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Abstract: Recently, locally semiconcave control Lyapunov functions (LS-CLFs) play important
roles in nonlinear control theory. Many LS-CLF based stabilizing controllers are proposed.
In this paper, we consider the locally asymptotic stabilization problem of the input affine
nonlinear systems with convex input constraints. To design a stabilizing state feedback under
the input constraints, we employ the LS-CLF and convex optimization theory.
Due to nonsmoothness of LS-CLF, the proposed state feedback is discontinuous on the state
space. Therefore, we consider sample and hold solutions and guarantee the asymptotic stability
of the closed loop system in the sense of sample stability. The effectiveness of the proposed
method is confirmed by the numerical example.
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1. INTRODUCTION

Control Lyapunov functions (CLFs) play an important
role in recent nonlinear control theory. In particular,
semiconcave CLF based discontinuous controller design
attracts much attention (Rifford (2002); Clarke (2010);
Nakamura et al. (2013)). For input affine nonlinear sys-
tems defined on Euclidian spaces, Rifford proposed an
asymptotic stabilizing controller based on a semiconcave
CLF(Rifford (2002)). Nakamura et al introduced the con-
cept of the locally semiconcave control Lyapunov function
(LS-CLF) that an assumption of semiconcavity was re-
laxed to a local one (Nakamura et al. (2013)). By using
LS-CLFs, they proposed an asymptotic stabilizing con-
troller for nonlinear systems defined on noncontractible
manifolds. Although (locally) semiconcave CLFs are non-
smooth, asymptotic stabilization is attained by an input
that minimizes a generalized derivative of a (locally) semi-
concave CLF along the trajectory of solutions (Clarke
(2010)).

However, previously proposed methods do not consider
input constraints that often exist in actual control systems.
For example, the controller proposed in Rifford (2002) is
not guaranteed to satisfy the input constraint despite the
control input is assumed to be restricted to a compact
convex set. To apply semiconcave CLF based controllers
to actual control systems, we need to solve the important
problem.

In this paper, we design a discontinuous locally asymp-
totic stabilizing state feedback controller for nonlinear
systems having a convex input constraint; the control
input is restricted to a compact convex set (Suárez et al.

(2001)). Convex optimization based continuous stabilizing
state feedback have been already proposed for the class
of systems (Satoh et al. (2008)). To extend the method
to discontinuous state feedback design, we employ disas-
sembled differential of semiconcave functions (Nakamura
et al. (2013)). We show that the proposed controller
asymptotically stabilizes the desired equilibrium under the
input constraint. Moreover, we discuss the continuity of
the proposed controller at the desired equilibrium. The
effectiveness of the proposed method is confirmed by a
numerical example of position control of a two-wheeled
mobile robot.

2. PRELIMINARIES

In this section, we introduce basic definitions of mathe-
matical terms and their fundamental properties.

2.1 Sample-and-hold Solution and Sample Stability

In this paper, we consider the following input affine non-
linear system:

ẋ = f(x) + g(x)u = f(x) +
m∑
i=1

gi(x)ui, (1)

where x ∈ R
n, u ∈ U ⊂ R

m, and U is a compact set.
We assume that every f, gi : Rn → R

n, i ∈ {1, . . . ,m}
is locally Lipschitz continuous with respect to x, and
f(0) = 0.

To deal with discontinuous state feedback control for (1),
we consider the following sample-and-hold solution as the
closed loop solution (Clarke (2010); Cortés (2008)).
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Definition 1. (Partition). Any infinite sequence π = {ti ∈
R≥0}i∈Z≥0

consisting of numbers 0 = t0 < t1 < t2 < · · ·
with limi→∞ ti = +∞ is called a partition, and the number
d(π) := supi∈Z≥0

(ti+1 − ti) is called its diameter.

Definition 2. (Sample-and-hold solution). Let k : R
n →

U ;x �→ k(x) be a given state feedback, π a partition, and
x0 ∈ R

n an initial state. The sample-and-hold solution
ψ(t, x0, k(x)) : R≥0 × R

n × U → R
n for (1) is defined as

the mapping such that ψ(t, x0, k(x)) = x(t), where x(t) is
a continuous mapping obtained by recursive solving

ẋ = f(x(t)) + g(x(t))u(x(ti)), (2)

from the initial time ti to the maximal time

si := max{ti, s ∈ [ti, ti+1]|x(·)is defined on[ti, s)}, (3)

with x(0) = x0.

