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Abstract: This paper studies the multi-agent consensus problem of complex networks consisting of general 

homogeneous continuous linear time-invariant systems with controls under a time-invariant directional 

communication topology. A new approach based on relative-input-output is proposed to solve the problem. 

In contrast to a popular method where each agent is equipped with an observer, and hence involving heavy 

observer dynamics, the proposed approach is static and utilizes relative-input and relative-output eliminating 

the observers aforementioned, therefore is practically much simpler and easier to implement significantly 

reducing computational and communicational burdens and costs. Extension of the framework is then made 

to tackle a dual problem: consensus of distributed filtering without controls. Two numerical examples are 

provided to validate the proposed approach. 

 

1. INTRODUCTION 

In the past several decades, an emerging trend that more and 

more control systems and their practical applications being 

distributed across networks located at different sites physically 

has been witnessed and networked control systems (NCS) 

have received a lot of research effort and attention. Among 

them, consensus and synchronization of networked agents are 

important subjects. Typical applications include coordinated 

air/ground vehicles, satellite formation flying, and air/ground 

traffic scheduling problems, networked robotic systems, to 

name a few. Earlier, important network phenomena such as 

data losses, data corruption, packet-reordering, and transmis-

sion delays had also been extensively studied in respect to 

their impacts on the NCS such as robustness, stability, and 

performance (Schenato 2008; 2009). We refer the reader to 

three review papers (Antonelli, 2013a; Cao et al., 2013; and 

Chen et al., 2013) for more recent accounts. 

In the first part of this paper we study the consensus problem 

for a networked system consisting of homogeneous linear 

time-invariant multi-agents with controls. The topology of the 

underlying communication network is assumed to be direc-

tional, time-invariant, and having a spanning tree. The main 

objective of decentralized control in current context is that 

using distributed control strategies (a “local” concept) one 

expects to achieve the goal of consensus/synchronization (a 

“global” concept). As is well known, observer-based ap-

proaches are quite popular (Antonelli, et al., 2013b; Zhao et al., 

2013; Zhang and Lewis, 2011), among which the rela-

tive-output plays an important role (Li et al., 2010). On top of 

that, we will introduce a new conceptual tool: relative-input in 

this paper, which is simple yet effective. 

Along this line, a version based on reduced-order observers 

was presented (Li et al., 2011), which reduced the computa-

tional and communicational burdens and costs to a certain 

extent. A robust version allowing additive perturbations as 

uncertainties to the transfer matrices was also proposed 

(Trentelman et al., 2013).  

In the second part of the paper we extend the results to address 

a dual problem: the consensus of distributed filtering. We limit 

our focus on linear stochastic systems without control input. 

Relative-output has been used (Olfati-Saber et al., 2012). We 

employ the new tool of relative-input to solve this problem. 

There are other works that have been developed to deal with 

more complex cases such as time-varying communication 

topology and dynamic controllers (Scardovi et al., 2009 and 

Wieland et al., 2011). Dynamic controllers are of course 

computationally more costly and more involved from imple-

mentation standpoint. 

The rest of the paper is organized as follows. The system 

model is presented in Section 2, where a popular approach as 

exemplified by a recent work is also reviewed. In Section 3, a 

new approach based on relative-input-output is proposed. New 

elements such as agent-dependent coupling strength and rela-

tive-input are introduced. One of the main results, Theorem 1, 

is also presented. Section 4 presents a feasible method to de-

termine the optimal gain. The results are then extended in 

Section 5 to the consensus of distributed filtering problem. 

Another main result of the paper, Theorem 2 is introduced also. 

Two numerical examples and simulation results are given in 

Section 6 to validate the proposed approach. We conclude the 

paper in Section 7. 

1.1 Notations 

We adopt the following notations in this paper: x stands for the 

state of a dynamical system, x̂ represents the observer’s state, 

u is the control input, y is the output, L stands for observer gain, 

z refers to sensor measurement, J represents LQ cost func-
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tional, and K is the stabilizing feedback gain. