
     

Distributed Stochastic Optimization of a Process Plant Start-up 
 

R. Martí*, D. Navia**, D. Sarabia***, C. de Prada*,  


*Systems Engineering and Automatic Control Department, University of Valladolid,  

Valladolid, 47011, Spain (Tel: +34 983 184647; e-mail: ruben@ autom.uva.es). 

**Chemical Engineering Department, Technical University Federico Santa María,    

Santiago, Chile (e-mail: daniel.navia@usm.cl) 

***Eelectromechanical engineering Deparment, Escuela Politécnica Superior, 

 University of Burgos, Burgos, Spain (e-mail:  dsarabia@ubu.es) 

 

Abstract: This paper presents a decentralized solution to the stochastic optimization problems that appear 

when uncertainty is considered explicitly using a set of scenarios in model based control and optimization. 

In particular, the paper deals with two-stage optimization problems, where the first-stage solution has to 

fulfil the constraints for all multiple scenarios simultaneously. To deal with the large size of the problem, a 

reformulation has been performed solving the optimization in parallel for as many deterministic problems 

as scenarios are, and coordinating their solutions in order to force a common decision for all of them, using 

a price-driven methodology followed by a sensitivity-based update. The methodology is illustrated with an 

example involving the optimal start-up of a hydrodesulphurization plant. 



1. INTRODUCTION 

One of the main problems associated to the industrial 

application of model based control and optimization is related 

to the uncertainty of process behaviour or unreliable 

measurements. The sources of the variability are diverse, but 

the effects are similar: model-process gaps leading to 

prediction errors so that what one computes with the model 

as optimum, maybe does not corresponds to the real process 

optimum.  Of course, control is a good way of dealing with 

uncertainty. In control systems, integral action of the 

controllers and estimators can bring the controlled output to 

the set point in spite of certain disturbances or model errors. 

But in this case the target is clearly defined.  

 

Nevertheless, more and more, economic optimization is being 

used combined with control, either as a two layer structure 

where the upper level of Real-Time Optimization (RTO) 

computes steady optimal set points for the underlying 

dynamic control system according to an economic criterion, 

or as a combined problem where the dynamic control is 

calculated in the framework of MPC with a direct economic 

target (Engell et al., 2007) (Gonzalez et al., 2001). In these 

cases, when the model is used to compute the optimal 

operating point and bringing the process to it, there is no 

reference to follow and errors or disturbances can lead to 

wrong decisions. So, it is important to take into account 

explicitly these sources of errors in the optimization in order 

to avoid them.  

 

Description of the uncertainty can adopt several formats. 

Among them, one natural approach is to consider some of the 

variables intervening in the process as stochastic ones, with a 

certain probability distribution. This leads to stochastic 

models and, consequently, to stochastic control and 

optimization problems that must be solved on-line in the 

economic MPC. 

A general formulation of a stochastic optimization problem is 

given by: 
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Where x is the vector of states, u are the decision variables, t 

is time and  represents a random variable that belong to a 

probability space with a certain probability distribution 

function (PDF). The process model is given by the set of 

equations h, and the cost function to be minimized is 

represented by J, while g denotes the constraints on the 

model variables. 

 

A direct solution of a stochastic dynamic optimization 

problem cannot be obtained most of the times, so, in practice, 

the continuous probability distributions characterizing the 

stochastic variables are discretized, giving rise to a set of 

scenarios (Birge et al., 1997). The optimization is then 

carried on considering all possible values of these scenarios, 

over time and solving the problem so that some statistic of 

the outcomes for all scenarios is minimized satisfying the 

constraints. If we assume that the random variables can take 

different values over a certain period of time, the problem is 

known as multi-stage. Solving these problems requires a lot 

of computation due to the large number of combinations of 

scenarios that may appear (Dupacová J., 2002). Nevertheless, 

in certain cases, it is possible to consider that the information 

we have about the unknown variables is different over time, 

as a result of possible measurements or the nature of the 

problem. For instance, in the start-up of a process unit, it is 

possible that measurements for some variables are not 
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available, but, after some period of time, the lab can provide 

