector such that (A4,b) is a control-
lable pair. Let T, be an isolated time scales and define

edr — T

F(u) £ expe(Ap)A = ¢(A, p) =

9(n) £ expe(Ap)b
for all 4 € M(T4) (see Theorem 21). Let (A4, Ty) satisfies
KHN criterion, so that (F(u),g(u)) is an assignable pair
(Theorem 36). Let k € R™ such that
eig(A —bk™) = {\1,..., A}

where \; € C (i = 1,2,...,n). Assignability assumption
implies that there exists a &k : M(T.) — R™ such that

eig(F (1) = g(w)k" (1) = {61, 1), -, 6Ny 1)}

for all 4 € M(T,). Define F.(u) = F(u) — g(p)k” (1) and
A. = A —bkT. Then there exists a 6 = 6(fimax) = 0 such
that

|er.(t.to) = erett=0)|| < 6 (17)

for all ¢t € T4 where tg € T4 and fimax = max(M(Ty)).

The proof of this conjecture is an ongoing work and we
could not find a counter example so far. Also, MIMO case
of this conjecture will be considered.

Remark 38. This method can also be used for output
injection if (FT'(u),CT) is assignable.

5. EXAMPLE

Ezxample 39. Consider the following unstable continuous
time system

04 10 0
i(t) = [—0.4 0 1] () + |0] u(t)
1 00 1

y(t) = [1 0 0]x(t)
Let the desired eigenvalues of the closed loop system be
{—2,—2, —5}. Then the following figures are obtained with
x(tg) = xo = [01 l]T, by using the time scales state
feedback controller on a randomly selected isolated time
scales T4 such that 0 < p < 0.2 for all g € M(T4).

e

Fig. 1. States of the time scales closed loop system with
time scales controller and states of the closed loop
system with continuous controller.

6. CONCLUSION AND FUTURE WORK

In this paper, we provided a method for controlling a
continuous time systems with an isolated time scales state
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Fig. 2. States of the continuous time closed loop system
with time scales controller (solid line) and with con-
tinuous controller (dotted line).

0 i i i i : i i j
u]

Fig. 3. Time scales (solid line) and continuous time (dotted
line) state feedback control signal.

feedback (output injection) controller via eigenvalue as-
signment. This means, we can use classical control meth-
ods for systems with nonuniform sampling.

We gave the necessary and sufficient conditions for control-
lability, observability and duality on isolated time scales
respectively with theorems 26-27, 29-30 and 31. Further-
more, sufficient conditions on assignability are provided
with theorems 34 and 36, which are used to design static
state feedback (output injection) controller on isolated
time scales.

Some natural questions arise which we have not covered
in this paper, because they are not solved yet. One of the
open questions is that with which conditions the controlla-
bility and observability of a continuous system is preserved
under nonuniform sampling. Unfortunately, the answer to
this question is not trivial and left as future work.

The relation between assignability and controllability (ob-
servability) can be considered. Note that it is easy to find a
controllable but not assignable time scales system, however
the converse is not known.

Lastly, we need to prove that Conjecture 37 is true at
least under some conditions to guarantee that our method
works.
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