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Abstract: Based on a consistent interface between a data-driven and a model-driven approach
within an interval framework, the paper deals with the detection of two important electrical
flight control system failure cases of aircraft control surfaces, namely runaway and jamming.
Robust and early detection of such abnormal positions is an important issue for early system
reconfiguration and for achieving sustainability goals. The motivation behind this work is the
development of an original set-membership methodology for fault detection where a data-driven
characterization of random noise variability (which is not usual in a bounded error context)
is combined with a model-driven approach based on interval prediction in order to improve
the accuracy of the overall detection scheme. The efficiency of the proposed methodology is
illustrated through simulation results using data sets recorded on a highly representative aircraft
benchmark.
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1. INTRODUCTION

For overall aircraft optimization design, early and robust
detection of faults that may have an influence on structural
loads is a challenging issue, as it can contribute to weight
saving for better overall performance in terms of fuel burn,
noise, range and environmental footprint, see for example
Zolghadri et al. (2013). In this paper, a set membership
methodology based on interval techniques to compute
robust adaptive thresholds is proposed for fault detection
of two important electrical flight control system failure
cases of aircraft control surfaces: runaway and jamming. A
runaway is an unwanted, or uncontrolled, control surface
deflection that can go until the moving surface stops if it
remains undetected. A jamming, or lock-in-place failure,
is a generic system-failure case which generates control
surface stuck at its current position.

Popular design methods for model-based Fault Detec-
tion and Diagnosis (FDD) include nonlinear, hybrid or
unknown input observers, parity checks, parametric ap-
proaches, nonlinear local filtering, geometric methods, slid-
ing mode methods etc. See for example Hwang et al.
(2010); Ding (2008) and Zolghadri (2012) for a survey.

⋆ This work is done within the MAGIC-SPS project (Guaranteed
Methods and Algorithms for Integrity Control and Preventive Mon-
itoring of Systems) funded by the French National Research Agency
(ANR) under the decision ANR2011-INS-006.

Model-based detection of runaways and jammings has
been reported in several recent works. In Kim et al. (2008)
an interacting multiple model filter for actuator fault
detection was proposed which can diagnose the actuator
damage with an unknown magnitude. In Han et al. (2012)
a fault detection and isolation (FDI) algorithm was pro-
posed for the stuck fault detection of an aircraft with mul-
tiple control surfaces. It relies on the joint use of an adap-
tive observer designed for the stuck fault detection, and a
kalman filter based bias estimation identifying the stuck
position of the corresponding control surface. In Varga
et al. (2011) the authors developed a residual generator
based on Linear Parameter-Varying (LPV) models which
has been applied to the same application as in this paper.
In Vanek et al. (2011) a geometric fault detection approach
was proposed and applied to aileron actuator fault. In
Henry et al. (2011) a LPV technique is proposed for aileron
jamming, runaway and disconnection. In Gheorghe et al.
(2013) a Kalman-based strategy was applied. In Efimov
et al. (2011), a high-order sliding mode differentiation
technique has been proposed.

In this paper, the proposed methodology is based on a
data-driven characterization of variability (inherent ran-
domness) and a model-based dynamic propagation of im-
precision (lack of knowledge) to improve the detection
accuracy (Aughenbaugh and Paredis (2006)). In fact, an
original noise characterization capturing more information
than just bounds at a given time instant will be taken into
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Fig. 1. Simplified block diagram of control surface servo-
loop.

account, which is not usual in a bounded error context.
This makes it possible to enhance the tradeoff between
sensitivity to faults and robustness wrt noise. The resulting
fault detection methodology relies on a distinction between
signal and noise within measurements. This analysis re-
sults in the introduction of an interval residual based on
a dead-zone function in order to interface the data-driven
and the model-driven approaches. So, the proposed fault
detection scheme takes into account both the inherent ran-
domness of noise and the (non random) imprecision related
to the lack of knowledge about the system dynamics.

The paper is organized as follows: section 2 is devoted
to the problem statement and control surface servo loop
modeling. The proposed fault detection methodology is
described in section 3. Section 4 presents some simulation
results. Finally, some concluding remarks are given in
section 5.

