
Formalization and composition of languages
for the modeling of fire safety systems

H. Chanti ∗, ∗∗∗ L. Thiry ∗ M. Hassenforder ∗ J-F. Brillhac ∗∗

P. Fromy ∗∗∗

∗ MIPS EA 2332 - Université de Haute Alsace, 12 rue des Frères
Lumière - 68093 Mulhouse (France); (e-mail: {houda.chanti,

laurent.thiry, michel.hassenforder}@uha.fr).
∗∗ GRE EA2334 - Université de Haute Alsace - 3bis, rue Alfred Werner

- 68093 Mulhouse (France); (e-mail: jean-francois.brillhac@uha.fr).
∗∗∗ CSTB, 84 avenue Jean Jaurès - Champs-sur-Marne - 77447

Marne-la-Vallée Cedex 2 (France); (e-mail: {houda.chanti,
philippe.fromy}@cstb.fr).

Abstract: Modeling complex systems, such as the ones found in the certification of fire
protection systems, generally requires the intervention of many specialists, each one using its own
formalisms, concepts and tools. To model such systems, many specific languages are required
and to be integrated they should be formally described. In this proposal, we suggest to use
functional programming concepts to formalize and integrate the languages involved in the field
of fire safety systems. Formalization is done by specifying constructor functions and integration
by the way of generic/higher-order functions.

Keywords: Domain Specific Languages, functional programming, fire safety.

1. INTRODUCTION

A complex system is generally studied by considering
various points of view, each one based on specific models
and languages. Thus, global modeling requires means (i.e.
concepts and tools) to express in a unified way modeling
languages and their relations. Moreover, the elements
considered have to be precise (i.e. with mathematical
foundations) to make possible proofs (e.g. no information
is lost, safety properties are satisfied, etc.).

In the domain of computer science, languages used by
specialists are called Domain Specific Languages (DSLs),
see van Deursen et al. [2000] for a more precise definition of
the concept and examples. These languages are: 1) based
on concepts and features of a domain, and 2) used to
describe and generate programs in a specific field. The use
of DSLs offers the possibility for analysis, optimization and
transformation of models, and has the advantage to enable
the reuse of software artifacts, Biggerstaff [1998].

As a complex system, the evaluation of a fire safety system
requires the use and the integration of many models
and languages to describe the architecture, fire attitude,
physical properties of the materials, behavior of security
system, etc. The contribution of the present paper is in
the precise definition of the needed languages, and the
illustration of how functional programming concepts can
facilitate their integration.

The current paper is divided into three parts: the first one
describes the main components of fire safety systems and
the fundamental concepts that make functional program-
ming interesting. The second part gives a formal definition

of the specific languages used in the process of evaluation
of the safety level, and their integration. The last part
concludes by summarizing the main points presented and
by giving the perspectives considered.

2. FIRE PROTECTION AND FUNCTIONAL
PROGRAMMING

2.1 Fire protection systems

The certification of a building against fire is based on the
evaluation of the safety sub-systems installed. A fire safety
system is composed of various components distributed
in a building to collect information regarding to fire
safety. To evaluate the fire safety level in a building,
engineers try to reproduce the phenomena observed in a
fire situation. Based on various configurations (figure 1),
they use simulators to calculate physical quantities that
can lead to destruction of materials or death of persons
(what defines the undesired events). Certification of fire
protection system involves:

• Many models to be integrated such as architectural
model, undesired event, simulator, checker, etc.

• The use of a simulator to get system evolution X(t) =
[Pi(t), Ti(t)] by considering an initial state X(0),
pressures Pi of a location, temperature Ti, etc.

• The resulting behavior X(t) is used to check safety
properties (e.g. Pi(t) > V), and many behaviors have
to be considered depending of the initial configuration
X(0), i.e. where a fire begins, or choices of fire
protection sub-systems.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 1625

Fig. 1. Models in a fire protection system

Till now the evaluation of fire safety level depends on
the knowledge of specialists and is done manually. There
exists many available simulators based on various fire
propagation models with for instance the ones described
by Hu et al. [2007] or Parry et al. [2003].

