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Abstract: Concerning industrial plants, operators face the problem that more alarms are
generated than can be physically perceived and addressed by a single operator. Such a situation
is called alarm flood. The main reason for alarm floods are causally related disturbances, which
either way raise an alarm, based on a single causal disturbance. These dependencies are difficult
to recognize during the engineering of an AMS (Alarm Management System). However, the
alarms are logged and stored as time series (historical data). Information about the alarm types
and the time stamps of their occurrence can be used to analyze the time series data and thus
finding dependencies between different alarms. This contribution presents an approach to find
temporal dependencies between alarm events in an alarm time series. Therefore an algorithm
was designed, implemented, and evaluated to detect temporal dependencies in alarm time series.
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1. INTRODUCTION

Process Control Systems (PCS) are one of the core ele-
ments in process control industry such as oil refineries or
pharmaceutical and chemical plants. The PCS presents the
most important information about the process plant to the
operator. In addition to the observation of process data,
the operator has to recognize abnormal plant situations.
An abnormal plant situation is indicated by process visu-
alizations and alarm lists. Messages about abnormal plant
situations can be divided into two types, defined by the
EEMUA (2013) as alarm and alert.

An information message is indicated by using textual or
graphical elements, e.g. based on a P&ID (IEC 62424
(2013)). The alarm management system (AMS) is an in-
tegral component of the PCS. The AMS presents detailed
information of raised alarms in a chronological or priority
order visualized by a table. By intervening, the operator
is able to clear abnormal situations.

Due to causal dependencies of failures (e.g. based on pro-
cess/material flow), too many alarms may frequently be
raised. Each alarm is displayed to the operator, who must
handle this vast quantity of alarms. This effect is called
”alarm flood”. Operators only acknowledge alarms, while
handling the abnormal situation based on their process
knowledge and experience. In such situations operators do
not have enough time to analyze every alarm properly
without exceeding the recommended operator response
time. Thus, the prediction and reduction of alarm floods
has a high priority when improving alarm systems de-
sign. The EEMUA 191 recommends an alarm rate less
than one alarm per 10 minutes in steady operation. To
reduce the quantity of alarms, on the one hand improved
visualizations can be applied to reduce the overload of

information as proposed in Pantforder and Vogel-Heuser
(2009); Folmer et al. (2011). On the other hand, one
should identify causal dependent alarms based on time
series analysis to predict causal dependent malfunctions to
inform operators, which then are able to intervene earlier.
Those causal dependent alarms become more apparent
when alarms are generated during plants’ run-time. The
different generated alarms are stored in an alarm log as
historical records of all alarms. These alarm logs can be au-
tomatically analyzed in order to find temporal and causal
dependencies between alarms, by using statistical analysis
techniques. The results of the analysis can be reviewed by
experts to re-design the AMS or/and to design a forecast
system.

The reminder of the contribution is as follows. Related
work on time series analysis is presented in section 2. In
section 3, a new approach to find causal dependent alarms
is proposed. The results of the analysis based on industrial
data logs are presented in section 4. Section 5 concludes
this contribution and introduces further research.

2. RELATED WORK ON ALARM DATA CAUSALITY
ANALYSIS

Data Mining methods are used to discover important
information in large data sets. Regarding alarm data
sets and causality analysis, the important information is
represented by a sequence of alarm events, which occur
at certain time stamps. In this section, related works to
find causal dependent alarms by consideration of time are
presented.
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2.1 Sequential Pattern Mining

Sequential Pattern Mining, a sub discipline of Data Min-
ing, is focusing on methods to find pattern in sequential
data sets. Zhao and Bhowmick (2003) as well as Boghey
and Singh (2013) give an overview of several Sequential
Pattern Mining methods. Sequential data can be repre-
sented by a single sequence or a set of sequences containing
single elements. A sequence is an amount of elements,
which can be ordered (e.g. by time) or in random order.
Often additional information, like geometrical or temporal
data, is stored along with each element within a sequence.
Sequences can for instance be represented as a string or a
number of logged events whereat each event is generated
during the plants run-time, e.g. a failure event. The ob-
jective of Sequential Pattern Mining is to find interesting
patterns in the data set. Patterns can be an amount
of frequently occurring elements. They can also be sub-
sequences, which are correlated with interesting events.
In addition, dependencies between sub-sequences can be
found by examining their frequency of occurrence or by
ordering in the data set. Important information in alarm
data sets are sub-sequences, which occur frequently. The
detection and analysis of the dependencies of these sub-
sequences lead to structural information about the alarm
sequence.