2. PROBLEM STATEMENT

2.1 Basic physical model of the fault free system

A typical Airbus structure of servo-loop control of aircraft
moving surfaces is depicted in figure 1 Goupil (2011). Here
COM is the command channel and MON is the monitoring
channel in the FCC (Flight Control Computer), see Goupil
(2011) for further details. The control surface considered
in this paper is the elevator which is moved by an hydraulic
actuator. The nonlinear model of the actuator is derived
from physical consideration, i.e. the rod speed is a function
of the hydraulic pressure delivered to the actuator and the
forces applying on the control surface and reacted by the
actuator. Then, from a basic physical model (Zolghadri
et al. (2013); Goupil (2010)), a state space representation
can be derived as:{

ẋ(t) = γ(u(t), x(t))(u(t)− x(t)),
y(t) = x(t),

(1)

γ(u(t), x(t)) = KciK

√
S∆P (t)− Faero(t)

S∆Pref +Ka(t)(KciK(u(t)− x(t)))2
(2)

where x is the rod position (which can be converted
into the control surface position using a monotonic static
function), ∆P (t) is the hydraulic pressure delivered to
the actuator, Faero(t) represents the aerodynamic forces
applied on the control surface. Depending on the control
surface, Faero is a function of several flight parameters
like e.g. Mach number, dynamic pressure, aerodynamic
configuration, etc. . . . Ka(t) is the actuator damping coef-
ficient. S is the actuator piston surface area. ∆Pref is the
differential pressure corresponding to the maximum rod

speed. u(t) is the actuator command signal (pilot order).K
is the servo control gain (see figure 1) and Kci models the
actuator servo-valve by converting the servo-loop current
derived from the flight control law order in rod speed.

In (2), several terms are time-varying, in particular the
aerodynamic force Faero(t). The rod position x being
measured (y = x) through the surface position sensor
and a known static function, a simplified model can be
obtained by substituting y for x in γ(u, x) (2).

2.2 Problem statement

The aim is to propose a bounded error detection method-
ology which combines:

i) An explicit data-driven characterization of the output
noise variability (i.e. random behavior of noise),

ii) An interval residual generator characterizing the out-
put signal imprecision within a model-driven ap-
proach relying on guaranteed enclosures,

iii) An overall fault detection scheme further illustrated
on a specific aircraft control surface.

To develop the methodology for fault detection of an
elevator, a Linear Parameter-Varying (LPV) discrete state
space representation like (3), corresponding to a sampled
approximation of the fault free model (1), is considered.{

xk+1 = gkxk + (1− gk)hkuk, x0 ∈ (xc
0 ± xr

0),
yk = xk + ηk,

(3)

gk ∈ (gck ± grk), hk ∈ (hc
k ± hr

k), ηk ∈ (0± ηrk) (4)

uk ∈ R is a known input, xk ∈ R is the system state,
yk ∈ R is the output measurement and ηk ∈ R represents
a bounded noise. ± is an operator returning an interval
from its center (left) and its radius (right) like in c ±
r = [c − r, c + r]. The exponent notations c and r
respectively refer to such center and (positive) radius. gk
and hk are not exactly known: they are assumed to be
bounded by time-varying intervals (4) with known centers
and radii possibly expressed as non linear functions of a
known scheduling vector θk ∈ Rp. Contrary to x0 (initial
state), gk and hk, it is worth noticing that no bound
ηrk is assumed a priori for the bounded noise ηk. This
emphasizes the fact that a data-driven characterization
of noise is to be further considered. The structure of the
state equation in (3) emphasizes the distinction between
gk and hk which, if constant, would respectively tune the
time constant (discrete pole) and the static gain used to
model the system. This distinction is important because a
large uncertainty about g may significantly affect a fault
detection residual during transient operation involved by
input excitation, while preserving a very good precision
during steady operation provided h is well-known. A
suitable propagation of bounded uncertainties will take
this into account.