Our institute the CSTB (the Scientific and Technical
Center for Building), develops a specific simulator called
CIFI (Curtat [2002],Bodart and Curtat [1987]) based on a
two zones fire model, to get the behavior X(t). An example
of input configuration X(0) for the simulator is given
bellow (we will refer to this file by the name configuration):

- Simulation properties

&MISC JOBNAME=’F3’ TETAFIN=5400.0 DTETA=0.10

ATOL=1.D-9 RTOL=1.D-7 NSAVE=600/

&REAC XRAD=0.30D0 COYIELD=0.004D0

SOOTYIELD=0.015D0 NU_C=3.4D0

NU_H=6.2D0 NU_O=2.5D0 /

- External temperature

&EXT T=20.0 /

- Local description

&LOC ID=’LOC1’ H=2.2 LONG=75. LARG=15. ALT=0.

T16INI=21. E(1)=0.2 LAMBDA(1)=1.6

RHO(1)=2300. CS(1)=1000. EMIP(1)=0.9

ISOLANT(1)=.FALSE. E(2)=0.2

LAMBDA(2)=1.6 RHO(2)=2300. CS(2)=1000.

EMIP(2)=0.9 ISOLANT(2)=.FALSE./

- Openings description

&OUV ID=’OUV1’ ALLEGE=0. LINTEAU=1.

LARGEUR=3.6 FUITE=0.01 ALT=0.

LOCIDS=’LOC1’,’EXT1’ CTRLID=’ETATOUV1’ /

- Smoke evacuation

&OUV ID=’OUV2’ ALLEGE=1.4 LINTEAU=2.2

LARGEUR=4.5 FUITE=0.01 ALT=0.

LOCIDS=’LOC1’,’EXT3’ CTRLID=’ETATOUV2’ /

- Fireplace properties

&SBO ID=’FOYER’ LOCID=’LOC1’ ZF=0. TVAP=300.

LVAP=1.8D6 AFMAX=12. ILOI=1 RAMP=’LIN’

TPLT=300. MPDOTMAX=0.6944 TDEC=300.

TFIN=3300./

- Controllers

&CTRL ID=’ETATOUV1’ ON_INI=.TRUE. /

&CTRL ID=’ETATOUV2’ ON_INI=.TRUE. /

&END /

This configuration is a composition of many blocks:
The block &MISC describes the simulation properties as
the duration of a simulation and the step time. These data
are filled by a fire safety engineer.

The block &REAC is filled by a chemist, and consists on
the parameters of the combustion model.

The block &LOC describes the geometry of one local in a
building. This one is identified by an ID. Some parameters
are filled by an architect, such as H, LONG, LARG and
ALT, but some others are filled by a fire safety engineer as
they represent the characteristics of construction materials
and fire resistance (as E, LAMBDA, RHO, etc).

The &OUV block gives mainly architectural information,
but also leakage (physics) when the opening is closed.

The &SBO block gives information about the location of
the fireplace (LOCID), and also the parameters of the
curve combustion based on the fuel material. It describes
one kind of fireplaces (for example a table), if the fire
safety engineer changes for another fireplace (a chair for
example), he has to replace the whole block by new
parameters.

Based on the knowledge of many specialists, many data
are composed to make an input file (or a configuration)
for the simulator.

The main problem is that an architect, a chemist or a fire
safety engineer use their own languages, but they have to
translate it into this configuration language to correspond
to the structure of the input file (an example of an input
configuration is given in subsection 2.1). So to allow the
experts to use their preferred languages, a specific tool has
to be proposed to merge these expert specific languages
and to generate the initial configuration of the simulator.

Moreover as explained above, many initial configurations
X(0) have to be considered (e.g. Pi(0) ∈ [Pmin, Pmax])
what corresponds to another specific language. Finally,
a language has to be defined for the checker and the
properties to automatic the safety level detector.

2.2 Formalization of languages

Models represent abstractions of systems. They are ex-
pressed by using languages, i.e. set of terms generated by a
set of production rules formalized by ”a grammar”, Chom-
sky [1959]. A grammar G = (TS,NT, S,m) is defined by:
1) Terminal Symbols TS, e.g. ”+”,”(” or ”1”, 2) Non-
Terminal symbols NT, e.g. Exp, 3) A Start symbol S∈NT
and 4) A map m: (TS∪ NT)∗ → NT, where X∗ denotes a
sequence of Xs.