The authors themselves (Folmer and Vogel-Heuser (2012))
presented the Automatic Alarm Data Analyzer (AADA)
Algorithm. It clusters frequent occurring sub-sequences
in alarm logs, by searching alarm sequences using finite
automaton. Each recognized alarm (in the alarm log)
is represented by a state and transitions are used to
represent state transitions of the alarm that is raised. This
leads to an automaton, which encapsulates the overall
structure of the sequential data. The authors extracted
time dependencies by ordering the alarms in the alarm
log, but did not use time dependencies during the analysis
itself for recognizing causal dependencies. However, they
pointed out how important pre-processing of the alarm log
is by taking important alarm types into account and not
the overall alarm log.

Ahmed et al. (2013) introduce several methods of ana-
lyzing alarm flood data. Alarm floods consist of a set of
ordered alarm events. They are determined by clustering
alarm floods and comparing them to each other. Similarity
between the flood is measured by finding a mapping be-
tween alarm flood with dynamic time warping. However,
these methods do not consider temporal information to
find useful patterns or dependencies.

All proposed approaches focus on determining relation-
ships between events in general. Only Ahmed et al. (2013)
focus on alarms in industrial automation or industrial
plants. However, previously mentioned approaches do not
consider time intervals between single events. Additionally,
they are only dealing with pattern sequences.

2.2 Time-Series Data Mining

Time-Series Data Mining deals with huge sequences of
elements having a temporal order. Esling and Agon (2012)
and Fu (2011) give an overview over several techniques of
Time-Series Data Mining. Some methods concentrate on

changing the representation of time-series to reduce the
dimensionality or on enhancing the performance of other
mining techniques. Main task is finding sequences or sub-
sequences in the time-series, which occur frequently or
have some abnormal features. For that purpose, sequences
or sub-sequences are often compared to each other using
a similarity measure. The sub-sequences in the time-
series are then clustered to find some overall structure.
Temporal aspects are taken into account regarding the
found clusters. The temporal behavior of the time-series
in terms of time intervals between sequence elements or
the detection of cyclic occurring patterns is then analyzed.
Of particular interest is to find causal relationships in
time-series. This task is called Temporal Association Rule
Mining. Even if the approaches mentioned above are
taking time intervals into consideration, no research is
dealing with uncertainty of time intervals between data
points. Furthermore, they do not focus on alarms of
industrial automation systems.

2.3 Association Rule Mining

Schluter and Conrad (2011) describe several approaches to
find association rules in time-series. A temporal relation-
ship is discovered by analyzing the ordering and interval of
sub-sequences in a time-series. If a sub-sequence B follows
a sub-sequence A within a certain time frame, there is a
temporal dependency. Association rules can be found by
regarding the temporal order, also between different time-
series.

Associated events can occur periodically in a time-series.
Some approaches like Thuan et al. (2012) and Li et al.
(2001) focus on finding cyclic association rules, i.e. rules
that are always true in certain time intervals. Höppner
and Klawonn (2002) and Bouandas and Osmani (2007)
developed methods to find temporal association rules in
sequences that consist of intervals. A sequence is regarded
as a set of states, which have a defined start and end
time. These state intervals are related to each other. Rules
are found by determining frequent occurrences of interval
relationships.

In Mannila et al. (1995) an algorithm is developed, which
finds frequent episodes in sequences of events. An episode
is a set of events, which occur frequently in a certain order.
In this approach, time is taken into account by defining a
time frame, in which episodes can be found in the event
time-series.

