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Abstract: This paper newly proposes an on-line learning method for control maps by using
Gaussian filters. In the present method, man-hours for calibration of control maps can be
decreased, and complicated structures of control maps are learned without prior knowledge.
Moreover, by the effect of Gaussian filtering, smoothed maps can be created even under noisy
conditions or few measured points. We also introduce improvements of the algorithm to cope
with engine deterioration due to aging. In this work, the proposed method is applied to minimum
advance for best torque control on actual vehicles with just one driving data, and the accuracy
of the learned map is verified through simulation and experiments.

Keywords: Engine control; Spark advance control; Online calibration; Feedforward control;
Learning control

1. INTRODUCTION

High performances of engine systems (e.g. Lower emission
or better gas mileage) have been of great need for re-
cent environmental concerns (Manizie et al. [2007], Wang
[2008], Saerens et al. [2009], Hsieh and Wang [2011]). To
satisfy various demands, we are often required to control
many actuators optimally by taking account of many
engine conditions such as intake/exhaust valve timing
(Moriya et al. [1996], Ma et al. [2007]). In many actual
engine systems, feedforward control plays a central role
in which we have to determine control inputs for each
engine condition, such as engine speed, torque, in advance.
Throughout this paper, we call the condition-input table
control map. Although the control map is efficient for
control, it is necessary to be careful about the fact that
the number of the control map axes greatly increases when
we handle sophisticated engine control, and as a result,
man-hours for determining the control map increases ex-
ponentially under the development.

This paper focuses especially on ignition timing as one
of the parameters to be optimized. The optimization
of ignition timing provides Minimum Advance for Best
Torque (MBT) (Zhu et al. [2007]) values, which is effective
for lower emission or better gas mileage. Since MBT values
change depending on engine speed and charging efficiency,
we have the control map representing MBT for each engine
condition (MBT-map). In current productions, they are
experimentally determined by conducting spark sweeps at
every operating condition. We consider this case as an
example of feedforward engine control.

Numerous research works have been devoted to learning
methods of engine control values. The authors in Leon-
hardt et al. [1999], Park et al. [2001] claim that Radial
Basis Function Neural Networks are effective to learn feed-
back errors of MBT. However, they are used secondarily
only for like offset corrections. Feedback control methods
seem to be good as in Olsson et al. [2001], Zhu et al.
[2007] since it does not rely on any control maps. But it
requires accurate models of engines, and engine models
are generally so complicated that many man-hours are
necessary for modeling. Moreover, we have to measure
engine states by using various sensors in feedback control
(Eriksson et al. [1997], Upadhyay and Rizzoni [1998]). It
is also necessary to be sensor fail-safe systems for the sake
of high reliability of engine systems. In view of these facts,
we apply control maps to feedforward control in this work.

In this paper, we newly present an on-line learning method
for control maps with Gaussian filtering for random data
set. Our method does not need to design learning data set.
To the best of our knowledge, there exists no method for
learning control maps under this situation. The proposed
method enables us to reduce man-hours since it can auto-
matically learn necessary and sufficient regions of control
maps with just one driving mode. The Gaussian filter used
in this work is motivated by image processing (Tomasi
and Manduchi [1998]). This filter can create smoothed
maps even under noisy conditions or few measured points.
Moreover, a complicated structure can be learned without
prior knowledge. We evaluate the validity of our method
by simulation and experimental results compared with our
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previous method. The main contributions of this paper are
as follows: (i) We propose a novel algorithm to learn MBT
values automatically with only one driving data. (ii) We
moreover provide improvements of the algorithm taking
account of engine aging and characteristics of MBT-maps.
(iii) We perform the experiment with actual car systems in
order to confirm the effectiveness of the proposed control
algorithm.

The remainder of this paper is organized as follows. We
first introduce our target engine system and experimental
system in Section 2. In Section 3, we state the problem
setting and propose on-line control map generation algo-
rithms. Section 4 gives additional elements for the present
methods to handle machine aging and accuracy deteriora-
tion. The verification through simulation and experiments
are given in Section 5. We finally draw conclusions in
Section 6.