With sample-and-hold solution x(t), we define local sample
stability for (1) as follows (Nakamura et al. (2013)):

Definition 3. (Local sample stability). Consider system (1).
Let R̄ ⊂ R

n be a bounded set containing the origin, and
P denotes the set of all open subset of R̄ containing the
origin.

A feedback k : R̄ → U is said to sample stabilize the origin
of the system (1) if the following holds for arbitrary sets
R1,R2 ∈ P such that R1 ⊂ R2.

(1) There exists a set M ⊂ R̄ depending only upon R2

and two positive numbers Ω, T > 0 depending on R1

and R2 such that, for any initial condition x0 ∈ R2,
for any partition π of the diameter less than Ω, the
corresponding sample-and-hold solution ψ(t, x0, k(x))
satisfies the following conditions:
(a) ψ(t, x0, k(x)) ∈ R1, ∀t ≥ T
(b) ψ(t, x0, k(x)) ∈ M, ∀t ≥ 0

(2) For each E ∈ P, there exists a set P ∈ P such that if
R2 ⊂ P , M in (1) can be chosen satisfying M ⊂ E .

2.2 Locally Semiconcave Control Lyapunov Function and
Disassembled differential

In this subsection, we introduce the definition of the
the locally semiconcave function and its disassembled
differential. Then we define locally semiconcave control
Lyapunov function (LS-CLF).

Definition 4. (Locally semiconcave function). A continu-
ous function V : X ⊂ R

n → R said to be locally semi-
concave on X , if for any compact set M ⊂ X there exists
E > 0 such that

V (x) + V (y)− 2V

(
x+ y

2

)
≤ E‖x− y‖2 (4)

for all x, y ∈ M satisfying (x + y)/2 ∈ M.

Although locally semiconcave functions are nonsmooth,
the following good properties hold (Cannarsa and Sines-
trari (2004)):

Lemma 1. Let V : X ⊂ R
n → R be a locally semiconcave

function. Then, V is a Lipschitz continuous.

Theorem 2. Let V : X ⊂ R
n → R be a locally semiconcave

function. Then, V can be locally written as the minimum
of class C2 functions. More precisely, for any compact set
M ⊂ X , there exist a compact set S ⊂ R

2n and a family

of functions {Ṽs}s∈S such that each Ṽs : M → R is C2

with respect to x and

V (x) = min
s∈S

Ṽs(x), ∀x ∈ M. (5)

We define disassembled differential of a locally semicon-
cave function as follows (Nakamura et al. (2013)):

Definition 5. (Disassembled differential). Let V : X ⊂
R

n → R be a locally semiconcave function. Then, the
following set-valued map D̃V : X → 2R

n

is said to be
a disassembled differential of V :

D̃V (x) =

{
∂Ṽs
∂x

(x)
∣∣∣s ∈ {s ∈ S|V (x) = Ṽs(x)}

}
. (6)

Locally semiconcave control Lyapunov function (LS-CLF)
for system (1) is defined as follows (Nakamura et al.
(2013)):

Definition 6. (LS-CLF). Let X ⊂ R
n be a neighborhood

of the origin of system (1). A locally semiconcave control
Lyapunov function (LS-CLF) for system (1) is a locally
semiconcave function V : X → R such that following
properties hold.

(A1) V is proper; that is, the set {x ∈ X |V (x) ≤ L} is
compact for every L > 0.

(A2) V is positive definite; that is, V (0) = 0 and V (x) >
0 for all x ∈ X\{0}

(A3) There exists a control u admissible for x, a contin-
uous positive definite function Q : X → R≥0 such that

DV (x; (f(x) + g(x)u)) ≤ −Q(x), ∀x ∈ X\{0}, (7)

where the directional derivativeDV (x; v) of semiconcave
function V is defined as follows:

DV (x; v) := lim
t↓0

V (x+ tv)− V (x)

t
. (8)

The following lemma clarifies that the relation between the
directional subderivatibe Dv(x; v) and the disassembled

differential D̃V (x) (Nakamura et al. (2013)):

Lemma 3. Let V : X ⊂ R
n → R be a locally semiconcave

function, and D̃V denotes its disassembled differential.
Then, the following holds:

DV (x; v) = min
p∈coD̃V (x)

〈p, v〉, (9)

where co denotes the convex hull.

