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Abstract: This paper deals with the problem of optimizing the performance of a process using Real Time 

Optimization (RTO) considering the unavoidable errors in the process models. It implements a new 

architecture within the modifier-adaptation methodology, presenting a nested optimization problem with 

two layers. With this methodology, it is possible to find a point that satisfies the KKT conditions of a 

process using an inaccurate model in the optimization, without the need to estimate directly the 

experimental gradients of the process. The suggested methodology has been tested in a continuous 

bioreactor example that present a washout closer to the real optimum of the simulated process. The 

results show that the proposed methodology is able to find the optimum of the process smoothly, 

avoiding unstable operating points. 

Keywords: Real time optimization, Nested modifier-adaptation, Modifier adaptation, uncertainty 



1. INTRODUCTION 

One of the main difficulties that appear when an economic-

based optimization layer (Real Time Optimization, RTO) is 

implemented in a process, is the uncertainty associated with 

the process or the model being used for computing the 

optimal decisions. The incertitude can have different origins: 

a) the measurements and the lack of reliable information 

provided by the instrumentation, and b) the partial knowledge 

of the physical and chemical phenomena or changes 

occurring in the process. From this perspective, under the 

term process, we can also include the basic control layer 

governing it. 

To deal with the uncertainty associated with measurements 

and sensors, a data reconciliation procedure with enough 

redundancy in the plant can be implemented associated to the 

RTO layer following a two-step algorithm (parameter 

estimation and economic optimization). In the first step, the 

uncertainties are taken into account updating the parameters 

 of a process model solving a parameter estimation problem 

(1), where u  R
Nu

 is the value of the manipulated variables 

and y  R
Ny

 represents the model outputs, f  R
Nx

 models 

the process and g  R
Ng

 are the inequality constraints of the 

system. The superscript “¯” indicates in the entire document 

that the variable is measured from the process. 
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After the model update, an economic optimization is 

performed (2), obtaining a new set of decision variables. Here 

  R represents an economic objective function. The 

solution of (2) is then applied to the process in an iterative 

scheme. 
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Nevertheless, even with the reconciled model, there is always 

a gap between the model used in the optimization and the 

process (model mismatch). This point, plus the type of 

interaction that takes place in the two-stage implementation 

of estimation and optimization, implies that the classical 

approach of RTO that provides an economic optimum for the 

model will not necessarily converge to the real optimum of 

the process. Several methods have been proposed in the 

literature to avoid this problem. Among them, the ones that 

iteratively modify the optimization problem with direct 

measurements and estimated gradients of the process, in such 

way that the modified optimization problem, with the same 

model, provides the real process optimum. See (Roberts, 

1979, Tatjewski, 2002, Gao and Engell, 2005). Recently, this 

methodology has been generalized by Marchetti and co-

workers presenting the so called Modifier-adaptation method 

(MA) (Chachuat et al., 2009, Marchetti et al., 2009)) 

The modifier methods can find a point that satisfies the 

necessary conditions of optimality (NCO) of the process, but 

its implementation requires estimating the real gradients of 

the system by performing some process experimentation, 

which is not a trivial task and can be time consuming. To 

avoid this step, Navia and co-workers have reformulated the 

method, introducing the Nested Modifier-Adaptation (Navia 

et al., 2013) in which an additional optimization layer 

provides directly the gradient modifiers in an iterative way.  

In this paper, after presenting both approaches, they are 

combined in a mixed algorithm, including the nested and 

gradient-based modifier adaptation methodologies with the 

purpose of expanding its range applicability. The resulting 

algorithm is used for the optimal operation of a continuous 
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bioreactor with structural modelling mismatch between the 

model and the process, showing how the real process 

optimum can be attained.  

The paper is organized as follows: Section two presents a 

summary of the modifier-adaptation approaches. In section 

three, a simulated continuous Bioreactor case-study is 

presented and used for implementation of the gradient-based 

and the nested algorithms. Section four describes and applies 

the mixed procedure proposed in this paper in the example 

already mentioned. Finally, section five gives some 

concluding remarks. 