Grammars are generally expressed by using specific lan-
guages, as in particular the Backus-Naur Form (BNF)
language, Chomsky [1959], or the Extended Backus-Naur
Form (EBNF). As an illustration, the EBNF representa-
tion of the grammar for elementary arithmetic expressions
Exp is:

<Exp> ::= <Val>|<Exp> "+" <Exp>|"("<Exp>")"

<Val> ::= (0 | 1 | 2 |...| 9)+

The symbol (::=) is called the definition symbol, it sepa-
rates the right parts from the left parts of a rule. Rules
having the same results are grouped together by using the
choice symbol (|).
In the above example, an expression is either (|) a value
Val, a sum between two expressions in an infixed notation
Exp + Exp, or a sub-expression enclosed in parenthesis
(Exp). A value is a non empty sequence (+) of digits 0 | 1
| 2 |...| 9.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1626

In the definition below, Exp, and Val are non-terminal
symbols, they are written between angle brackets <>; and
+, (,) and digits are terminal symbols. The non-terminal
Exp is considered as the start symbol.

The aim of a ”parser” (i.e. the first component of a
”compiler”) is to check that a language (i.e. a sequence of
terminal symbols) is conformed to the grammar by finding
a sequence of production rules (or derivation) to get the
language starting with the start symbol.

In modern compilers the internal data structure is con-
verted to an ”abstract syntactic tree” Aho et al. [2007]
to store successive results. The tree structure can be vis-
ited to generate representations for other languages or to
calculate particular values. To summarize, a grammar is
then associated to a datatype (e.g. Exp) and the first step
of a compilation is to transform (and parse) a sequence of
characters to a value of this type, i.e.:

parseExp: String -> Exp

The next step is to interpret the result (e.g. evaluate an
expression) or to generate code for another tool.

eval: Exp -> Integer

The function eval evaluates an expression and returns an
integer.

2.3 Functional programming

The fundamental building blocks of Functional Program-
ming are functions (not objects or procedures) that declare
a relationship between two or more entities. Functional
programming languages such as Haskell (Russell and Cohn
[2012]) are mostly based on λ-calculus (Hudak [2000]).
In particular, the models defined can use higher-order
functions (i.e. functions that have other functions as a
parameter or as a result) to stay compact and simple.
A function f will correspond to a relation between two
sets/types A and B, what is written in haskell:

f :: A -> B

As a remark, A or B can be functions sets (e.g. A = C →
D) and f is then called ”an higher-order function”. Now,
the tree data structure Exp can be specified by a family of
functions (or an algebraic specification, Ehrig and Mahr
[1985]) usable to define a particular value, e.g. ”(1+2)+3”
corresponds to plus(plus(val(1),val(2)),val(3)).

val : Integer -> Exp

plus: (Exp, Exp) -> Exp

The constructor functions can be grouped together in
Haskell by the mean of a datatype definition as bellow:

data Exp = Val Real

| Plus (Exp, Exp)

Then functions (and its particular eval) can specify how
each constructor is transformed:

eval : Exp -> Integer

eval(val(v)) = v

eval(plus(e1,e2)) = eval(e1)+eval(e2)

From a theoretical point of view, ”eval” is a particular
case of a catamorphism (Meijer et al. [1991]), a concept of
Category Theory used to express generic transformations,
to calculate programs or to make proofs (Fokkinga [1992]).

Our group has studied for a while the benefits of the
functional representations of languages and systems and
the present paper gives another application of the concepts
proposed, e.g. Thiry and Thirion [2008], Thiry and Thirion
[2009], Thiry and Hassenforder [2013].

3. DSLS INTEGRATION FOR FIRE SAFETY

3.1 System descriptions

As explained, the description of fire safety systems is
based on the architecture of the building, the technical
and organizational safety measures and the fire simulator.
The proposed fire safety detector proposed is composed of
a generator (based on different models and simulation), a
fire simulator and a checker as seen in figure 2.