According to Lemma 3, the following theorem holds (Naka-
mura et al. (2013)):

Theorem 4. Consider the control system (1) and a locally
semiconcave function V : X ⊂ R

n → R satisfying (A1)
and (A2). Then, the function V is an LS-CLF if and only
if the following condition (A3’) is satisfied:

(A3’) For arbitraryR2, R1 ∈ R>0 such thatR2 > R1 > 0,
there exist a positive real constant Q > 0, and a
mapping p : X → R

n such that p(x) ∈ D̃V (x) such
that

min
u∈U

〈p(x), f(x) + g(x)u〉 < −Q,
∀x ∈ {x ∈ X |R1 ≤ V (x) ≤ R2}.

(10)
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3. PROBLEM STATEMENT

In this section, we describe the problem considered in the
present paper.

Firstly, we introduce the concept of convex input con-
straint for system (1):

Definition 7. (Convex Input Constraint). The control sys-
tem (1) said to have a convex input constraint u ∈ U if
the following properties hold:

(H1) U ⊂ R
m is a compact set.

(H2) U is represented as

U =
⋃

x∈Rn

Ux

=
⋃

x∈Rn

{u ∈ R
m|Gi(x, u) ≤ 0, (i = 1, . . . , l)}, (11)

where each Gi : R
n × R

m → R is C1 with respect to x
and u, and a convex function with respect to u for each
fixed x.

(H3) 0 ∈ int
⋂

x∈Rn

Ux.

Remark 1. The above convex input constraint is a general
class of input constraints including simple norm input
constraints. For example, the convex input constraint
occurs when pre-feedback control designs (e.g. gravity
compensation) are used.

In this paper, we consider the following problem:

Problem 1. Consider the control system (1) under a con-
vex input constraint. We suppose an LS-CLF V (x) for (1)
is obtained.

Then, design an LS-CLF based state feedback controller
u = k(x) such that following properties holds:

• the origin of the system (1) is locally sample stabi-
lized.

• given convex input constraint u ∈ U is satisfied.

4. MAIN THEOREM

The sample stabilizable domain of the origin of system (1)
with an LS-CLFV (x) is guaranteed as follows:

Lemma 5. (sample stabilizable domain). Consider control
system (1) has a convex input constraint. Let X ⊂ R

n

be a neighborhood of the origin and V : X → R≥0 an
LS-CLF. Moreover, p : X → R

n is a mapping such that
p(x) ∈ D̃V (x), and Rmax > 0 is the maximum constant
satisfying

min
u∈Ux

〈p(x), f(x) + g(x)u〉 < −Q,
∀x ∈ W\{0} := {x ∈ X |V (x) < Rmax}\{0}.

(12)

Then, W is a sample stabilizable domain.

We can prove Lemma 5 by constructing a sample stabi-
lizing controller for (1). The following minimizing input
plays a central role in our control design.

Definition 8. (Minimizing Input). Let W be a sample sta-
bilizable domain with respect to an LS-CLF V (x). Then
the minimizing input is the state feedback k̄ : W → U
such that the following conditions hold:

(1) for each fixed x ∈ W , u = k̄(x) is a solution of the
minimization problem

Minimize 〈H(x), u〉 subject to u ∈ Ux, (13)

H(x) = [〈p(x), g1(x)〉, . . . , 〈p(x), gm(x)〉]T, (14)

(2) k̄(x) = 0, ∀x ∈ {x ∈ W|H(x) = 0}.
Remark 2. Note that the minimizing input k̄(x) is well-
defined on W . Moreover, we can easily calculate k̄(x) by
convex optimization. The details are provided in subsec-
tion 6.1.

Remark 3. In general, k̄(x) is not a unique solution of
(13) for each x ∈ W . However, this fact do not cause any
problem for sample stabilization.

Let us state our main result of the present paper.

Theorem 6. Consider control system (1) has a convex
input constraint. Let V : X → R≥0 be an LS-CLF,

p : X → R
n a mapping such that p(x) ∈ D̃V (x), and

k̄(x) a minimizing input.