2. NESTED MODIFIER-ADAPTATION METHODOLOGY 

2.1 Original Modifier-Adaptation 

In order to guarantee convergence to a point that satisfies the 

KKT conditions of the process, the modifier-adaptation 

approach changes the original cost function and inequality 

constraints of problem (2) to new ones mod  R and Gmod  

R
Ng

 as in (3): 
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Here, arethe modifiers of the cost function at iteration k 

and  and  the ones of the constraints. They are given by 

the errors between the process and the model in the cost 

function gradient, the constraints gradients and the 

constraints values, respectively as in (4). It is important to 

mention that they have fixed values when solving (3), since 

they are computed with values from the previous iteration. 
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Under the assumption of convergence of the algorithm, it is 

possible to show that the NCO conditions for (3) correspond 

to the ones of the process optimum. In order to solve (3), at 

every iteration of the RTO layer, it is necessary to estimate 

the modifiers of the cost function and the constraints using 

process data. The bias  is not difficult to obtain, but the 

estimation of the gradient of the cost and constraints 

measured on the process is the key issue of this methodology 

(Mansour and Ellis, 2003). Typically, a first order filter is 

applied to the modifiers in (4) for implementation. Then, the  

implementation of the modifier-adaptation methodology  

proceeds as in Fig. 1: after estimating the modifiers, the 

optimization problem (3) is solved and the optimal actions uk 

are applied to the process. Once the process has reached the 

new steady state, the procedure is repeated until no further 

changes in the decision variables are observed, which 

implies, according to the MA assumptions, that a KKT point 

of the process has been found (Chachuat et al., 2009). 
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Fig. 1. Implementation of the Modifier Adaptation 

Methodology. 

2.2 The Nested Modifier Adaptation 

The main idea behind the Nested Modifier Adaptation 

(NMA) approach is that, in principle, any policy for updating 

the modifiers could be used provided that it improves the 

process objective function and respects the constraints of the 

process. With this idea in mind, one can replace the gradient 

estimation and the modifier calculation steps of Fig.1 by 

other method designed for decreasing the cost function 

measured directly from the process iteratively. In particular, 

it is possible to implement an upper optimization layer that 

have the modifiers k
 

and k  as decision variables as 

represented in Fig.2 and the process cost function as cost 

function. The solution of this layer are the modifiers to be 

applied directly in the inner modified optimization (3), while 

(3) provides the decision variables to be applied into the 

process and takes direct care of the constraints. 

Upper Optimization 
Layer: update the 
modifiers  and 

Nested Modified 
Optimization (3)

Process

Steady?

No

Yes

Filtering (4)
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Fig. 2. Implementation of the Nested Modifier Adaptation 

Methodology. 

The purpose of the upper optimization layer is to obtain the 

optimum of the process iterating with the modifiers. When 

selecting the optimization method, one can take into account 

the fact that their decision variables (the gradient modifiers) 

are not constrained, so that any unconstrained method can be 

used. In particular the choice of a gradient-free algorithm, 

such as the simplex method, allows avoiding the need of 

estimating the process gradients directly from measurements. 

Notice that the proposed methodology only uses the 

modifiers  and  as the decision variables, and the cost 

function of the process as the objective function for the upper 

optimization layer. The value of , on the other hand, is 

computed in the same way than in the original modifier 
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adaptation methodology because are obtained as a direct 

calculation from the process measurements. The process 

constraints are not considered in the upper optimization, but 

they are enforced in the inner one that incorporates the 

modifiers. 

The upper optimization layer is continuously iterating with 

the modifiers  and ,  with the purpose of  driving the whole 

system closer and closer to the optimum of the process. At 

every iteration of the algorithm, for the set of modifiers 

provided by the upper optimization, it is necessary to solve 

the inner constrained one and then apply its solution to the 

process to obtain the value of the real cost function. The main 

advantage of the NMA reformulation is that, as a gradient-

free algorithm is implemented in the upper layer, it is neither 

necessary to estimate the process derivatives in order to look 

for the real optimum, nor to apply additional perturbations 

into the real system to estimate the gradient of the measured 

cost function. However, as a drawback, an additional 

optimization problem has to be solved with Nu (Ng+ 1), 

decision variables, being Nu the number of decision variables 

and Ng the number of the constraints of the nested problem, 

unlike the original MA where the number of perturbations 

(new or previous), needed to estimate the gradient of the 

process, is only proportional to the number of decision 

variables. Nevertheless,  this is not an important disadvantage 

if the Nelder-Mead (NM) algorithm is implemented in the 

upper layer, since it is particularly parsimonious in function 

evaluations per iteration and zero initial values are a sensible 

choice for  and . This property is very important 

considering that each function evaluation implies changing 

the operation point of the real process (Walters et al., 1991). 