Fig. 2. Components used to evaluate the fire safety levels

Evaluation of the safety level in a building, needs to study
several configurations and this is the goal of the generator.
It automatically build many configurations and randomly
selecting values into intervals which constitute the input
files of the fire simulator.

Fig. 3. Detailed process of the generation of configurations

Each configuration is made by composition of architectural
model, fireplace and undesired events. A configuration
describes the architecture of the building using an archi-
tectural model based on a digital map with information
concerning the geometry of the building and dimension
and position of the different openings. These data are
expressed in a specific language used by the architects.

Characteristics of the materials (e.g. information about the
stability of materials against fire) and other parameters
which describe a fireplace are also necessary to make a
configuration as seen in figure 3. A library is proposed
in order to save these kind of information. These data
are collected and merged in a special format, and then
sent to the generator to make many configurations. A
configuration is then sent to the fire simulator to calculate
some physical quantities (X(t)).

The simulation results are controlled to check if some
conditions are achieved or not (figure 4). These values

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1627

Fig. 4. Process of the evaluation of fire safety level

characterize the undesired events (UE) that be expressed
by using another specific language. The generator has to
describe the undesired events properties too, as they de-
pend on the configuration. More precisely, the evaluation
of the safety level in a building is based on the frequency
occurrence of the UE. The checker is in charge of this task.

3.2 The architectural model

Each configuration describes the architecture of the build-
ing using an architectural model. Based on a digital map,
information concerning the geometry of the building, di-
mension and position of the different openings are ex-
tracted on an IFC format, the specific language of archi-
tects, Spearpoint [2006].

The architecture of the building is described by a geometry
model exported as an IFC (Industry Foundation Classes)
file, Spearpoint [2006] and Martens and Herbert [2004].
Industry Foundation Classes (IFC) is a standard which al-
lows building simulation software to automatically acquire
building geometry and other building data from project
models. An example of an IFC file is:

#9512= IFCBUILDINGSTOREY(’3y21AUC9X4yAqzLGUny16E’,

#16,’Story’,$,$,

#9509,

$,$,.ELEMENT.,6200.);

#9509= IFCLOCALPLACEMENT(#115,#9506);

#9506= IFCAXIS2PLACEMENT3D(#9502,#9498,#9494);

#9502= IFCCARTESIANPOINT((0.,0.,6200.));

#9498= IFCDIRECTION((0.,0.,1.));

#9494= IFCDIRECTION((1.,0.,0.));

For a more abstract point of view, this file is fundamentally
a map I→C(X1, X2, ...Xn) where I is an index, C a
component (e.g. IFCDIRECTION), and Xi can be a value
V, an index I or a component C.
By taking back, the concepts presented in the previous
section, such a language can be summarized by a grammar
whose an extract is given below.

<IFC> ::= <ENTRY>*

<ENTRY> ::= #<INTEGER>= <ID>(<PARAMS>)

<INTEGER> ::= (<DIGIT>)*

<PARAMS> ::= epsilon | <PARAM> <CONT>

<PARAM> ::= #<INTEGER> | <ID>(<PARAMS>) |

’<TEXT>’ | ...

<CONT> ::= espilon | , <PARAM> <CONT>

<ID> ::= (<LETTER> | <DIGIT>)*

An IFC has many entries, each one began with a special
character # followed by an integer and then an equal
symbol, an identifier ID and a set of parameters between
brackets (PARAMS). An identifier ID is a sequence of
a character and an integer #INTEGER. A parameter
PARAM can be an identifier, an identifier followed by
other parameter or just a text.

By taking back the concepts introduced in part 2.2, the
language is formalized by a grammar and the next step is
to define a datatype to store information (and the parse
function associated). Here an IFC can be abstracted by a
list [] composed of an integer (the index), a string (the
component type) and values (the parameters):

data Ifc = [(Int, String, Value)]

A V alue is either an integer (for references), a string (for
values) or a pair composed of a string and a list of values
(for sub components):

data Value = Int | String | (String,[Value])

Finally a parse function has been defined by encoding the
grammar with dedicated tool, i.e.

parseIfc :: String -> Ifc

Utility functions has been defined to extracts particular
information component for instance, i.e.

get: (Ifc, Int) -> (String,[Value])