Then, the following state feedback u = k(x) locally sample
stabilizes the origin of the system (1) in W and satisfies
the convex input constraints k(x) ∈ Ux, ∀x ∈ W :

k(x) =

⎧⎨
⎩
P (x)+|P (x)|+C(x)

2+C(x)
k̄(x) (H(x) 
= 0)

0 (H(x) = 0)
, (15)

P (x) =
〈p(x), f(x)〉

−〈H(x), k̄(x)〉 , (16)

where P : {x ∈ W|H(x) 
= 0} → R, and C : W → R≥0 is
a function satisfying

C(x) 
= 0, ∀x ∈ {x ∈ W|H(x) 
= 0},
lim

H(x)→0
C(x) = 0. (17)

5. PROOF

In this section, we prove Theorem 6 provided in the
preceding section. To prove the theorem, we introduce six
key lemmas.

Lemma 7. Let k̄(x) be the minimizing input introduced in
Theorem 6. Then, the following holds:

〈H(x), k̄(x)〉 < 0, ∀x ∈ {x ∈ W|H(x) 
= 0}. (18)

Proof. According to (H3), there exists a constant αx > 0
such that

B̄(0, αx) := {u| ‖u‖≤αx} ⊂ Ux. (19)

Consider the minimizing input under the norm input
constraint u ∈ B̄(0, αx), and we can obtain the following
inequality:

min
u∈B̄(0,αx)

〈H(x), u〉 = −αx ‖ H(x) ‖< 0. (20)

Since B̄(0, αx) ⊂ Ux, we can observe that

min
u∈Ux

〈H(x), u〉 = 〈H(x), k̄(x)〉
≤ min

u∈B̄(0,αx)
〈H(x), u〉 < 0.

(21)

�

Lemma 8. Let P : {x ∈ W|H(x) 
= 0} → R be the
function defined by (16). Then, the following holds:

P (x) < 1, ∀x ∈ {x ∈ W|H(x) 
= 0}\{0}. (22)
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Proof. According to Lemma 7 and (A3’), we can obtain
the following:

P (x) =
〈p(x), f(x)〉

−〈H(x), k̄(x)〉 = 1− Q

〈H(x), k̄(x)〉 < 1. (23)

�

Lemma 9. Let P : {x ∈ W|H(x) 
= 0} → R be the
function defined by (16). Then, the following holds:

lim
x→x∗ P (x) + |P (x)| = 0,

∀x∗ ∈ {x ∈ W|H(x) = 0}\{0}. (24)

Proof. Let {xj}j∈N ⊂ W be any sequence converges to
x∗. Since V (x) is a LS-CLF, the following holds for each
j ∈ N:

min
u∈Uxj

[〈p(xj), f(xj)〉+ 〈H(xj), u〉
]

= 〈p(xj), f(xj)〉+ 〈H(xj), k̄(xj)〉 < −Q.
(25)

Then there exists J > 0 such that

〈p(xj), f(xj)〉 < 0, ∀j > J. (26)

Since 〈H(xj), k̄(xj)〉 < 0 by Lemma 7, we can obtain

P (xj) + |P (xj)| = 0, ∀j > J. (27)

�

Lemma 10. Consider control system (1) has a convex
input constraint under the assumptions of Theorem 6.
Let k : W → U ;x �→ k(x) ∈ Ux be a state feedback
defined by(15), and R1, R2 positive constants such that
0 < R1 < R2 < Rmax. Then, the following inequality
holds:

m∑
i=1

k2i (x) <∞,

∀x ∈ R = {x ∈ W|R1 ≤ V (x) ≤ R2}.
(28)

Proof. The result follows from the fact that there exists
no sequence {xj}j∈Z such that limj→∞

∑m
i=1 k

2
i (xj) =

∞. For more details, refer to the proof of Lemma 3 in
Nakamura et al. (2013). �

Lemma 11. Consider control system (1) has a convex
input constraint. Let k : W → U ;x �→ k(x) ∈ Ux be a state
feedback defined by (15), and R1, R2 positive constants
such that 0 < R1 < R2 < Rmax. Then, there exist a
constant G > 0 and a mapping p : X → R

n such that
p(x) ∈ D̃V (x) such that

〈p(x), f(x) + g(x)k(x)〉
= 〈p(x), f(x)〉 + 〈H(x), k(x)〉 < −G,
∀x ∈ R = {x ∈ W|R1 ≤ V (x) ≤ R2}.