values for them. In these situations, an optimal decision 

problem can be formulated as a two-stage optimization where 

in the first stage a single decision has to be made without any 

other knowledge than the probability distribution of some 

variables, but considering that its value will be known in the 

future second–stage (Sahinidis, N. V.,2004). Even so, 

depending in number of scenarios, the size of the problem 

can be large enough to require formulations allowing an 

acceptable degree of parallelization of the solution. The 

purpose of this paper, and its main novelty, is to present an 

approach that combines two-stage stochastic optimization 

with price-coordination methods in order to allow parallel 

computation of the optimization of each scenario, while 

maintaining the global constraints of the problem. Price 

coordination is one of the most promising approaches in 

distributed control and optimization (Cheng et al. 2007), 

(Martí et al. 2013) specially indicated for optimization 

problems where the global constraints are given by shared 

resources among the participant components. The method is 

illustrated with an application to the start-up of a 

hydrodesulphurization plant of the petrol refining industry. 

 

The paper is organized as follows: after the introduction, a 

summary of the two-stage stochastic optimization problem is 

given in section 2, presenting also the main associated 

problems. Then, section 3 explains the price coordination 

approach and its application to the solution of two-stage 

optimization. Next, in section 4 the operation of a 

hydrodesulphurization plant is explained as well as the 

application of the method to its start-up, followed in section 5 

by the results obtained and a conclusions section. 

 

2. TWO-STAGE STOCHASTIC OPTIMIZATION 

As mentioned before, in two-stage problems, the information 

available about the stochastic variables is considered to be 

different in both stages: in the first one (stage 0) only their 

PDF is known, so that one must consider all possible values 

of these variables, or scenarios, in order to compute the 

optimal decisions satisfying the constraints. Nevertheless, in 

the second stage (stage 1) their realizations have taken place 

so that the uncertain variables are assumed to be known and 

constant until the end of the prediction horizon. From the 

point of view of the decision variables, a single decision u0() 

must be computed in the first stage, taking into account all 

possible values of the uncertainty, while in the second stage 

several ones u1(1) will be computed, corresponding to each 

of the possible particular values 1 of the stochastic variable 

in the future. The first stage value u0() is the one that will be 

implemented in the process, according to a receding horizon 

policy in the framework of MPC. Fig.1 illustrates this 

scheme, where t0 is current time and t1 corresponds to the 

starting time of the second stage. In mathematical terms, the 

optimization problem can be stated as: 
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Where the sub-indexes 0 and 1 are referred to the first and the 

second stage and E stands for the expected value of the cost 

function over the scenarios. Notice that the variables can take 

several values over time according to a certain 

parameterization in each stage, but the notation (and figures) 

has been shortened to only one for simplicity. 

 

 
Fig.1. (a) Values of a stochastic variable over time and (b) 

decisions to be considered in the optimization problem 

 

A solution method of this type of problems considers a set of 

n scenarios or possible realizations of the stochastic variables 

{a
, b

, …n
}, taken from a discretization of its joint 

probability distribution, and solves (2) as an optimization 

problem where the cost function is computed as a weighted 

sum of the costs corresponding to every scenario according to 

their probabilities while the model and constraints must be 

satisfied for all scenarios. Hence, the size of the problem is 

very large because of the simultaneous consideration of all 

scenarios. Nevertheless, it is possible to exploit the structure 

of the problem to facilitate parallelization, noticing that the 

full problem can be split in a set of sub-problems like (2) for 

each scenario, but with one shared constraint to all of them:  

the optimal decision u0 in the first stage must be the same for 

all scenarios, called the non-anticipativity constraint.   

 

 

3. PRICE COORDINATION METHODS 

Developed with the purpose of facilitating the solution of 

large scale optimization problems by distributing the 

computation among several coordinated sub-problems, price 

coordination methods apply to problems with a structure 

similar to (3), where the optimization problem is formulated 

as an aggregation of n sub-problems that have their own local 

variables xj and uj but sharing common constraints RT. Here 

the index j refers to each of the sub-problems.   
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In these cases, it is possible to find an equivalent solution 

using a two level structure as in Fig.2. 

 

                
 

Fig.2. Schematic of price coordination method, with the 

coordination layer and the modified sub-problems. 