3.3 Materials and fireplaces

Some additional properties must be defined to constitute
the configuration. Information about construction materi-
als and characteristics of potential fireplaces are defined
in a library. The library has many entries divided into
categories: the first one describes the construction mate-
rials which informs about the tenability of the walls, it
corresponds to the entry &MAT. The second one lists and
describes the combustion curves of potential fireplaces. It
corresponds to the &SBO entry. Each entry is defined by
a unique identifier (ID). An example of a library is:

&MAT ID=’CONCRETE_1’ E=0.20 LAMBDA=1.2

RHO=2100. CS=900. EMIP=0.9

ISOLANT=.FALSE. /

&MAT ID=’WOOD’ E=0.20 LAMBDA=1.6

RHO=2300. CS=1000. EMIP=0.9

ISOLANT=.FALSE. /

&SBO ID=’TABLE’ ZF=0.8 TVAP=300.

LVAP=1.8D6 AFMAX=5. ILOI=5

RAMP=’LIN’ TPLT=600. MPDOTMAX=0.045

TDEC=1200. TFIN=1800. /

&SBO ID=’CHAIR’ ZF=0. TVAP=300. LVAP=1.8D6

AFMAX=5. ILOI=2 RAMP=’LIN’ TPLT=600.

MPDOTMAX=0.1 TDEC=1800. TFIN=2700. /

In the example above two kinds of materials are defined:
CONCRETE 1 and WOOD, each one with its own prop-
erties. Two kind of fireplaces are defined too: a fireplace for
a table and another for a chair. Each one corresponds to a
list of parameters describing the curve combustion of the
fireplace. The grammar used is based on the configuration
grammar and is not specific to the fire safety engineer, but
can be changed freely without disturbing the software. Its
structure can be summarized by the following grammar:

<LIB> ::= <ENTRY>*

<ENTRY> ::= <CAT>

<CAT> ::= <MAT>|<SBO>

<MAT> ::= &MAT <ID><PARAM>

<SBO> ::= &SBO <ID><PARAM>

<ID> ::= ID= ’ <LETTER>*[<DIGIT>*] ’

<PARAM> ::= <LETTER>*= <VAL>

<VAL> ::= <DIGIT>*[.<DIGIT>*]|’ <LETTER>* ’

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1628

The library is composed of many entries ENTRY ∗ divided
into the description of materials MAT for the description
of the fireplaces SBO. Each entry began with the special
character & and the keyword MAT or SBO. Each entry
has an identifier ID followed by an equal symbol (=) and
a list of parameters PARAM. Each one is defined by a
sequence of letters LETTER∗, followed by an equal sign
(=) and a value VAL.

By taking back the concepts introduced in part 2.2, the
language is formalized by a grammar and the next step is
to define a datatype to store information (and the parse
function associated).

A datatype Lib can be seen as a list:

data Lib = [(Cat, String,Params)]

Where a category Cat corresponds to:

data Cat = MAT String | SBO String

Finally a parse function has been defined by encoding the
grammar with dedicated tool, i.e.

parseLib :: String -> Lib

Utility functions has been defined to extracts parameters
of a particular entry i.e.

get: (Lib, Cat, String) -> [Params]

The function get returns a list of parameters corresponding
to the specific entry defined by a library, a category and
an identifier (string).

3.4 The Undesired Event (UE)

An undesired event (UE) is defined by some safety proper-
ties. It is specified as the last event in a chain of events with
devastating impact on one or more individuals, ecosystems
or materials. It is strongly correlated to the thermal con-
ditions, the amount of toxic gases and smokes, and the
pressure in a local. It is considered as an extrem condition.