(29)

Proof. We can prove the lemma in a similar way to the
proof of Lemma 4 in Nakamura et al. (2013). Let us
consider the following three cases.

(i) H(x) = 0:
According to (A3’), we can obtain 〈p(x), f(x)〉 < −Q.

(ii) H(x) 
= 0 and P (x) ≤ 0:
In this case, 〈p(x), f(x)〉 ≤ 0 and P (x) + |P (x)| = 0.

Then by Lemma 7, there exists a constant Q1 such that

〈p(x), f(x)〉 + 〈H(x), k(x)〉
= 〈p(x), f(x)〉 + C(x)

2 + C(x)
〈H(x), k̄(x)〉 < −Q1.

(30)

(iii) H(x) 
= 0 and P (x) > 0:
Since P (x) + |P (x)| = 2P (x), k(x) is rewritten to

k(x) =

{
P (x) +

(1− P (x))C(x)

2 + C(x)

}
k̄(x). (31)

Note that (1− P (x)) > 0 by Lemma 8. Hence, there
exists a constant Q2 > 0 such that

〈p(x), f(x)〉 + 〈H(x), k(x)〉
=

(1− P (x))C(x)

2 + C(x)
〈H(x), k̄(x)〉 < −Q2.

(32)

Let G := min{Q1, Q2}, the lemma holds.

�

Lemma 12. Consider control system (1) has a convex
input constraint. Let k : W → U ;x �→ k(x) ∈ Ux be a state
feedback defined by (15). Then, there exists a constant
Ω > 0 such that the following inequality holds uniformly
on R:

V (ψ(t, x0, k(x)))− V (x0) ≤ −Ωt, ∀t ≥ 0 (33)

Proof. Since f and g are locally Lipschitz mapping, there
exists a constant L > 0 such that the following holds for
all x, y ∈ R:

‖f(x) + g(x)k(x) − f(y)− g(y)k(x)‖ < L‖x− y‖. (34)

Moreover, there exist constants K,M > 0 such that

|V (x) − V (y)| ≤ K‖x− y‖, (35)

|f(x) + g(x)k(x)‖ < M, (36)

for all x ∈ R by Lemmas 1 and 10. According to the
semiconcavity of V and Proposition 3.3.1 in Cannarsa and
Sinestrari (2004), we can obtain the following inequality:

V (ψ(t, x0, k(x))) − V (x)

≤ 〈p(x), ψ(t, x0, k(x))〉 + E‖ψ(t, x0, k(x)) − x‖2.
(37)

Then there exists t∗ ∈ [0, t] satisfying

V (ψ(t, x0, k(x))) − V (x)

≤ 〈p(x), f(ψ(t∗, x0, k(x))) + g(ψ(t∗, x0, k(x)))k(x)〉t
+ E‖ψ(t, x0, k(x)) − x‖2,

(38)

by the mean value inequality (Clarke et al. (1998)). We
can obtain the following inequality by the same discussion
as Clarke (2010); Nakamura et al. (2013):

V (ψ(t, x0, k(x))) − V (x)

≤〈p(x), f(x) + g(x)k(x)〉t
+ 〈p(x), f(ψ(t∗, x0, k(x))) + g(ψ(t∗, x0, k(x)))k(x)
− f(x)− g(x)k(x)〉t + E‖ψ(t, x0, k(x))− x‖2

≤〈p(x), f(x) + g(x)k(x)〉t
+ L‖p(x)‖ · ‖ψ(t∗, x0, k(x))− x0‖t+ CM2t

≤− Pt+KLMt2 + EM2t2.
(39)

Therefore, for any partitionπ such that

d(π) ≤ P/(2M(KL+ EM)), (40)

the following holds:

V (ψ(t, x0, k(x))) − V (x0) ≤ −1

2
Pt, ∀t ≥ 0. (41)

The lemma holds by choosing Ω = P/2. �
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Then, we can prove Theorem 6.

Proof. [Theorem 6]

(i) Local sample stability:
Let R1,R2 ∈ P be arbitrary sets satisfying R1 ⊂ R2.