 

Here, in the lower level, n modified sub-problems like (4) are 

solved in parallel independently: 
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Notice that every cost function includes a term that depends 

on its own contribution to the global cost function Jj and on 

the price p and local use of the shared resources Rj. In the 

upper coordination level, prices p are computed (one per 

global constraint) in order to enforce the global constraints 

and the optimality conditions of the problem (5) (Jose and 

Ungar, 1998). 
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Several policies can be applied to select p, among them the 

one based on Newton’s method (Cheng, R. et al, 2007), 

which, for the case of N global constraints RTi, reads as:  
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Here the index k denotes the iteration step, α is the step size 

in Newton’s method and Q is the sensitivity matrix with 

respect to p of dimension N x N. The proposed price-

adjustment scheme adaptively updates p, unless the global 

constraints are fulfilled. Q can be calculated as: 
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The parametric sensitivities du/dp are needed to calculate Q 

and the general approach of (Ganesh and Biegler, 1987) for a 

NLP problem will be used to obtain them. 

3.1 Sensitivity analysis and changing active set 

For the general NLP problem (8) with objective function , 

constraints g(·), decision variables u and p a set of 

parameters: 
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At the optimal solution, u
*
, λ

*
 for a given p

*
, the constraints g 

are divided into active constraints g
a
 and inactive ones g

ina
 of 

dimensions ng
a
 and ng - ng

a
, respectively. The corresponding 

Lagrange multipliers λ
*
 can be divided into λ

*a
 and λ

*ina.
 

Assuming that  and g are at least twice continuously 

differentiable in u, the first order necessary conditions of 

optimally (NCO) of (8) are: 
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with Lu the partial derivative of L respect to u. Assuming that 

the NCO holds at u
*
, λ

*
 with strict complementarity, the 

sensitivity of the optimal solution with respect of the 

parameter p, (∂u
*
/∂p) can be obtained deriving equation (9) 

(Fiacco, 1983), provided the functions u = u(p) and λ
a
 = λ

a
(p) 

are at least once differentiable in p, which leads to:  
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Equation (10) can then be used to obtain the sensitivities 

when a perturbation Δp does not cause a change in the active 

set. Nevertheless, even for a moderate perturbation Δp, the 

set of active constraints can change. The problem can be 

avoided reformulating equation (10) as a QP problem, to take 

into account the scenario of change in the active set: 
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Where all functions are evaluated at u
*
, p

*
, λ

*
. It is easy to see 

that the NCO conditions of (11) correspond to (10), so, its 

solution provides the required sensitivities with the advantage 

that it does not require specifying the active set as (10) does. 

For a constant small p selected by the user, the solution of 

this QP problem (11) gives the optimal Δu (as well as the 

corresponding active set). Therefore, ∂u/∂p can be 

approximated as Δu/ Δp. 

 

3.1 Implementation of the price coordination distributed 

optimization 

The two-stage stochastic optimization can be carried on in a 

distributed way combining the optimization for each scenario 

with an upper layer of price coordination that enforces the 

non-anticipativity global constrains of stage one. If the 

problem is formulated in the framework of MPC, the 

implementation of the coordinator can be made following the 

steps of Fig.3 each sampling time. 

 

Initialization (p(k) = 0) 

Optimization 
Subsystem 1

Optimization 
Subsystem n

Parallel 
optimization

(ΣRji(uji)-RTj) < ε

YES

p(k+1)
Information is sent to 

every subsystems

p(k)

Sensi-QP 
Subsystem 1

Sensi-QP 
Subsystem n

NO

Price update

p(k+1) = p(k)-(∂p/∂R)(ΣR(uji)-RT)

Δ u1/Δp Δ un/Δp

 
 

Fig.3. Price-driven coordination algorithm with sensitivity 

analysis 

 

1. Initialization: The coordination sets up an initial price 

vector p(k), typically zero, and sends that information to 

every subsystem. 

 

2. Optimization performed by each subsystem: Based on the 

price given by the coordinator, each subsystem solves its own 

optimization problem and calculates the resource Rj(uj). In 

addition, each subsystem solves its QP problem in order to 

determine Δu/Δp (11). This information is sent back to the 

coordinator. 

 

3. Price update: The coordinator gathers the information from 

each subsystem, it calculates ΣRj(uj) - RT and Q given by (7). 

Then, the coordinator updates the price vector p(k) using 

equation (6). The new price vector is sent to each subsystem. 