2. EXPERIMENTAL SYSTEM AND ENGINE MODEL

Throughout this paper, in addition to the design of a new
learning algorithm for automatically determining control
maps, we focus on the application to a real system.
Therefore, we first introduce our experimental system for
engine control in this section. We especially consider MBT
control of engines, and the present algorithm can be also
applied to other actuators.

2.1 MBT control

We consider ignition timing of engines. Ignition timing is
the timing when ignition occurs in a combustion chamber
near the end of the compression stroke. It is represented
by crankshaft angles [◦CA] before top the dead center
[◦CA BTDC]. On the other hand, crankshaft angles after
the top of dead center is represented by [◦CA ATDC].
Correct setting of MBT has a significant impact on fuel
consumption. However, MBT changes depending on the
engine speed (ne [r/min]) and charging efficiency (kl [%]).
Accordingly, we have to determine MBT with respect to
each ne and kl for good gas mileage.

In the conventional control method, the MBT value is
determined by prepared control maps. A control map is
grid point data representing the optimal MBT value for
each driving condition. It consists of ne axis and kl axis,
and each grid point has an MBT value. Therefore, we
consider the ne, kl-MBT control map (called MBT-map for
simplicity). Fig. 1 shows the flow of the control with MBT
using the MBT-map. Our goal is to identify the MBT-map
by on-line learning from the initial value 0◦CA BTDC.
The crank angles of the engine when the combustion rate
after ignition (Qr) becomes 50% is called 50% combustion
point (CA50 [◦CA ATDC]). It is empirically known that
the ignition timing for CA50 at 8◦CA becomes MBT
(Leonhardt et al. [1999]).

2.2 Detection of combustion rate by cylinder pressure
sensors

Fig. 2(a) shows a detection method of the combustion rate.
According to the first law of thermodynamics and the ideal
gas law, the amount of a heat quantity Q [J] at a crank
angle θ [◦CA ATDC] is derived as follows.

0

20

40

60

0

2000

4000

0

20

40

60

Engine 
Speed
(ne) [r/min]

Spark 
Advance
[CA BTDC]

Charging 
Efficiency 
(kl) [%]

Fig. 1. Spark advance controller
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Fig. 2. Combustion rate

dQ= dU + dW =
1

κ− 1
d(PV ) + PdV, (1)

Q(θ) =
1

κ− 1
[PV ]

θ
ivc +

∫ θ

ivc

PdV . (2)

Here, P [Pa] is cylinder pressure, U [J] is internal en-
ergy, W [J] is work, κ is a heat capacity ratio, and
ivc [◦CA ATDC] is the intake valve timing. Let evo
[◦CA ATDC] be exhaust valve open timing. Then, from
the heat quantity of one explosion Q(evo), the combustion
ratio Qr [%] is obtained as follows,

Qr(θ) = Q(θ)/Q(evo)× 100. (3)

We explore MBT by the simple method as shown in Fig.
2(b). Namely, if the heat quantity is more (less) than 50 %
when the crank angle is 8 degree, then we retard (advance)
the combustion timing.

2.3 Experimental system

We equip a cylinder pressure sensor on an experimental
vehicle. Also, the learning method proposed in Sec. 3 is
implemented in an engine control unit. Then, learning
of the MBT-map is conducted while actual driving. Fig.
3 illustrates the experimental system and Tab. 1 shows
experimental vehicle conditions. We use the front engine
rear drive (FR) Sedan with V6 gasoline engine. LA#4 is
the EPA Urban Dynamometer Driving Schedule (UDDS)
representing city driving conditions. Time series data on
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Fig. 3. Spark advance control system

Table 1. Experimental vehicle

Experimental vehicle FR Sedan

Engine V6 gasoline

Driving mode LA#4

Fig. 4. Control flow of learning method

the actual driving is shown in Fig. 8. In this work, we
demonstrate the effectiveness of our algorithm through
this experimental system.