3. PROPOSED APPROACH

In this section, a data-driven characterization of noise is
firstly detailed. Secondly, a model-driven approach based
on interval prediction is proposed. Finally, by combining
the two methods, a fault detection methodology is given.
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3.1 Data-driven evaluation of imprecision based on
variability

3.1.1 Noise characterization

A characterization of variability of real valued discrete
time signals like u = (uk)k∈K∗⊂Z based on moving av-
erages uk/q over increasing temporal windows lengths q,
where K∗ may be finite or not (e.g. K∗ = Z). Here, it
is assumed that characterization takes place at a present
time k = 0 so that past time k < 0 refers to available data
from past experience, whereas future time k ≥ 0 refers
to future of the signal u. A theoretical characterization of
variability in the signal u is then defined as the function
λ(u) : N 7→ R, q → λ∗

q(u) where λ∗
q(u) is:

λ∗
q(u) = max

k∈K∗
|uk/q|, uk/q =

1

q

k∑
τ=k−q+1

uτ , (5)

It can be viewed as a modeling of the variability of
the signal u as a constraint between the variables uk.
However, since all the future of u is not available, a
practical characterization of variability in u is defined as:
λ(u) : Q 7→ R, q → λq(u) where Q = {1, . . . , q} ⊂ N and
λq(u) is as in (6):

λq(u) = max
k∈K⊂(K∗∩Z−)

ς|uk/q|, (6)

∀q ∈ Q, λ∗
q(u) ≤ λq(u), (7)

where ς is a safety factor (> 1) ensuring the practical
validity of assumption (7) and K indexes the available
past (k ∈ Z−) samples of u. (7) is a stationarity assump-
tion stating that the characterization of variability in u
performed on available (i.e. past) data still allows the in-
ference of relevant information in the future. Here, the
link with the stochastic context is very strong. From a
practical point of view, the assumption (7) is well satisfied
for stationary noisy (i.e. featuring randomness in their
behavior) signals, no matter how their probability density
is distributed. This motivates the study of a threshold eval-
uation after the filtering of a (noisy) signal u practically
characterized as in (6)-(7). It should be mentioned that
random signals u with non-stationary probability density
functions can also be taken into account and will leads to
robust decisions as long as the noise characterization λq(u)
remains valid. Regarding the proposed practical character-
ization of variability, the storage of {λq(u), q ∈ {1, . . . , q}}
for large q may require a non negligible memory space
for some embedded applications. Then, a power regression
giving parameters (α, β, γ) such that λq(u) < αqγ + β can
be used to drastically reduce the memory requirements
while preserving very simple online computations.

Remark: A measure of variability based on the proposed
data-driven signal characterization can be given as υ(u) =

1
ζ(2)−1

∑
q∈Q

(
1− λq(u)

λ1(u)

)
1
q2 where ζ(2) =

∑∞
q=1

1
q2 = π2

6

(Riemann serie) and Q = N\{0}. The choice for such mea-
sure is not unique and it is motivated by normalized values
between 0 and 1. The measure of variability expresses the
decrease of moving averages maximum values wrt moving
horizon length.

In this paragraph, an easily implementable data-driven
characterization of (noisy) signals based on moving av-

erages has been proposed. The related interpretations mo-
tivate a study of how to take variability into account in a
bounded error context in order to increase the precision of
predicted values.

3.1.2 Noise filtering and threshold evaluation

The filtering of a (noisy) signal u is considered in this
paragraph and, based on a practical characterization of
variability, λ(u), the evaluation of a robust threshold
enclosing the filter output is proposed. While preserving
the full coverage of bounded error techniques under (5)-
(7), it is shown that taking variability into account allows
one a noticeable increase of precision when υ(u) > 0.

Proposition 1. (Threshold evaluation by first order filtering). Let
u = (uk)k∈N be a real scalar signal assumed to be char-
acterized by λq(u), q ∈ Q = {1, . . . , q}, q ∈ N. Let r ∈ Q
denote a number of past samples defining the history used
for threshold evaluation. Let consider a first-order discrete
filter (8)-(9) where, ∀k ≥ r, xk−r ∈ (0 ± µk−r) ⊂ R,
0 < a < 1, b ≥ 0, c ≥ 0:

xk = axk−1 + buk, (8)

yk = cxk, (9)

Then, ∀k ≥ r, |yk| ≤ τk,r, where the threshold τk,r =
τ(λ(u), r, µk−r, a, b, c) is:

τk,r = carµk−r+cbr(ar−1)λr(u)+cb
r−1∑
q=1

q(aq−1 − aq)λq(u)