 

4. Iteration until convergence: Step (2)-(3) are repeated until 

convergence is achieved, that is, when the global constraints 

are satisfy: ΣRj(uj)-RT  < ε, being ε a tolerance error. If 

fulfilled initially, p is set to zero and no update is required. 

4. STOCHASTIC NMPC OF A HDS PLANT 

4.1 Process description 

In order to illustrate the approach, the problem of the optimal 

start-up of a hydrodesulphurization (HDS) plant has been 

considered. In petroleum refineries, the HDS process is used 

to remove sulphur from the hydrocarbons to fulfil 

environmental regulations. To do this, hydrogen is put in 

contact with the corresponding hydrocarbon in bed reactors 

with a specific catalyst. The optimal management of the 

hydrogen provided is very important in order to operate 

efficiently: If the quantity of hydrogen supplied is less than 

the minimum required, then the catalysts can suffer important 

damage, while if the supply is in excess, economic losses will 

be experienced (Sarabia et al., 2009).  

 

Fig. 4 shows a simplified structure of a HDS plant. Hydrogen 

comes from three sources named H4, H3 and LP. H4 and H3 

are collectors transporting hydrogen produced in especially 

dedicated production units. Each unit produces hydrogen at 

different purity levels. On the other hand, the LP source is a 

recirculated stream of excess hydrogen with low and variable 

hydrogen concentration. The mixture that goes through the 

compressor (C1) must have its hydrogen purity within a 

range being fed with the hydrocarbon stream (FC), to the 

packed bed reactors (R1, R2). The products of the reaction 

(F7) are sent to a separation unit (T1). One part of the excess  

hydrogen fed is recirculated to the reactors (F11) while the 

rest (F10) is purged in order to eliminate impurities.  

 

To ensure that enough hydrogen is available for the 

desulphurization, and the purities are within their limits in the 

reactor, the operators can modify F1, F2 and F10. On the 

other hand, a pressure controller manipulates F3 to close 

material balances. As there are different ways to provide the 

same amount of hydrogen that the reactor is consuming, the 

operational target is to supply the required hydrogen to the 

reactor, using the best combination of the sources from an 

economic point of view, satisfying the set of operational 

constraints. 

 
Fig.4.  Schematic of the HDS plant 

Several problems are related to the hydrogen management 

that are worth to mention; among them, the lack of reliable 

information about many streams and compositions, and the 

uncertainty of the hydrogen consumption in the reactors. 

Regarding the first one, the uncertainty comes fundamentally 

in the hydrogen composition of the LP stream since it 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2737



     

depends on the operation of other units. Regarding the 

reactors, the hydrogen consumption depends on the 

composition of the hydrocarbon stream being treated in the 

HDS plants, which is an uncertain variable since its value is 

linked to the type of oil crude or to production policies. This 

value changes every 2-3 days, generating a transient lasting 

some hours after which the uncertain variables can be 

estimated from measurements. Hence, it is necessary to 

implement a supervisory layer in the HDS, capable of 

computing the optimal trajectories of the manipulated 

variables in order to perform the transition minimizing the 

total cost of hydrogen, respecting operation constraints and 

taking into account the main sources of uncertainty 

previously mentioned: the specific hydrogen demand in the 

reactors and the hydrogen purity of stream F3.  

4.2 NMPC based on stochastic optimization 

Assuming that both sources of uncertainty are denoted as 1 

and 2 respectively, the optimal stochastic optimization 

problem using a two-stage approach is summarized in (12), 

where the objective function is the cost of pure fresh 

hydrogen weighted with the probabilities of different 

scenarios of the uncertain variables obtained from a 

probability distribution assumed to be known. Table 1 

summarizes the nomenclature employed.  
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The model implemented in (12) is based on mass balances 