3. ON-LINE LEARNING ALGORITHM OF
CONTROL MAP

3.1 Formulation of control maps

We first represent engine speed, charging efficiency and
MBT by x, y and z respectively. In the online map learning
method, the MBT value is acquired by feedback control as
described in Sec. 2. The learning method including MBT
control is shown in Fig. 4. The relationship between (x, y)
and z is represented by a two dimensional pattern, and
we divide x, y plane into the grid pattern. Each grid has
a value of z. We define axes of the map are Xi, Yj , i =
1, . . . , n, j = 1, . . . ,m corresponding to the value Zij as
shown in Fig. 5(a). Then, the on-line MBT-map learning
problem is defined as calculating Zij from time-series data
[ζ1 ζ2 · · · ζn] ∈ R3×n, ζk = [xk yk zk]

T ∈ R3.

3.2 Previous learning method

To the best of our knowledge, there exist a few methods
to learn MBT-maps on-line. Our previous work applies
a discrete time low-pass filter to the nearest grid point
(Miyashita et al. [2006]). Namely, this algorithm chooses
the nearest point Zij from measured data, and then
updates Zij with the following smoothing process.

Zij(k) = Zij(k − 1) +
zk − Zij(k − 1)

M
. (4)

Ym

Yj

Y
1

Y
2

X
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X
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(a) Grid point (b) Fine grid (c) Rough grid

Fig. 5. The conventional learning method

Measured Raw Data

A Lot of Noise

Learning Data 

Filtering

Smoothing noise

Missing Data

Fig. 6. Image of learning method

Here, M > 0 is a smoothing coefficient. In this method,
there exists a trade-off between missing data and exact
learning. That is, if the grid spacing is fine enough, then
the number of data points for each grid decreases as shown
in Fig. 5(b). Consequently, the MBT-map is not properly
learned in the missing data area. We thus have to enlarge
grid spacing to avoid this issue although we cannot learn
complex characteristics, as indicated in the Fig. 5(c).

3.3 Basic idea of new on-line learning method

The preceding subsection points out the problem of the
previous method. To solve this issue, we consider learning
MBT-maps by using filtered measured data. Our basic
idea is to regard measured data as images (Fig. 6). Then,
filtering is expected to reduce noise influences and yield a
complement effect of unmeasured points. As a result, the
MBT-map can represent a complex structure with high
accuracy.

In this study, we propose the learning method utilizing a
Gaussian filter as such a image processing scheme. The
filtered value Zij by a Gaussian filter is calculated by a
weighted average of measured data for each grid. Then,
measured data ζk is given, and the grid point value Zij is
calculated as follows.

Zij(n) =

∑n
k=1 zkw(xk, yk, Xi, Yj)∑n
k=1 w(xk, yk, Xi, Yj)

. (5)

Here, w(xk, yk, Xi, Yj) is the weight for each grid point,
and the weight w is determined by a Gaussian function
depending on the distance between the operating point
and the grid point as follows.

w=
1√
2πσx

exp

(
− (xk −Xi)

2

2σ2
x

)
· 1√

2πσy

exp

(
− (yk − Yi)

2

2σ2
y

)
. (6)

Here, σx, σy > 0 are the standard deviations for (x, y)
coordinates, respectively. Then, the learned MBT-map
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Fig. 7. Proposed learning method

becomes smooth according to setting higher value of
σx and σy. Note here that the designer can set σx, σy

arbitrarily to match the learning target. In order to learn
the MBT-map for each measured data on-line, we make
(5) possible to be calculated sequentially. We now define
the numerator (denominator) of (5) as Nij(n) (Dij(n)).
Then, (5) is split into the following equations.

Nij(n) =

n∑
k=1

zkw(xk, yk, Xi, Yj)

=Nij(n− 1) + znw(xn, yn, Xi, Yj), (7)

Dij(n) =
n∑

k=1

w(xk, yk, Xi, Yj)

=Dij(n− 1) + w(xn, yn, Xi, Yj). (8)

Therefore, we can update them sequentially for each sam-
ple on-line by holding two (Nij and Dij) maps. The
denominator Dij map gives an indicator of learning fre-
quencies for each grid point because Dij represents the
summation of the weights.

Claim 1. In the present algorithm, the update rule is
simple and it is not necessary to memorize any past data
at each step k. This learning method is thus applicable on-
line. Additionally, the on-line scheme enables us to build a
control map by using only one driving data. In summary,
the present scheme can decrease man-hours.