An UE can be the reaching of a certain temperature
in the upper layer (TU) of a local (gas temperature),
a certain height of the smoke or the achievement of a
critical pressure. Based on the frequency occurrence of the
undesired events (UE), the safety level is evaluated. Some
examples of Undesired Events are:

2 TU > 550

1 TU > 450 && ZD < 0.55

1 teta < 650 && TU > 450 && ZD < 0.55

Concerning the grammar, an event is defined by symbols
S (e.g. TU, ZD), some values V (e.g. 0.55, 450), a room
N in a building and the following grammar:

<E>::= <N> <U>

<U>::= <S> < <V> | <S> > <V> | <U> && <U>

We then define the abstract syntactic tree:

data UE = Inf (Int, String, Float)

| Sup (Int, String, Float)

| And (Int, UE, UE)

Next, the result of the simulator is used to define a
”context” function to get the value of a particular symbol.

type Time = Integer

type Context = (Time, String) -> Float

To evaluate an event in a context, the function eval is
defined:

eval :: (UE, Context, Time)

eval(Inf(i,s,v),c,t) = c(t,s) < v

eval(Sup(i,s,v),c,t) = c(t,s) > v

eval(And(i,e1,e2),c,t) = eval(e1,c,t) & eval(e2,c,t)

Finally a parseUE function is defined and used with the
eval function to get the checker component: checker =
eval ◦ parseUE

3.5 Global integration

The simulation language has now to refer the previously
defined languages and to specify a range for some quanti-
ties (e.g. [18.0..38.0/2.0], [’BOX’,’TABLE’,’CHAIR’]). An
extract of this file is given by:

&MISC NAME=’conf’ PLAN=’room.ifc’ LIB=’library.data’

MAX_CONFIGURATION=8 TETAFIN=3600. DTETA=1. ATOL=1.D-9

RTOL=1.D-7 NSAVE=60/

&REAC REAC=’REAC_SIMPLE’ /

&EXT T= [18.0 .. 38.0 / 2.0] DP(1)=0./

&LOC ID=’LOC1’ GEO=’LOC1’ MAT=’CONCRETE_1’ T16INI=20.1 /

- A door

&OUV ID=’OUV1’ GEO=’OUV1’ ON_INI=.FALSE. /

- Windows

&OUV ID=’OUV2’ GEO=’OUV2’ ON_INI=.TRUE. /

&OUV ID=’OUV3’ GEO=’OUV3’ ON_INI=.FALSE. /

&SBO ID=’FOYER’ LOCID=’LOC1’ SBO= [’BOX’,’TABLE’,’CHAIR’]/

&ENS ID=’GOODS’ LOCID=’LOC1’ EXPR=’TMZH > 600’ /

&ENS ID=’HUMAN’ LOCID=’LOC1’ EXPR=’TMZH > 180 && ZD < 1.8’/

&END /

To specify a range of values, the configuration grammar is
augmented to deal with an interval notation into square
brackets with initial, final and the step values (see the
&EXT block) or just a comma separated interval values
(see the &SBO block) enclosed by a square brackets.

A function read the content of the external files simulation,
archi and lib. Based on specific parsers, the simulation file
refers the archi and lib files. The simulation file is sent
to the generator which get randomly a value in intervals
to make a configuration. These steps are repeated many
times to produce several configurations (input to the fire
simulator). The following code reads the external files,
then transforms their contents in specific types (Ifc, Lib,
...), and generates an initial state (ctx[0]). By applying
this initial state on the architectural and fire models, it
calculates a new state and save it in result file. This step
is repeated many times (”N” times).

simu = parseSimu(read("simulation.txt"))

archi = parseIfc(read("archi.txt"))

lib = parseLib(read("lib.txt"))

model = parse(read("model.txt"))

for i = 1 to get(ctx, "MAX_CONFIGURATION")

config = generate-random(seq(simu, archi, lib))

ctx[0] = exec(config,[])

for n = 1 to get(config,"N")

ctx[n] = exec(seq(model, config), ctx[n-1])

write(config ,"config-"+i+".txt")

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1629

write(ctx ,"result-"+i+".txt")

The context ”ctx” contains successive values of the quanti-
ties calculated by the model for example the temperature
in upper layer. The evolution state of the system is saved
in ”result-” files. The ”config” contains the different con-
figurations generated by the generator and saved in the
”config-” files.

Based on the definition of undesired events, the results
of simulation are sent to the checker to verify if the
undesired events have been reached or not. The results
of checking and the fire safety level correlated to the
occurrence frequency of the UE are saved in the ”result”
file.