The presented approaches incorporate time in different
ways. Often (pre-defined) time frames are regarded in
which certain sub-sequences must follow each other, to be
taken into account for a temporal dependency. Ordering
and relationships of temporal state intervals are also used
to find association rules.

In the presented contribution, association rules are found
by regarding time intervals of explicit length between
elements of a sequence. The approach assumes that the
emergence of a sequence element causes the occurrence of
another element after a certain time. Those causal depen-
dencies, which incorporate hard real time constraints, can
detect unknown interrelations in data sets, which can lead
to better understanding of the underlying processes.
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3. DEVELOPED CONCEPT

A time series can be obtained from an alarm log with N
alarms. Each time an alarm is raised, it is logged with the
time stamp of its occurrence. The corresponding alarm log
Alog can then be formulated as a set of ordered elements
as follows:

Alog = {a1, a2, ..., aN−1, aN} (1)

Whereat aN occurs after aN−1. Each alarm aN is a tuple

ai = (ti, ci), i ∈ N, 1 ≤ i ≤ N = |Alog| (2)

where ci is a unique alarm identifier (ID – usually an
identifying number), which occurs at a certain time ti. In
the following, two alarms with IDs ”IDc” (cause alarm)
and ”IDe” (effected alarm) are considered. Alarms with
”IDe” are an effect of a caused alarms with ”IDc” after a
certain time interval. Depending on the considered process,
this time interval may deviate. In this contribution, this
time interval which indicates a causal dependency between
cause and effect is called a temporal relationship. The
existence of such a relationship is verified by statistical
methods.

3.1 Statistical description of temporal relationships

Inspecting the two related alarms of the corresponding
alarm log (log), ”IDe” is assumed to be caused by ”IDc”.
In case of the temporal relationships regarded in this
paper, an occurrence of ”IDc” always causes ”IDe” after
a certain time with some deviation. The time interval,
in which these alarms follow each other, is used as a
random variable. This random variable can be described
by a probability density function. Parameters of the den-
sity function are estimated by analyzing all existing time
intervals between two related alarms in the log. Resulting
in a probability distribution, a confidence interval is used
to verify that the temporal interval has a high probability
within the defined boundary and, hence, a high signifi-
cance.

However, this approach assumes that every raised alarm
potentially causes another alarm. There is also the possi-
bility, that an alarm is sometimes caused by another event,
e.g. if the operator intervenes early to bring under con-
trol the abnormal situation as soon as the effected alarm
occurs. In that case, time intervals would lead to wrong
probability density functions. To tackle this challenge, in
the next section the possible mappings between alarms are
described.

3.2 Mapping cause and effects of alarms

In case of the temporal relationships, an occurrence of
”IDc” causes ”IDe” after a certain time with some de-
viation. However, it is not a priori obvious, which root
cause alarm must be mapped to the corresponding affected
alarm, because the proposed approach does not include
additional information, e.g. plant structure. Fig. 1 shows
two examples of possible mappings between alarms. In
Fig. 1 (a), the caused alarm is always the next alarm in

Fig. 1. Two examples of possible temporal relationships
between alarm in an alarm log which may occurs

the log with alarm ID ”IDe”, whereby some independent
alarms occur between the dependent alarms. To discover
a temporal relationship, the first occurrence of an alarm
with ”IDe” after emergence of an alarm with ”IDc” can
be used to calculate the time interval between both alarms.

However, in real data sets, initiating alarms can also occur
in columns (see Fig. 1 (b)), e.g. flicker alarms. If there is
a temporal relationship with a large time interval and if
only the next occurrence of the caused alarm (first alarm
of the column of caused alarms) is taken into account, the
dependency will be missed. To capture these relationships,
also time intervals, in which temporal dependencies are
assumed, must be known. Hence, alarms with ”IDe”
in the regarded time interval can be investigated and
relationships can be found. This information leads to
the formulation of a condition for temporal dependencies,
which is explained in the next subsection.