(10)

(See Appendix for the proof). Let us now exemplify how
proposition 1 can be used to achieve a robust residual
evaluation in the context of fault detection. In order to
follow the generic filtering notations of proposition 1, it
is considered, in this paragraph only, that u = (uk)k∈N
stands for a residual signal featuring some variability
previously characterized by λq(u), q ∈ Q = {1, . . . , q},
q ∈ N. In order to enhance the detection decision wrt to
particular realizations of noise, residual are usually filtered
prior to comparing them with some threshold. Therefore,
let us consider the filtering of the (residual) signal u by
a stable first-order discrete-time filter with unit static
(e.g. b = (1 − a), c = 1) gain and a as discrete pole
(0 < a < 1). Such filter can be represented in state-space
form as in (8)-(9) so that the output y has the meaning of
a filtered residual signal. Then, a robust threshold signal τ
enclosing y with guarantee provided the characterization
of u remains valid is given as a corollary of proposition 1:

Corollary 2. Following all the assumptions of proposition 1
and assuming that u refers to a residual signal, b = (1 −
a), c = 1 (filter with unit static gain), r = min(k, q)
and, ∀k ∈ N, µk−r = λ1(u). Then, a threshold signal τ
enclosing the filtered residual y with guarantee provided
the characterization λq(u), q ∈ Q = {1, . . . , q}, q ∈ N of u
remains valid (7) is:

∀k < q, |yk| ≤ τk, with τk = τk,k|µk−r=λ1(u) (11)

∀k ≥ q, |yk| ≤ τk, with τk = τk,q |µk−q=λ1(u) = constant (12)

(See Appendix for the proof). It is worth underlining that
τ is only variable for a short time of q samples from start-
up of the (online) detection algorithm at k = 0. After that,
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∀k ≥ q, τk = τ is a constant value (12) that can be easily
pre-computed off-line from the characterization λ(u) of the
(residual) signal u as (b = 1− a, c = 1):

τ = aqλ1(u) + (1− a)

(
q(aq−1)λq(u) +

q−1∑
q=1

q(aq−1 − aq)λq(u)

)
(13)

When k ≥ q̄ with sufficiently high q̄ and 0 < a < 1,
the threshold τ is not much influenced by the (possibly
high) maximum value λ1(u) of u at a single time instant.
Instead, the decrease wrt q of moving average bounds
λq(u) characterizing a random signal u mainly contribute
to a reduced (i.e. more sensitive) but still robust value of τ .
Such robustness is guaranteed even under non-stationary
stochastic properties of u provided the easily computable
off-line characterization λq(u) remains valid. This requires
to learn the noise characterization based on data sets
obtained from sufficiently excited scenarios with greatest
noise levels under fault-free operation, as this will be done
in section 4.

A systematic approach to compute thresholds based on
an explicit data-driven characterization of (noisy) signals
has been proposed, with no prior assumption about the
probability density distribution of the sample values. Even
if a significant part of such distribution is contained in the
characterization λ(u), the interest of the proposed scheme
relies on the direct link between data-driven signal char-
acterization and threshold evaluation, while still ensuring
guaranteed robustness (complete coverage) under explic-
itly specified stationarity assumptions (7) which remain
easily interpretable in terms of moving average.

Remark: When v(u) = 0 (signal with no variability), τ =
λ1(u) since ∀q, λq(u) = λ1(u), whereas v(u) > 0 (signal
with explicit variability) leads to τ < λ1(u) thanks to
lower moving averages bounds as q increases. As expected,
taking variability into account, which is not usual in a
bounded error context, enhances the tradeoff between
sensitivity to faults and robustness wrt noise

3.2 Model-driven interval prediction

Several works dealt with interval prediction mainly for LTI
systems Mazenc and Bernard (2011); Combastel (2013);
Mazenc et al. (2012). In addition, some results for interval
observers for LPV systems, that can also be used for
prediction, have been published in Gouzé et al. (2000);
Räıssi et al. (2012). In this section, an interval prediction
for the model (3)-(4) is given. The application under study
leads us to focus on a first order model which formalizes
prior knowledge about the dynamical behavior of the
system to be further diagnosed.
Proposition 3. (Interval predictor). An interval predictor
for the state equation in (3)-(4) and satisfying the guar-
anteed inclusion (16) is (14)-(15), where (17) ensures the
stability of both the center (14) and the radius (15) dy-
namics.