If the upper layer converges to an optimal stationary point, 

the feasibility of the process is ensured by the definition of . 
Moreover, if its cost function cannot be improved, it means 

that the real optimum of the constrained process (local if the 

problem is not convex) has been found, as the cost function 

of the upper layer is the process cost function.  

Starting from the KKT conditions of (3), it is clear that, under 

stationary assumption, the definition of  allows to ensure 

primal feasibility of the process. On the other hand, dual 

feasibility is given by the solution of the nested problem, 

assuming the same set of Lagrange multipliers for the nested 

problem and the process (Marchetti et al., 2009). Also, 

complementary slackness for the inequality constraints of the 

process is given by the definition of  and the dual feasibility. 

Regarding the optimum of the measured objective function, it 

is possible to manipulate the complementary slackness 

condition and the gradient of the Lagrangean function of (3) 

from its KKT conditions to obtain: 

    0               ,0  uu T

u

T

u    (5) 

Equation (5), holds for any value of  and , independently of 

the definition of the gradient modifiers. In particular, if we 

replace these values with the expression from equation (4), 

and apply the chain rule, we get: 

0            ,0   
 (6) 

This means that the application of the modifier adaptation 

policy leads to a (local) unconstrained optimum of the 

process economic cost function with respect to the modifiers 

 and , which is also the point given by the upper 

optimization layer of the nested approach after convergence. 

3. IMPLEMENTATION IN A CONTINUOUS 

BIOREACTOR 

The nested modifier-adaptation methodology has been tested 

in an example of a continuous bioreactor with structural 

modelling mismatch between the model and the process. This 

example has been used previously to test RTO methodologies 

(Zhang and Forbes, 2006, Golden and Ydstie, 1989). It was 

selected as a proper candidate to be used in the 

implementation of the NMA algorithm, taking into account 

the increase of the decision variables explained later, since 

this is an unconstrained problem in the state variables. 

3.1 Process Description 

The system contains a continuous culture that grows inside a 

bio-CSTR. With adequate constant aeration (Air), mixing 

conditions, substrate concentration at the feed (S0) and pH 

(NaOH), the dilution rate D of the reactor can be modified in 

order to change the concentration of the cells (or biomass) at 

the effluent of the reactor (X), which is the process output. To 

be more precise, the real manipulated variable of the system 

is the flow rate of the feed (F); nevertheless, if the volume of 

the reactor (V) is constant, these two variables are equivalent 

(D=F/V). Fig. 3 schematizes the process.  

F 
S,X

F, S0

AirIN AirOUT

PC

NaOH

LC

 

Fig. 3. Diagram of the continuous bioreactor 

The operational goal of the system is to maximize the 

production of cells in steady state. This can be expressed as a 

product of the dilution rate and the concentration of the 

microorganisms: 

 XDfBio :  (7) 

The bio-CSTR can be described with a first principle model 

that will be used as a simulation of the real process (Golden 

and Ydstie, 1989). Combining the mass balance applied to 

the cells and substrate, and using a Monod-type kinetic, the 

concentration of biomass in steady state can be described 

using eq. (8). Here it is assumed that there is not biomass in 

the influent and that the reaction volume remains constant. In 

(8) KS and max are kinetic parameters, mc a maintenance 

coefficient and Y the yield of the biomass w.r.t. the substrate. 
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Feasible dilution rates are constrained by max as (8) becomes 

singular for that value. Eq. (8) can be viewed as a product 

between the consumed biomass (S) and an observed yield 

(YObs) which depends on the dilution rate. In order to test the 

modifier methods using an incorrect model, we will consider 

the following optimization problem (9). 
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 (9) 

Where the parameters have different values (see Table 1) and 

the model presents also structural mismatch with respect to 

the equations used to model the process, since the observed 

yield does not depend on other variables.  