3.3 Condition to determine temporal dependencies

Supposing there is a temporal dependency after a time
interval ∆t, one can define a condition including a possible
deviation as follows:

|ti + ∆t− tj | < ε (3)

Where ti corresponds to an alarm with ci = IDc and
respectively tj to an alarm with cj = IDe. That means
the two alarms ai and aj of the log follow each other with
a time interval ∆t within a maximal deviation ε. In case
this condition holds for a certain amount of occurrences of
ai, a temporal dependency is assumed for the alarms with
the IDs ”IDc” and ”IDe”. Fig. 2 illustrates the condition
graphically.

Fig. 2. Alarm log with two dependent alarms within time
∆t and deviation ε
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This condition can now be used to formulate a conditional
probability of a temporal relationship between alarms with
”IDc” and ”IDe”. The conditional probability is defined
as follows:

P (ai|aj) =
P (ai ∧ aj)
P (aj)

(4)

The probability of two random alarms ai and aj can
then be formulated as the probability of occurrence of
”IDc” and ”IDe” within time interval ∆t with a maximum
deviation ε divided by the probability of occurrence of
”IDc”.

In case the calculated probability is higher than a certain
threshold ”Pthr”, there is a temporal dependency between
alarms with ”IDc” and ”IDe” in the time interval ∆t with
a maximum deviation ε. The threshold value ”Pthr” has to
be chosen manually, e.g based on the dead-times and/or
speed of the process.

Thus the conditional probability can be formulated in a
mathematical function depending on the occurrences of
alarms in the log.

P (IDc, IDe, ε,∆t) =
N1

N2
(5)

N1 = |{ci|(ti, ci) ∈ Alog∧ (6)

(tj , cj) ∈ Alog∧
ci = IDc ∧ cj = IDe∧
|ti + ∆t− tj | < ε)}|

N2 = |{ci|(ti, ci) ∈ S ∧ ci = IDc}| (7)

This function only describes a relationship between two
observed alarms in a particular time interval ∆t and a
certain deviation ε. Evaluating all possible combinations of
alarms to calculate all time intervals and deviations leads
to a high computational effort.

Therefore only alarms which have a certain minimal occur-
rence ”minocc” in the log have to be considered. Alarms
that occur rarely in corresponding log are ignored by
the algorithm. This does not mean that rarely occurring
alarms are unimportant but, furthermore, the results of
the proposed approach are not significant in this case
because there are not enough samples.

The next challenge is to choose an appropriate time inter-
val for the considered alarm tuples. Since the time distri-
bution of the alarm around a certain alarm is unknown,
an estimation of the time interval is a challenging task.
A promising method is to analyze many time intervals,
which cover a whole time frame after the occurrence of
the initial alarm (alarm with ID ”IDc”) in the log. In this
contribution, time intervals in uniform intervals are chosen
using a histogram. The bins depend on the deviation ε.

∆ti = ε+ 2 · ε · i, i = 0...M, M =

⌈
tmax − ε

2 · ε

⌉
(8)

Fig. 3. Possible discrete derivations of probabilities of an
alarm event tuple (a) Ideal temporal dependence (b)
Uniformly distributed time intervals between events
with ”IDc” and ”IDe”

By choosing these time intervals, every point in time until
tmax after the occurrence of the initial alarm is exposed.
Thus no temporal dependence will be missed. To find
temporal relationships, the maximal time that has to be
analyzed is tmax. However, this approach only regards a
finite set of time intervals. Temporal dependencies which
have not exactly one of the time intervals ∆ti can also
be found. This depends on the real deviation of the time
intervals of the related alarms around the caused alarm .