xc
k+1 = gckx

c
k + (1− gck)h

c
kuk, (14)

xr
k+1 = (|gck|+ grk)x

r
k + grk|x

c
k − hc

kuk|+ (|1− gck|+ grk)h
r
kuk(15)

∀k ∈ N, xk ∈ xc
k ± xr

k, (16)

|gck|+ grk < 1. (17)

  

��
� �� ��

� 

�� 

0 ��
�  

Fig. 2. Interval residual rk based on a dead-zone function
dz called with [x−

k , x
+
k ] = xc

k ± xr
k.

(See Appendix for the proof). Notice that the condition
(17) reduces to the LTI case when gck = gc is constant and
grk = 0. Strong analogies exist with the stability condition
given in Raka and Combastel (2013) for multi-dimensional
continuous systems. An interesting aspect of proposition 3
is that it deals with a full time-varying bounded error LPV
model including both time-varying centers and radii in
the specification of parameters imprecision. In addition,
it provides jointly: i) a guaranteed inclusion, ii) an easily
verifiable stability condition for both center and radius
dynamics, iii) a simple structure which is very well-suited
for efficient real-time implementation.

3.3 Fault detection methodology

The fault detection methodology proposed in this work
combines a model-driven approach as developed in sec-
tion 3.2 and a data-driven approach as developed in sec-
tion 3.1. A careful analysis of their interaction is investi-
gated in this paragraph in order to achieve a robust and
sensitive fault detection.

Firstly, based on the knowledge model (3), the interval
predictor of proposition 3 gives xc

k ± xr
k, a guaranteed

interval prediction of the state xk, which allows the explicit
characterization of the influence of imprecisions about the
system dynamics (lack of knowledge specified by grk, h

r
k),

even under arbitrary input excitation.

Secondly, based on the resulting bounds (x−
k = xc

k − xr
k,

x+
k = xc

k+xr
k) and given the measurement equation of (3),

an interval-based residual rk can be defined as follows:

rk = dz(yk, x
c
k ± xr

k) =
yk − x+

k if yk > x+
k ,

yk − x−
k if yk < x−

k ,
0 otherwise,

(18)

(18) shows that ∀yk ∈ xc
k ± xr

k, rk = 0 which is
consistent with a measured value yk belonging to its noise-
free model-based interval prediction xc

k ± xr
k. Otherwise,

∀yk ̸∈ xc
k ± xr

k, rk ̸= 0, and the value of rk is related to
the distance between yk and the closest bound of xc

k ±
xr
k. Consequently, the proposed deadzone-based residual

evaluates the part of the measurement yk that cannot be
explained by the interval prediction resulting from the
(noise-free) uncertain state equation in (3)-(4). Notice that
the interval based residual is expressed as rk = r(yk, x

c
k ±

xr
k) (with r = dz) which is in contrast to the classical

output error residual expressed as ρk = ρ(yk, x
c
k) (= yk −

xc
k). This is illustrated by figure 2 where r (resp. ρ) appear

with bold (resp. greyed dashed) lines. It is also worth
noticing that (xr

k = 0) ⇒ (rk = yk − xc
k = ρk) is satisfied

which emphasizes the fact that the proposed interval
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residual generalizes the classical one, the fit occurring
when the knowledge is subject to full precision (i.e. no
imprecision and thus zero radius).

Then, given a measurement and a set-membership estima-
tion of the related measured variable, a residual quanti-
fying the inconsistency between them is proposed. Under
the assumption of validity of the fault-free model (3), the
only cause of inconsistency (rk ̸= 0) is due to the unknown
output error ηk = yk−xk (unknown since xk is not exactly
known: xk ∈ xc

k ± xr
k). Notice that, at this step, ηk is

not yet qualified as “noise”, just as “output error”. The
reason comes from the lack of a clear distinction in an
experimental context between signal and noise within a
single observed reality which is the measurement.