We choose R1 > 0 such that {x ∈ W|V (x) < R1} ⊂ R1,
and R2 = supx∈R2

V (x). According to Lemmas 11 and
12, the following holds on R if t ≥ (R2 −R1)/Ω:

V (ψ(t, x0, k(x))) < R1. (42)

Then, for x0 ∈ R2, we can obtain

x(t) ∈ M := {x ∈ W|V (x) < R2}, ∀t ≥ 0,

x(t) ∈ R1, ∀t ≥ (R2 −R1)/Ω.
(43)

For a given set E ∈ P, we define

ε := sup
ε>0

{{x ∈ W|V (x) < ε} ⊂ E} , (44)

and a set P by

P = {x ∈ W|V (x) < ε}. (45)

Finally, we can observe that the following holds for
ε ∈ (0, ε):

R2 ⊂ P ⇒ R2 ≤ ε < ε

⇒ M = {x ∈ W|V (x) < R2} ⊂ E (46)

(ii) Input constraint k(x) ∈ Ux, ∀x ∈ W is satisfied:
Note that k(x) = 0 for all x ∈ {x ∈ W|H(x) = 0}

because we set k̄(x) = 0. According to (H3), it is clear
that k(x) = 0 ∈ Ux.
On the other hand, the following holds for x ∈ {x ∈

W|H(x) 
= 0} by Lemma 8:

μ :=
P (x) + |P (x)| + C(x)

2 + C(x)
∈ (0, 1]. (47)

Recall that Ux is a convex set and 0, k̄(x) ∈ Ux, we can
obtain

k(x) = μk̄(x) + (1− μ)0 ∈ Ux. (48)

�

6. SOME REMARKS ON THE PROPOSED
CONTROLLER

6.1 Minimizing Input design via Convex Optimization

The existence of the minimizing input k̄(x) is crucial
for the proposed controller design. Let us introduce the
following lemma to guarantees the existence:

Lemma 13. Consider system (1) has a convex input con-
straint, and let V (x) be an LS-CLF. Then, there exists a
minimizing input k̄(x) on W . In other words, optimization
problem (13) has at least a single solution for each fixed
x ∈ W .

Proof. Fix an arbitrary x ∈ W . According to hypotheses
(H1) and (H2), Ux is a compact set and 〈H(x), u〉 is a
continuous function with respect to u. Then, there exists
a global minimum of problem (13) by the extreme value
theorem. �

Remark 4. Note that for each x ∈ {x ∈ W|H(x) = 0},
any u ∈ Ux satisfies the condition (49). In Definition 8, we
choose k̄(0) = 0 for convenience.

Another problem we have to consider is how to construct
a minimizing input in general. Since (13) is a convex opti-
mization problem, Karush-Kuhn-Tucker conditions (KKT

conditions; see e.g. Boyd and Vandenberghe (2004)) char-
acterize the solutions:

Lemma 14. For each fixed x ∈ W , u ∈ Ux is a solution
of optimization problem (13) if and only if the following
conditions hold:

H(x)+
l∑

i=1

λi
∂Gi(x, u)

∂u
=0,

λi≥0, Gi(x, u)≤0, λiGi(x, u) = 0 (i = 1, . . . , l),

(49)

where λ = [λ1, . . . , λl]
T ∈ R

l is a vector of Lagrange
multipliers.

Proof. Fix an arbitrary x ∈ R
n. Note that Ux is a convex

set and 〈H(x), u〉 a convex function with respect to u by
(H2). Since the problem is a convex optimization, the KKT
conditions are sufficient (Boyd and Vandenberghe (2004)).
Moreover, the conditions are also necessary for optimality
because of the slater constraint qualification is satisfied
(Boyd and Vandenberghe (2004)).

Let us introduce the Lagrangian L : Rn × U × R
l → R

defined by

L(x, u, λ) = 〈H(x), u〉 +
l∑

i=1

λiGi(x, u), (50)

and consider the KKT condition
∂L

∂u
(x, u, λ) = 0,

λi≥0, Gi(x, u)≤0, λiGi(x, u) = 0 (i = 1, . . . , l),
(51)

we can obtain the condition (49). �

6.2 Continuity at the desired equilibrium

In this subsection, we discuss the continuity of the pro-
posed controller (15) at the desired equilibrium x = 0.

In differentiable CLF based controller design, there exists
a stabilizing feedback continuous at x = 0, if and only
if there exists a differentiable CLF which satisfies the
following small control property (SCP; Sontag (1989);
Bacciotti and Rosier (2005)):

Definition 9. (Small Control Property). Let V : W →
R≥0 be a differentiable control Lyapunov function for
system (1).