applied in: a) the mixing point (h1 and h2) and b) the control 

volume composed by R-1, R-2 and T-1 (h3 and h4).  h5 

represents an approximated first-order dynamics of the 

hydrogen consumption inside the reactor. Inequality 

constraints g1 and g2  avoid damages in the catalyst inside the 

reactor. On the other hand, g3 refers to the capacity 

constraints of the collectors. In both inequalities, superscript 

LO and UP denotes the lower and the upper bounds of the 

variables respectively. Finally, h6 is the non-anticipativity 

constraint to force that all the control actions implemented in 

the first stage must be the same for all the scenarios. The 

super-index j refers to each of the NSc scenarios considered 

for the stochastic variables and k to the stage, 0 or 1, of the 

two-stage optimization 

Table 1.  Nomenclature 

Variable Meaning  
j

kmF ,
 Molar flow of  stream m=1,2,10, in scenario j at stage k 

(Decision variables) 
j

mF  
Molar flow of stream m= 3, 5, and inside the reactor m=X 

j

mx  
Molar percentage of hydrogen in stream m=1,2,3,5,10 and 

inside the reactor m=H2 

jj

21 ,  Stochastic variables representing the hydrogen consumption 

inside the reactor, and the hydrogen purity of F3 respectively 

jPr  Probability of occurrence of scenario j 

wC  Cost of 1 mole of hydrogen in unit w = H3, H4 

VPT ,,  Temperature, pressure and volume of the reactor 

ZR,  Universal constant of gases and compressibility factor  

 

4.3 Solving the two-stage problem by price coordination 

As mentioned before, in order to facilitate the solution of the 

large scale problem (12), the price coordination approach of 

section 3 can be used, solving a set of NSc sub-problems with 

cost function: 
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and the whole set of equality and inequality constraints of 

(12) for a given j, except the non-anticipativity one h6, 

formulated as 

 

0)FF(
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Equation (14) must be enforced by the upper coordination 

level by proper choice of the prices p, following the scheme 

of Fig.3. The Price-Coordinated method was developed to 

solve global inequality constraints, how to transform global 

quality h6 to the inequality constraints (14) is shown in 

(Cheng et al. 2007) and (Martí et al. 2013). 

 

5. RESULTS 

For simplicity, results corresponding to three scenarios 

(ξ
1
={12.554 0.85}, ξ

2
={13.238 0.85} and ξ

3
={12.554 0.875}) 

for the two uncertain variables and a simple parameterization 

of the three decision variables F1, F2 and F10 in each stage are 

shown. In addition, to prevent the exponential growth of the 

decision variables, the scenario tree has been branched in the 

first stage and the horizon of the stages has been chosen to be 

equal to one sampling time (De Lucia and Engell, 2013). 

 

In Fig.5, the constrained purities using centralized (12) and 

coordinated (13) schemes are compared. Both approaches are 

applied on the same process for a given set of uncertain 

parameters          (ξ1 = 13.238 and ξ2 = 0.85). The centralized 

optimization problem has 18 decision variables and 21 
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equations, while using coordinated scheme each optimization 

problem (12) has been reduced to 6 decision variables and 5 

equations (13) that can be solved in parallel. The 

computational time is reduced by 69.31% each sampling 

time. The different trajectories show that the solutions 

obtained using centralized and coordinated approaches have 

similar behaviour.  Therefore, coordinated multi-stage NMPC 

will be useful to avoid computational explosion when a huge 

scenario tree with many uncertainties appears. On the other 

hand, the cost of operating the centralized scheme is 122.45 

€, while the coordinated one achieves an operating cost of  

123.12 €. The difference being due to tolerance error selected 

as stop criteria. 

 
Fig.5. Simulation of multi-stage NMPC using centralized 

and coordinated approach. 

Fig. 6 shows the same purity constraints of coordinated 

multi-stage NMPC designed in the previous section when it 

is applied to the process under uncertainties, using different 

values of ξ{ ξ
1
, ξ

2
, ξ

3
} in the model of process (dashed red 

lines corresponds to ξ
1
, solid blue line corresponds to ξ

2
 and 

dashed black line corresponds to ξ
3
), always satisfying the 0.7 

and 0.9 lower bounds. As it can be seen, coordinated multi-

stage NMPC automatically implements a security gap that 

can prevent the constraints violations minimizing the 

operations cost. 

6. CONCLUSIONS 

This work presents an alternative to manage the 

computational explosion associated to stochastic optimization 

using two–stage scenario formulation, with a Price-driven 

coordination scheme to facilitate parallelization of the 

solution.  

 

The results and the advantages of the coordinated approach 

are evaluated using a simulated hydrodesulphurization unit 

that shows that the approach provides a real-time 

implementable robust controller of the nonlinear process with 

the same results than the centralized scheme.  
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Fig.6. Simulation of coordinated multi-stage NMPC for 

different values of the uncertain parameters. 
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