In the proposed set-membership methodology, the distur-
bance bounds (grk and hr

k for model (4)) are viewed as a
mean to model the frontier between what is considered
as noise (and features a random behavior) and what is
considered as signal in the measurement. A notable dif-
ference with usual practice is that this makes it possible
to characterize the random behavior of noise through a
data-driven approach and, in the same time, to specify
a range of non-random dynamical behaviors handled by
a guaranteed set-membership model-driven approach. By
this way, it becomes possible to enclose within xc

k ± xr
k

the influence of physical phenomena which are both non-
random and whose precise modeling is not relevant for the
considered application, while efficiently dealing with the
noise in rk = dz(yk, x

c
k ± xr

k) that remains unexplained by
xc
k ± xr

k. This is especially useful to maintain a robust
decision both during large transients involved by input
excitation under uncertain dynamics (grk) and, in the same
time, preserve the ability to “take robust decisions inside
the noise” when xr

k is very small (as in steady state for
hc
k = 1 and hr

k = 0, for instance).

Thirdly, since the interval residual rk = dz(yk, x
c
k ± xr

k)
is only influenced by noise, the noise characterization and
the filtered noise thresholding technique proposed in sec-
tion 3.1 becomes readily applicable to achieve both sen-
sitive and robust fault detection, even in the presence of
large noise variability. Moreover, the proposed methodol-
ogy does not require a new data-driven characterization to
update the detection threshold when it is just decided to
update the tuning of the residual filter.

4. SIMULATION RESULTS

In this section, some simulations results are presented to
illustrate the methodology described in the previous sec-
tion. First, the continuous time model (1) is transformed
into a discrete time model:

gck = (1− γ(uk, yk, θk)T ), hc
k = 1, (19)

where T = 10 ms is the sampling time. Then, the center
dynamics (14) of the interval predictor resulting from the
proposition 3 corresponds to the sampled approximation
of the simplified model deduced from (1)-(2). grk and hr

k are
tuned so that all non-modeled phenomena are well covered
by xc

k ± xr
k, up to (random) noise: grk = min(κ1 + κ2|uk −

xc
k|, κ3) where κ = [κ1, κ2, κ3] > 0 is a vector of positive

constants such that the stability condition (17) is satisfied
under the considered domain of operation.

0 20 40 60 80 100

−0.22

−0.15

−0.07

    0

 0.07

y
k
, xc

k
 ± xr

k
, u

k

0 20 40 60 80 100
   0

0.07
0.15
0.22

xr
k

%

Fig. 3. Scenario DV : Measured surface position yk (green),
bounds of its interval prediction xc

k ± xr
k (red) and

actuator command signal (pilot order) uk (blue). Bot-
tom plot: xr

k featuring increased values (i.e. reduced
precision of the related interval prediction) during
transient operation.

Based on the characterization of the variability in rk
computed from a first data set DL (L for learning), a
threshold τ (13) is fixed for εk which results from the
filtering of rk by a first order discrete filter Fa with pole
a (0 < a < 1) and unit static gain. Therefore, Fa has the
form of (8) with b = (1 − a), c = 1, and the threshold
computation directly results from proposition 1 by taking
rk as input and εk as output. A fault is then detected once
an inconsistency appears i.e. at the first sample time k such
that |εk| > τ . Notice that this condition implicitly involves
a decision based on several samples of rk thanks to the
filtering process. A slow dynamic of the residual filter (a →
1) is useful to improve the sensitivity to slowly developing
abnormal behaviors with amplitude significantly smaller
that the noise magnitude. The counterpart of this is a
possibly slower detection delay in the case of abrupt faults
since the filter output εk needs longer time to follow the
filter input rk.

This is illustrated on the considered system, by considering
the data set DV used for a validation of the proposed
methodology. This scenario DV features reduced input
excitation magnitude (involving narrower control surface
position range than DL) and operates close to steady-
state where random noise magnitude appears as the main
difficulty to increase the sensitivity to faults (see figures 3).
Notice that other scenarios with increased input excitation
may lead to significantly larger intervals than in figure 4
during transient operation.