Then, V said to satisfy SCP if for any ε > 0, there exists
δ > 0 such that

0 
= ‖x‖ < δ ⇒ ∃‖u‖ < ε,

s.t.

〈
∂V

∂x
, f(x) + g(x)u

〉
< 0.

(52)

Recall that LS-CLFs are locally written as the minimum
of class C2 functions (Theorem 2), we can derive the
following Theorem:

Theorem 15. Consider system(1) has a convex input con-
straint. Let V(x) be an LS-CLF and D ⊂ X any compact
set containing x = 0. According to Theorem 2, there exist
sets S, S0 such that

V (x) = min
s∈S

Ṽs(x), ∀x ∈ D,

Ṽs(0) = 0, ∀s ∈ S0 ⊂ S.
(53)

Then, the proposed controller (15) is continuous at x = 0

if each Ṽs(x), s ∈ S0 satisfies the SCP.
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Proof. Note that Theorem 15 holds if P (x) in (15)
satisfies limx→0 P (x) = 0.

Since each Ṽs, s ∈ S0 satisfies the SCP, there exist
constants δs, s ∈ S0 such that each Ṽs satisfies (55). We
denote

δ = min
s∈S0

δs. (54)

According to the definition of disassembled differential and
(54), the following holds for p(x) ∈ D̃V (x):

0 
= ‖x‖ < δ ⇒ ∃‖u‖ < ε,

s.t. 〈p(x), f(x) + g(x)u〉 < 0.
(55)

In a small neighborhood of u = 0, the following inequality
holds for some α > 0 by the same manner as in the proof
of Lemma 7:

−〈H(x), k̄(x)〉 ≥ α‖H(x)‖ > 0. (56)

For any ε > 0, there exists δ > 0 such that

‖x‖ < δ ⇒ 〈p(x), f(x)〉 < −〈H(x), u〉 < ε‖H(x)‖. (57)

Therefore, we can obtain

|P (x)| = |〈p(x), f(x)〉|
| − 〈H(x), k̄(x)〉| =

‖εH(x)‖
‖αH(x)‖ =

ε

α
, (58)

and limx→0 |P (x)| = 0 by considering ε → 0 (i.e., δ → 0).
�

7. NUMERICAL EXAMPLE

In this section, we apply the proposed method to the po-
sition control of a two-wheeled mobile robot. The control
system of a two-wheeled mobile robot model is given as
follows (kimura et al. (2013)):

˙̂x =

⎡
⎣ ˙̂x1

˙̂x2
˙̂x3

⎤
⎦ =

[
cos x̂3/2 cos x̂3/2
sin x̂3/2 sin x̂3/2
1/W −1/W

][
û1
û2

]
, (59)

where [x̂1, x̂2] ∈ R
2 is the Cartesian coordinate of the

center of the robot, and x̂3 ∈ (−π/2, π/2) is the angle
between the heading direction and x̂1-axis. The input vec-
tor û = [û1, û2]

T consists of velocity inputs for respective
right and left wheels of the robot. W denotes the distance
between two wheels. We consider the following norm input
constraint for (59):

û ∈ U ′ := {û ∈ R
2|G(û) ≤ 0}, (60)

G′(û) =
√
û21 + û22 − d2, (61)

where d is a positive constant.

Let us consider the following coordinate and input trans-
formations for (59):

x =

[
x1
x2
x3

]
=

[
x̂1

tan x̂3
2x̂2 − x̂1 tan x̂3

]
, (62)

u =

[
u1
u2

]
=

[
(û1 + û2) cos x̂3/2
(û1 − û2) sec

2 x̂3/W

]
. (63)

Then, the system is transformed into a well known brock-
ett integrator form:

ẋ=

[
1
0
x2

]
u1+

[
0
1

−x1

]
u2=g1(x)u1+g2(x)u2. (64)

For the brocket integrator (64), the following LS-CLF is
proposed in kimura et al. (2013):

V (x) =

{
x41 + x42 +

(
min

θ∈[0,2π]
F (θ, x)

)2
} 1

2

, (65)

F (θ, x) =
|x3| 32∣∣∣x1 cos θ + x2 sin θ +

√|x3|
∣∣∣ . (66)

Remark 5. The LS-CLF originally introduced in kimura
et al. (2013) is the squared of above LS-CLF (65). To
achieve fast convergence of the state, We employ its square
root function as an LS-CLF.