The next analysis step is to compute for every relevant
alarm tuples the corresponding probabilities for all time in-
tervals ∆ti. The probabilities can be obtained by iterating
over the overall alarm log and by counting the occurrences
of following alarms in certain time intervals. The results
can then be stored in a discrete deviation of probabilities:

P (i) = pi, pi ∈ P = p0, p1, ..., pm (9)

P (i) = P (IDc, IDe, ε,∆ti) (10)

This deviation can be visualized by a histogram. Fig. 3
(a - dashed line) shows the bar chart of an ideal temporal
dependency. The probability of the caused alarm occurring
in the time interval [4 · ε, 6 · ε] is 1, which means that
an alarm always follows an initiating alarm within a
specific time 5ε and time deviation 4ε to 6ε. This detected
dependency is significant, since there is an element of
the amount of interval probabilities, which is higher than
the pre-defined probability threshold ”Pthr” (in this case
Pthr = 0.8). Fig. 3 (b - bold line) shows the bar chart
of another discrete deviation. Here, a nearly uniformly
distributed alarm type with ”IDe” is assumed. In contrast
to Fig. 3 (a), it occurs that the time between alarms fits
into several bins of the bar chart and, therefore, does not
reach the pre-defined threshold. In this case no dependency
is detected using the presented approach, because the
calculated time dependency is too inaccurate.

There is also the possibility that more than one element of
the discrete probability distribution can exceed the given
threshold. This can for example happen, if the time frame
is large enough to detect the same temporal dependence
twice. The bar chart would have 2 peaks at different time
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intervals. However, a tuple of alarms can only have one
temporal dependency. This is the dependency with the
lowest time interval ∆tj .

3.4 Developed algorithm and computational complexity

The developed concept was implemented by an algorithm.
For each tuple of regarded alarms it iterates the alarm time
series. If an alarm event with ”IDc” is found, all following
alarms with ”IDe” that occur in the specified time window
are investigated. They are then accumulated according to
their time interval and placed in an array. Knowing the
occurrences of alarms with ”IDc”, the discrete probability
distribution can be calculated.

Assuming a medial amount of alarms with ”IDe” to be
investigated when an event with ”IDc” occurs, the effort
of computing a discrete probability deviation for a tuple
of alarms is linear to the number of alarms in the time
series. Furthermore, the number of tuples to be examined
is quadratic to the amount of different unique alarms types
in the time series. The overall computational complexity
of the algorithm can then be estimated:

complexity(N,Q) = O(N,Q2) (11)

N: Amount of alarms in the time series
Q: Amount of unique alarms types to be investigated

The computational complexity and the number of alarm
types to analyze must be kept low. Thus only tuples with
alarms that have a certain minimal occurrence in the time
series are investigated. An appropriate approach to mini-
mize the amount of alarms is to consider important event
types, which are essential for related events, e.g. delet-
ing visualization alarms or notification alarms without
meaningful information about the manufacturing plant.
The size of the time frame also affects the computational
complexity linearly. The choice of the deviation has no
effect on the computational effort.

4. EVALUATION AND DISCUSSION

The developed concept was evaluated with eight differ-
ent alarm logs from industry plants. The algorithm was
applied on alarm logs from continuous (process control
industry), discrete (manufacturing industry) and hybrid
processes. Table 1 gives a summary of the characteristics
of the alarm logs.

The data have been collected over several days during
the run-time of every plant. The shown alarms have
strong variations in the number of investigated alarms,
alarm types and mean times between the alarms. However,
despite the regarded time series are from very different
processes, the quality of the results is highly affected by
the chosen algorithm parameters (e.g. tmax, ε). During
the evaluation, several experiences on the choice of these
parameters were made. They are described later in this
section. The results of the developed algorithm contain
information about the time interval, deviation, probability
and number of observations of each temporal dependency.
For visualization purposes, the temporal dependencies can
be illustrated as directed graphs. Fig. 4 shows an example
of such a graph. The nodes contain alarm IDs. Alarms

Fig. 4. Directed graphs illustrating temporal relationships
found in an alarm time series. Excerpt of a bigger
graph structure

are connected with edges. At the edge the mean time of a
temporal relationship between two alarms is shown. Fig. 4
shows an excerpt of a bigger graph structure, visualizing
temporal dependencies in a plant. The graph shows only
relationships with a minimum occurrences of 100 in the
alarm log and an incidence probability of at least 0.8. The
chosen maximal deviation ε is 10 seconds.