Based on the noise characterization learned with the
excited scenarioDL, the fault-free scenarioDV is taken as a
reference for validation. Firstly, the noise characterization
obtained from DL ensures no false alarms occur on the
filtered residuals a ∈ {0.6, 0.8, 0.9, 0.95, 0.99} (safety factor
ς = 1.2). Then, from the scenario DV , three abnormal
situations have been considered:
•DV1: Runaway −5◦/s at t = 50s (low dynamic runaway),
•DV2: Jamming at t = 14.5s,
•DV3: Jamming at t = 66s,
The fault detection results are reported in figure 5 and
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Fig. 4. Scenario DV : Zoom of the top plot in figure 3 during
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operation (right).
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Fig. 5. Scenario DV under three distinct abnormal situ-
ations: DV1, DV2, DV3, from top to bottom. Left:
large view, Right: zoom around the times of fault
occurrence and fault detection. All plots: Measured
surface position yk (green), bounds of its interval
prediction xc

k±xr
k (red) and actuator command signal

(pilot order) uk (blue).

table 1. In the scenario DV1 (top plots in figure 5), the
residual deviates abruptly from zero resulting in a fast
detection. A similar situation can be observed DV2 (middle
plots in figure 5)). In both cases (runaway and jamming),
an early fault detection is achieved as shown by the third
and the fourth lines in table 1, except by the residual
filter a = 0.99 which involves a very slow following of
rk by εk. The abnormal situation DV3 corresponds to
a jamming at a time (t = 66s) when the servo-loop
operates approximately in steady-state. As the position
changes slowly, the lock-in-place failure is more difficult
to detect early, especially in the presence of noise which
is not much a problem in the case of very abrupt faults.
In that situation, residual filtering is of prior importance
to both achieve an early detection. The third line in
table 1 illustrates the trade-off in the choice on the residual
filter dynamic (a = 0.9 or 0.95 being good candidates).
Having a look at the bottom right plot in figure 5 the
tradeoff sensitivity/robustness, the interest in taking the
notion of signal variability in a bounded-error paradigm
appears clearly. This study shows that the proposed set-
membership methodology could allow the detection of
runaway (a.k.a. hardover) and jamming (or lock-in-place
failure) of aircraft control surfaces.

Table 1. Detection times (s) wrt residual filter
pole a.

a = 0.6 0.8 0.9 0.95 0.99

DV1: Run t = 50s 50.05 50.05 50.06 50.06 50.13
DV2: Jam t = 14.5s 14.55 14.56 14.57 14.58 14.65
DV3: Jam t = 66s 68.46 68.14 67.35 66.94 67.71

5. CONCLUDING REMARKS

In this work, a set-membership detection technique was
proposed. The basic idea is to design interval residuals with
a dead-zone function evaluating the behavior that cannot
be explained by the set-membership model knowledge.
Under fault free operation, such residuals are subject
to deviations from zero induced by random noise only.
The variability of such noise is characterized to obtain
thresholds (intervals) accounting for both data-based and
model-based knowledge. The technique has been applied to
the detection of abnormal aircraft control positions. The
obtained results are encouraging and open the door for
further investigations in this direction.
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APPENDIX

Proof. Proposition 1
By developing the recurrence (8) r times, it comes:
xk = arxk−r+b( ar−1uk−r+1+ar−2uk−r+2+. . .+a1uk−1+
a0uk ),
xk is then rewritten so as to put into evidence cumulative
sums of input samples:
xk = arxk−r + b( ar−1(uk−r+1 + . . .+ uk) + (ar−2 − ar−1)
(uk−r+2+. . .+uk)+. . .+(a1−a2)(uk−1+uk)+(a0−a1)uk ),
xk = arxk−r+b( r(ar−1)uk/r+(r−1)(ar−2−ar−1)uk/(r−1)+

. . .+ 2(a1 − a2)uk/2 + 1(a0 − a1)uk/1 ).

From (9), yk = carxk−r + cbr(ar−1)uk/r + cb
∑r−1

q=1

q(aq−1 − aq)uk/q. As 0 < a < 1, ∀q ≥ 1, (aq−1 − aq) > 0.
Moreover, b ≥ 0, c ≥ 0, and the characterization λq(u)
ensures from (5)-(7) that ∀q ∈ Q, ∀k ≥ q, |uk/q| ≤ λq(u)
(or, equivalently, uk/q ∈ 0±λq(u)) where |.| is the absolute
value operator. Notice that k ≥ q comes from k ∈ N in the
statement of proposition 1. Then, a basic use of interval
arithmetic gives: yk ∈ 0 ± (carµk−r + cbr(ar−1)λr(u) +

cb
∑r−1

q=1 q(a
q−1 − aq)λq(u)).