Table 1.  Value of the Parameters 

Parameter Value Parameter Value 

DL 0 Y 0.5 

DU 0.42 max  0.35 

S0 5 
SK

~
 0.19 

mc 0.025 

SY
~

 0.4 

SK  0.09 max

~  0.42 

3.2 Results of the Modifier – Adaptation and NMA Methods 

The mismatch of the bioreactor produces an interesting effect 

with respect to the real behaviour of the system illustrated in 

Fig. 4. This Figure shows a comparison of the cost function 

value fBio  and output X corresponding to the process (P) and 

to the model (M), as a function of D.  
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Fig.4. Comparison of the process and the model 

Because of the modelling mismatch, the optimum of the 

process (marked R) does not match with the one computed 

with the model (marked M), situation that is quite expectable. 

However, it can be observed that the dilution rate that 

optimizes the performance index of the approximated model 

of the reactor causes a washout in the steady state of the real 

process. Washout is a peculiar phenomenon for continuous 

culture systems. It consists in a complete removal of the cells 

inside the reactor (X=0) when the dilution rate is greater than 

the cell growth rate. Taking this into account, it is clear that 

the model of the process is a poor representation of the 

behaviour of the process.   

To help avoiding the washout phenomenon, a trust region 

with D = 0.01 was incorporated to D in (9), so that at 

iteration k 

 )2/,min(),2/,max( 11 DDDDDDD k

U

k

L

k  
 (10) 

This small value was required to assure convergence to the 

optimum, increasing as a consequence the number of 

iterations.  Fig. 5 shows the evolution of the decision variable 

D and cost function fBio over time, obtained when the 

modified adaptation methodology was applied to (9). The 

process derivatives have been estimated using finite 

differences. 
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Fig.5. Evolution with the modifier -adaptation algorithm 

The convergence to the real optimum of the process in the 

gradient-based approach took around 40 iterations. The 

method showed a high sensitivity to the value of D which 

could be a significant drawback in practice. Regarding the 

detection of the optimum of the process, the shrinking of the 

local feasible region with the thrust region, allows to 

converge to the desired point (R) avoiding the occurrence of 

the washout phenomenon. It is important to mention that if 

the feasible region is not constrained, the next operating point 

suggested by the RTO layer, could pass the optimum of the 

process (not detecting it) and falling in the region closer to 

the washout phenomenon. In this case, the process derivative 

will be more negative than the gradient of the model, moving 

the system again into the region before the optimum of the 

process, repeating this behaviour over and over bouncing 

around the real optimum.  

The NMA algorithm was also applied to the bioreactor 

optimization, with the fminsearch function from MATLAB 

used in the upper optimization layer (Mathworks, 2007). Fig. 

6 shows its evolution. The real optimum of the process was 

also reached, this time in one half of iterations. Nevertheless, 

Fig.6 shows that the algorithm did not stop in this point as 
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expected. This behaviour can be explained based in the fact 

that there is an important difference in the rate of change of 

the objective function on both sides of the process optimum. 

As a consequence of this, if the system starts from a point 

below the optimum of the process, the size of the simplex of 

the NM method will be bigger than the one required when the 

process pass the real optimum, because of the rate of change 

is increased after this point. This implies that the next RTO 

iteration will be farther from the required point and closer to 

the washout zone, producing the removal of all the biomass.  
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Fig.6. Evolution with the NMA approach 

4. MIXED MODIFIER-ADAPTATION METHODOLOGY 

With the purpose of improving the behaviour of the methods 

and the applicability of the modifier methodology in this 

case, we have used the previous knowledge of the system to 

help stopping the algorithm when a situation of possible 

optimum is detected, combining both approaches. 

Even when the point of washout is not known a priori, these 

kinds of systems exhibit this phenomenon for some value of 

the dilution rate. Furthermore, starting from a suboptimal 

operation point (on the left side of the process optimum in 

Fig. 6) an increment of the dilution rate will rise the 

concentration of the cells inside the vessel because there is 

additional available subtract to produce more biomass. This 

increase is maintained until D exceeds the maximum growth 

rate (an unknown parameter). After this point, the cells inside 

the reactor have not enough residence time to create more 

microorganisms, decreasing the concentration of the biomass 

and producing the washout. As this is an expectable 

behaviour of the continuous cell cultures, we can try to detect 

the point when the change in the performance of the 

bioreactor is produced, postulating it as a point (or a region) 

close to the real optimum. So, the change in the tendency of 

the objective function can be used as a criterion to detect a 

candidate for process optimum and stopping the iterations. 