The above mentioned graphs have been reviewed by
plants’ operators which are experts on plants’ behavior.
The experts pointed out that the algorithm is able to
detect causalities between failures they did not know be-
fore or they detected only recently. For instance erroneous
inputs have been made by the operator that affected the
overall process and raised other alarms. This information
can be used for a re-design of the operator interface, to
avoid these erroneous inputs by the operator. Additionally
the algorithm points out alarms that occur first and lead to
plant shutdowns, e.g. failure of axes. These causal depen-
dencies can be used to improve the intervention recommen-
dations for the operator, to inform the operator earlier.
Interrelations between logged alarms were discovered (e.g.
incorrect inputs by the operator, which raise alarms due to
failure of axes, which then leads to plant’s shutdown) but
due to the statistical approach, some random relationships
were also recognized. Even if there are some significant
alarm dependencies, there are still some major drawbacks.

The detected time intervals between alarms in most alarm
logs have strong variations. They can vary from seconds to
hours as it is the case in nearly every analyzed process. The
reason for that is the high non-determinism of the plant’s
behavior due to the operators’ behavior and several other
influencing parameters (environment, produced product
etc.) . Additionally, the alarm log is not pre-processed
and, hence, also alarms occurring during maintenance
are stored in the alarm log, which distort the statistical
alarm sequence recognition. Furthermore, the proposed
approach expects input parameters, which are used for the

Table 1. Analyzed alarm time series with in-
dustry segments.

Legend: C: Continuous Processes, D: Discrete Processes,
H: Hybrid Processes
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alarm sequence recognition. These parameters cannot be
assumed to be static. For instance, a causal dependent
failure between a pump and the filling level of a vessel
depends on the volume of a tank and the volume/length
of the pipe. Hence, proposed parameters have to be set a
priori, e.g. by using engineering data.

Hence, the temporal information gained from this algo-
rithm must be combined with knowledge about the par-
ticular processes. For example, a process flow model can
be connected with the temporal dependencies to discover
relationships in the occurrences of abnormal process pa-
rameters. This can be used to derive changes in the plant’s
functionality to avoid these erroneous situations. Further-
more the discovered dependencies can be used to predict
soon arising alarms at certain times. Alarms that occur
in direct temporal relations can also be removed from the
alarm system to reduce operators’ workload.

The interviewed operators mentioned that alarms are
raised during downtime of plant sections, i.e.during main-
tenance. These alarms are not disabled and, hence, are
illustrated to the operator. These alarms do not include
important information and may hide important alarms.
Unfortunately, these alarms are still recorded and compli-
cate the recognition of dependencies. Further challenges
are longer time intervals, where huge delays between cause
and effects can lead to high deviations in the alarm event
times. Hence, temporal relationships cannot be detected
anymore in longer time intervals.

5. CONCLUSION AND OUTLOOK

This paper presents an algorithm to find causal depen-
dencies of alarm within alarm logs, recorded during the
run-time of industrial plants. A temporal dependencies
are determined by analyzing the temporal dependency
between two alarms, which occur several times in the alarm
log, based on statistical approaches. In this contribution
important parameters for the analysis are defined. The al-
gorithm can find relationships even in longer time intervals
by regarding multiple time intervals at once. For the eval-
uation an algorithm with linear computational effort has
been developed and applied on eight different alarm logs
from different industry segments. The results pointed out
causal dependent alarms, e.g. based on erroneous inputs
of operators or based on the process/product flow. The
benefits and major drawback of parameter estimation for
the algorithm are discussed. The gained information can
be used to make alarm management systems more effective
or to discover dependencies in the erroneous behavior of
a plant. This can be used to reduce operators’ workload,
to draw further conclusions about the erroneous behavior
of the plant processes or the configuration of the alarm
management configuration. In addition, the temporal de-
pendencies can be used to forecast several critical alarm
events before they occur. This knowledge can be used to
avoid those events and thus improve the performance of
the whole plant process.

Due to the drawback of the algorithm, future research
will focus on combining further process information, like
plants’ layout and additional parameters about plants’
operation mode, to improve the results of the proposed
algorithm.
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