Proof. Corollary 2
The proof of corollary 2 is based on the fact that a first
order filter in R presents no overshoot. Therefore, if its
state initial condition lies between the range of its input
(as in µk−r = λ1(u)), the output will necessary remain
in the same range. Since c = 1, the filter state xk and the
filtered output yk are the same in this corollary. Therefore,
provided the filter state initial condition µ0 = λ1(u) is
fulfilled (which is easily satisfied in practice by simply
choosing x0 = u0), direct applications of proposition 1
give the result stated in the corollary.
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Proof. Proposition 3
The following preliminary remark is needed: ∀(w, s) ∈
Rn × [−1,+1]n, ∃σ ∈ [−1,+1], wT s = |w|1σ, where |.|
is the element-by-element absolute value operator and 1
is a column vector of 1s with appropriate size.(Proof:
s = −sign(w) and s = +sign(w) give the extremal values
possibly reached by wT s ∈ R).

Now, let g�k ∈ [−1,+1] denote a normalized bounded vari-
able related to gk ∈ gck±grk so that the constraint gk = gck+

grkg
�
k is always satisfied. Similar notations are used for each

bounded variable, hk = hc
k+hr

kh
�
k , etc. Proof by induction:

assuming xk = xc
k + xr

kx
�
k which is true at k = 0, xk+1 =

gkxk+(1−gk)hkuk can be firstly rewritten as: xk+1 = (gck+

grkg
�
k )(x

c
k+xr

kx
�
k )+(1−gck−grkg

�
k ))(h

c
k+hr

kh
�
k )uk and, after

simple rearrangements: xk+1 = (gckx
c
k + (1− gck)h

c
kuk) +

gckx
r
kx

�
k +grkx

c
kg

�
k +grkx

r
kg

�
k x

�
k +(1−gck)h

r
kukh

�
k −grkh

c
kukg

�
k −

grkh
r
kukg

�
k h

�
k . Then, a factorization wrt uncertain monomes

gives: xk+1 = (gckx
c
k+(1−gck)h

c
kuk)+((gckx

r
k)x

�
k +(grkx

c
k−

grkh
c
kuk)g

�
k +(grkx

r
k)g

�
k x

�
k +(1−gck)h

r
kukh

�
k −(grkh

r
kuk)g

�
k h

�
k ).

Applying the given remark with wk = [(gckx
r
k), g

r
k(x

c
k −

hc
kuk), (g

r
kx

r
k), (1−gck)h

r
kuk,−(grkh

r
kuk)]

T and sk = [x�
k , g

�
k ,

(g�k x
�
k ), h

�
k , (g

�
k h

�
k )]

T gives xk+1 = xc
k+1 + xr

k+1σk where
xc
k+1 and xr

k+1 = |wk|1 are respectively given by (14) and
(15), and where σk ∈ [−1,+1] ensures the inclusion prop-
erty (16) at time k + 1. It can be noticed that (15) holds
true thanks to the positivity of all interval radii and, also,
that xr

k+1 ≥ 0 since |wk|1 ≥ 0. A guaranteed inclusion is
preserved wrt the specified model and a condition ensuring
the stability of the (here, unidirectionally) coupled center
and radius dynamics is |gck| + grk < 1 : As grk ≥ 0, this
condition implies |gck| < 1 which first ensures the stability
of the only center dynamics (14). Then, under a bounded
input uk, x

c
k is bounded and so is the whole input term of

the radius dynamics (15). By considering x̌r
k+1 = (|gck| +

grk)x̌
r
k (homogenous discrete Linear Time-Varying (LTV)

difference equation related to the radius dynamics), and
by choosing Vk = (x̌r

k)
2 as Lyapunov function, it comes:

∆Vk = Vk+1 − Vk = ((|gck| + grk)
2 − 1)(x̌r

k)
2. So ∆Vk < 0

when x̌r
k ̸= 0 and ∆Vk = 0 when x̌r

k = 0. This completes
the proof of proposition 3.
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