We design a locally sample stabilizing controller for mobile
robot (59) according to the following steps:

(i) Design a locally sample stabilizing controller for
brocket integrator (64) based on LS-CLF (65),

(ii) Transform the controller designed in step (i) into
a locally sample stabilizing controller for (59) by the
inverse transformation of (63).

Note that LS-CLF (65) is differentiable except that
(x1, x2) = (0, 0). We design a discontinuous mapping p
as follows:

p(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂V

∂x
(x1, x2) 
= (0, 0)

∂F

∂x
(0, x) (x1, x2) = (0, 0)

. (67)

According to the input transformation (63), The input
constraint (61) for (59) is equivalent to the following input
constraint for (64):

u ∈ U := {u ∈ R
2|G(û) ≤ 0}, (68)

G(x, u) = a1(x)u
2
1 + a2(x)u

2
2 − d2 ≤ 0, (69)

where a1(x) = 2 sec2 x̂3 and a2(x) = W 2/2 cos4 x̂3. Note
that the input constraint (68) is not a simple norm
constraint, but represented as a convex input constraint.

We can obtain the minimizing input for (64) by using the
KKT condition (49):

k̄i(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− d · LgiV (x)

2ai(x)
√

Lg1V

a1(x)
+

Lg2V

a2(x)

(x1, x2) 
=(0, 0),

− d · LgiF (0, x)

2ai(x)
√

Lg1F (0,x)

a1(x)
+

Lg2F (0,x)

a2(x)

(x1, x2) = (0, 0),

(70)

where i = 1, 2, and LgiV (x) and LgiF (x, 0) denote Lie
derivatives defined as

LgiV (x) :=

〈
∂V

∂x
, gi(x)

〉
,

LgiF (x, 0) :=

〈
∂F

∂x
(x, 0), gi(x)

〉
.

(71)

The components of LgiV (x) and LgiF (x, 0) are derived
from (65) and the calculation of kimura et al. (2013). We
can design a local sample stabilizer u = k(x) for (64)
by using (15), (16) and (70). Moreover, we can choose
C(x) = ‖H(x)‖ in (15). Finally, we can obtain a local

sample stabilizer û = k̂(x̂) for (59) by applying the inverse
transformation of (63) to the obtained controller.
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Fig. 1. Simulation: Time response of the state
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Fig. 2. Simulation: Time response of the input

We show a simulation result in Fig. 1 and 2. The initial
value is set at x̂(0) = [−1.5, 1.0, π/3]T , and W = 0.2,
d = 4. According to Fig. 1, we can permit the state x̂
successfully converges to the origin. Figure. 2 illustrates
that the input constraint is satisfied.

8. CONCLUSION

In this paper, we proposed a locally sample stabilizing
controller for nonlinear systems having a convex input
constraints. The proposed controller is based on a mini-
mizing input associated with disassembled differential of a
locally semiconcave control Lyapunov function. To design
a minimizing input, we employed convex optimization the-
ory. Moreover, we modified the small control property for
locally semiconcave CLFs, and clarified that the proposed
controller is continuous at x = 0 if the condition (53) is
satisfied. The effectiveness of the proposed method was
confirmed through a numerical example.

ACKNOWLEDGEMENTS

The authors would like to thank anonymouse reviewers for
their helpful comments.

REFERENCES

E. D. Sontag. A ’universal’ construction of Artstein’s
theorem on nonlinear stabilization. Systems & Control
Letters, 13, pp.117–123, 1989.

A. Bacciotti, and L. Rosier. Liapunov Functions and
Stability in Control Theory. 2nd Edition, Springer-
Berlin, 2005.

J. Cortés. Discontinuous dynamical systems. IEEE
Control Systems Magazine, 28-3, pp.36–73, 2008.

L. Rifford. Semiconcave control-Lyapunov functions and
stabilizing feedbacks. SIAM Journal of Control and
Optimization, 41-3, pp.659–681, 2002.

P. Cannarsa and C. Sinestrari. Semiconcave Func-
tions, Hamilton-Jacobi Equations, and Optimal Control.
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