4. CONCLUSION

In order to integrate the different models and (specific)
languages required in the field of fire safety on a unique
platform, this paper proposed a particular use of functional
programming. It allows in a formal way and the definition
of higher level function the transformation, integration and
composition of several models that do not necessarily use
the same language.

In order to formalize and integrate the models of a fire
safety system, the first step is to define the languages
used by a specific model and to describe it concepts by a
grammar. Then define the abstract datatype (or abstract
tree) to store the information. Based on the tree definition,
specific parsers and some higher order functions must be
defined in rder to convert information from a datatype
to another, to compose many heterogeneous models and
extract required information.

The perspective of this work is to integrate the human
behavior in the evaluation system. How to describe and
integrate it and which languages and models are neces-
sary?

REFERENCES

A.V. Aho, M.S. Lam, S. Ravi, and J.D. Ullman. Com-
pilers: principles, techniques, & tools. Pearson/Addison
Wesley, Boston, 2nd ed edition, 2007. ISBN 0321486811.

T.J. Biggerstaff. A perspective of generative reuse. Annals
of Software Engineering, 5(1):169–226, January 1998.
ISSN 1022-7091, 1573-7489.

X Bodart and M Curtat. CIFI computer code: Air and
smoke movement during a fire in a building with venti-
lation ducts networks equipment. In CIFI Computer
Code: Air and Smoke Movement During a Fire in a
Building With Ventilation Ducts Networks Equipment,
volume 104, 1987.

N. Chomsky. On certain formal properties of gram-
mars. Information and Control, 2(2):137–167, June
1959. ISSN 0019-9958.

M. Curtat. Traité de physique du bâtiment: Tome 3,
Physique du feu pour l’ingénieur. Traité de physique
du bâtiment. CSTB, 2002. ISBN 9782868913050.

H. Ehrig and B. Mahr. Fundamentals of algebraic specifi-
cation. Number 6 in EATCS monographs on theoretical
computer science. Springer-Verlag, Berlin New York,
1985. ISBN 0-387-13718-1.

M.M. Fokkinga. A gentle introduction to category theory
— the calculational approach. In Lecture Notes of the
STOP 1992 Summerschool on Constructive Algorith-
mics, pages 1–72 of Part 1. University of Utrecht, sep
1992.

L.H. Hu, N.K. Fong, L.Z. Yang, W.K. Chow, Y.Z. Li, and
R. Huo. Modeling fire-induced smoke spread and carbon
monoxide transportation in a long channel: Fire dynam-
ics simulator comparisons with measured data. Jour-
nal of Hazardous Materials, 140(12):293–298, February
2007. ISSN 0304-3894.

P. Hudak. The Haskell school of expression: learning
functional programming through multimedia. Cambridge
University Press, New York, NY, USA, 2000. ISBN 0-
521-64408-9.

B. Martens and .P. Herbert. ArchiCAD. Springer, January
2004. ISBN 9783211407554.

E. Meijer, M. Fokkinga, and R. Paterson. Functional pro-
gramming with bananas, lenses, envelopes and barbed
wire. page 124144. Springer-Verlag, 1991.

R. Parry, C. A. Wade, and M. Spearpoint. Implementing a
glass fracture module in the BRANZFIRE zone model.
Journal of Fire Protection Engineering, 13(3):157–183,
January 2003. ISSN 1042-3915, 1532-172X.

J. Russell and R. Cohn. Haskell. Book on Demand, May
2012. ISBN 9785510997262.

M. J. Spearpoint. Fire engineering properties in the IFC
building product model and mapping to BRANZFIRE.
2006.

L. Thiry and M. Hassenforder. Micro languages for sys-
tems. Transaction on Control and Mechanical Systems,
1(8), January 2013. ISSN 2345-234X.

L. Thiry and B. Thirion. Functional metamodels for
the development of control software. International
Federation of Automatic Control, IFAC, 8, 2008.

L. Thiry and B. Thirion. Functional metamodels for
systems and software. Journal of Systems and Software,
82(7):1125–1136, July 2009. ISSN 0164-1212.

A. van Deursen, P. Klint, and J. Visser. Domain-specific
languages: an annotated bibliography. SIGPLAN Not.,
35(6):2636, June 2000. ISSN 0362-1340.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1630