3.4 Property of Gaussian filtering

In contrast to the previous method (4) updating the
nearest one grid point from measured points, the present
method (5) updates all grid points as shown in Fig.
7. Therefore, in spite of having small grid spacing, our
method can learn complex characteristics of the MBT-map
since the Gaussian filter has smoothing effects. Accord-
ingly, the effect of noise or the bias of measured data is
attenuated. Note that the minimum value of Zij in (5) is
higher than that of input data zk as shown below.

Zij =

∑
k Zkw(xi, yj , Xk, Yk)∑
k w(xi, yj , Xk, Yk)

≥
∑

k min(Zk)w(xi, yj , Xk, Yk)∑
k w(xi, yj , Xk, Yk)

= min(Zk).

Similarly, the maximum value of Zij in (5) is lower than
that of input data zk. Namely, although the MBT-map
values change significantly at a data point around the grid
point and are affected by the closest data value in most
cases, the lower (higher) limit is the minimum (maximum)
value of the measured data.

Table 2. Number of iteration until effect of the
first data becomes 10% or less

λ Number of Iteration

0.9 22

0.99 230

0.999 2302

4. IMPROVEMENT OF GAUSSIAN FILTERING

In this section, we introduce additional factors of the
Gaussian filter to improve the filtering performance.

4.1 Forgetting factor

Application of forgetting factor In the present scheme,
in spite of the fact that engines deteriorate over time,
identification of the parameters uses all data. Namely, it
is undesired that the past and current data is used to
estimate parameters in the same degree of importance.
We thus multiply past estimation values by a forgetting
factor (0 <)λ < 1 to reduce the influence of past data. By
introducing the forgetting factor λ, equations (7) and (8)
are rewritten as follows.

Nij(n+ 1) = zn+1w(xn+1, yn+1, Xi, Yj) + λNij(n), (9)

Dij(n+ 1) =w(xn+1, yn+1, Xi, Yj) + λDij(n). (10)

Tab. 2 shows examples of λ and the corresponding number
of the iteration until the effect of the first data becomes
10% or less.

Range in application of forgetting factor Forgetting fac-
tors are intended to weaken the old data effect when
new data enters. However, the forgetting factor affects
the whole region by (9) and (10). Namely, the weight
of the past learning becomes too small in the region
where the number of data is not sufficiently large. The
next measured data thus comes into the neighborhood
of the grid point, and the impact of the data becomes
too large. Consequently, robustness against noise might be
lost. Therefore, we apply a small forgetting factor only to
grid points around new data so that we restrict the range
in application of the forgetting factor as follows.(

xi −Xk

xi+1 − xi

)2

+

(
yj − Yk

yi+1 − yi

)2

≤ 22. (11)

Equation (11) means that the forgetting factor makes sense
only when the data enters into the interior of an ellipse
whose axis length is twice of the grid point spacing.

4.2 Clustering

So far, we consider Gaussian filtering as the weight for
input data. We now note that it is also possible in (6)
to obtain equivalent results by replacing Xi and Yj by
xk and yk, respectively. Let us consider that Gaussian
functions have a fixed distribution to each grid point, and
the weighted average of the map is updated when input
data rides on the distribution of each point. According to
this idea, we can change characteristics of the filter by
adjusting σx and σy in (6) for point. Thus, if we desire to
emphasize the data around the fluctuating area, then we
should select small σx and σy.
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Fig. 8. ECU data (LA#4 mode)

5. EXPERIMENTS

In this section, we demonstrate the effectiveness of the
proposed MBT learning algorithm through experiments.

5.1 Test setting

Input data is the LA#4 driving mode shown in Fig.
8. We set the initial MBT-map as 0 at all the points.
The MBT-map is composed of ne-axis and kl-axis, and
each grid is divided into equal intervals, i.e. ne axis is
[400, 800, . . . , 3200] and kl axis is [5, 10, . . . , 60]. Numbers
of ne and kl grids are 8 and 12, respectively. We now set
σne = 100 and σkl = 1.25, i.e. 1/4 of the grid intervals.
In the previous method, we set M = 2.3 by seeking the
best parameter. The number of data points, the running
time and the number of the data satisfying CA50 ≈ 8 are
set as 40, 000, 800s and 11879, respectively. In order to see
the effectiveness of our algorithms, we compare learning
errors of the present method with the previous one. Here,
a learning error is defined as the difference between the
actual driving data and the learned MBT-map.