Alternatively, we could refine the search, adding a gradient 

based methodology after the gradient free algorithm, 

following the analogy that some global optimization solvers, 

like the SSm GO (Egea et al., 2007), implement in their 

routines. The possibility of mixing the two approaches 

(gradient free with gradient-based) is one of the contributions 

that the reinterpretation of the modifiers in NMA presents, 

giving an additional degree of adaptation to the modifier 

method depending on the particular characteristics of the 

system (Navia et al., 2013). 

The implementation of the Mixed (Nested and Gradient-

based) modifier-adaptation methodology is summarized in 

Fig. 7. 
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Fig.7 Diagram of the Mixed Approach  

The outcomes obtained applying the previous idea, are 

summarized in Fig. 8, showing that it is possible to reach the 

process optimum in a stable way and within shorter time. We 

have tested the early detection of a possible optimum for two 

scenarios: using the change of tendency as a stopping 

criterion and refining the search using the mixed modifier-

adaptation methodology to find the optimum of the process. 

The arrow in Fig.8 shows the point where the process stops in 

the first scenario, while the iterations continue till the end in 

the second case. 

If the early detection is implemented without the refining in 

the search of the optimum of the process, the nested 

methodology is able to stop once the change in the tendency 

of the objective function is detected. As a result of this, the 

washout phenomenon is no longer observed and the iterations 

finish in a neighbourhood of the process optimum. The last 

decision variable proposed by the nested methodology is not 

exactly the real optimum of the process but it is an operating 

point that is slightly above this value, producing a mild 

deterioration of the objective function corresponding to a 

0.35% with respect to the real optimum value. This 

worsening in the objective function can be understood as a 

trade-off with respect to the number iterations obtained with 

the gradient-based algorithm, and it can be a good indicator 

regarding if it is necessary the refining of the search using the 

gradient-based methodology or not.  
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Fig.8. Evolution of the Mixed Approach 

Even when the worsening obtained in the objective function 

can be acceptable for a real application, taking into account 

the reduction in the number of iterations of 50%, there is 

always a danger of stopping the algorithm prematurely, due 

to wrong measurements or other events.  

Nevertheless, as it can be observed, the mixed approach finds 

the optimum of the process by adjusting the results given by 

the NMA algorithm with the early optimum detection, using 

a gradient based algorithm. Starting from the end of the 

gradient-free methodology, 11 iterations were necessary to 

converge to the real optimum of the process. In this case, to 

reduce 0.35% in the objective function measured from the 

process, it was necessary to increase the number of iterations 

in 45% with respect to the previous approach.   

In real applications the optimum of the process is not known 

a priory. Therefore, when the NM algorithm stops the 

operator does not know how far is from this point, but only 

the progresses in the performance index with respect to the 

starting point. Hence, the decision of applying the refinement 

or using directly the outcomes from the NMA algorithm 

cannot be taken based in the distance with respect to the final 

goal, and it must be based in the criterion of the operator and 

in its previous knowledge of the system considering the 

progress achieved. In any case, the nested methodology with 

the early stop criterion only is able to find a region where the 

optimum could be according to the expected behaviour 

around this point. While the mixed approach is in charge to 

refine the search and find the required point. 

5. CONCLUSIONS 

This paper has discussed two methods within the modifier-

adaptation approach to uncertainty management in RTO, 

evaluating them in a bioreactor case study and proposing a 

mixed algorithm that presents some advantages over them. 

As a remark of the implementation of the modifier adaptation 

methodology in the continuous bioreactor example, we can 

say that the mixed approach proposed, combining the nested 

reformulation with the former gradient-based procedure, 

allows finding the optimum of a process reducing the 

requirements of additional perturbations of the process and 

avoiding unstable operating zones.  

Other associated topics remain as open problems, e.g. the 

increase in complexity when the number of decision variables 

and the number of inequality constraints grow, or the 

sensitivity of the refining part of the search with the process 

noise. But we hope it contribute to the advance in the 

practical solution of process optimization problems. 
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