5.2 Results

The experimental results are shown in Fig. 9. Fig. 9(c)
shows the measured data obtained during the LA#4 driv-
ing mode. Fig. 9(a) depicts the learning results using the
method proposed in Sec. 3. We can see from this figure that
the proposed method achieves almost the same fineness
and shape of MBT-map as in the existing adaptation. Fig.
9(b) shows the learning results of the previous method
described in Sec. 3. The obtained MBT-map can represent
the overall trend through the rough grid points. However,
since it cannot represent the details, the end points of
the MBT-map missing values have not small errors, i.e.
the learning is poor. Tab. 3 shows the comparison of the
MBT-map accuracy between the proposed method and the
existing adaptation. Our method is about 60 % better than
the previous one with respect to the mean error and root-
mean-square error (RMSE). Especially, in the region where
the number of data points is large enough (see Dij in Fig.
9(d)), the estimation is so good that the absolute values of
errors are less than 1◦CA. This effect is also confirmed in
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Fig. 9. Experimental results

Table 3. Comparison of learning error

Mean Error RMSE Maximum Error

Proposed Method 1.00 1.40 12.80, -8.66

Previous Method 1.67 2.34 8.4, -20.67

Table 4. Comparison of learning error with
initial value

Mean error RMSE Maximum error

Basic our method 1.12 1.77 13.89, -19.52

Forgetting factor 1.10 1.59 13.21, -17.14

Tab. 3 reducing the maximum errors. Thus, it can be said
that sufficient accuracy is ensured for the present MBT-
map control.

5.3 Improvement of the algorithm

Forgetting factor To check the effectiveness of forget-
ting factors introduced in Subsec. 4.1, we run another
simulation. First, the initial data in MBT-map is set as
all 30◦CA BTDC. We now presume erroneous learning
or change of the engine model. Here, erroneous learning
means that we use the dummy data instead of the real
data for the first 1, 000 iteration, and then we apply the
actual driving data. Therefore, we can see the effectiveness
of forgetting factors from this setting. We compare the
basic learning method (Subsec. 3.3) with the algorithm
having forgetting factors in terms of learning accuracy.
Fig. 10 shows the results of the learned MBT-map. We see
from the figure that the previous method yields not small
errors in Fig. 10(a) around kl = 20 [%] and ne = 1500
[r/min], and the error is reduced in Fig. 10(b). Tab. 4 also
represents the effectiveness numerically.

Clustering We finally investigate the effect of clustering
σx, σy (Subsec. 4.2). We divide the MBT-map into four
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Fig. 11. Clustering of σ

Table 5. Comparison of learning error with
initial value

Mean error RMSE Maximum error

Basic our method 1.00 1.40 12.80, -8.66

Clustering 0.98 1.40 14.34, -8.07

clusters as shown in Fig. 11. Here we set σx11 = 0.72,
σy11 = 102, σx12 = 0.53, σy12 = 25, σx21 = 0.64,
σy21 = 132, σx22 = 1.67, and σy22 = 97. The other
parameters are the same as in the basic proposed method.
Tab. 5 shows the comparison of the MBT-map accuracy
between the basic proposed method and the clustering one.
Although this approach has an effect of error reduction,
the difference is small. This might be because the small
change of the data gradient yields the small effect of the
clustering σ. One of future works is to find a real example
suitable for this algorithm.

6. CONCLUSION

In this paper, we have developed on-line learning methods
that can express complex characteristics of control maps
with addressing noise and deviations of measurements.
We have first introduced our experimental system for
MBT control. Next, we have proposed learning algorithms
to build MBT-maps, and confirmed the methods work
successfully. In the experimental verification, almost the
same shape and accuracy as in the existing adaptation
have been obtained. As the main contribution, in contrast
to the fact that the existing adaptation method needs a
lot of man-hours, the proposed method enables to obtain
a control map automatically.

The optimal control value is evaluated by a simple propor-
tional method. However, in the case that control objects
have local maxima, additional optimization methods have
to be applied to seek the best parameter. Therefore, one
of our future directions is to choose the best on-line opti-
mization method to extend the present scheme.
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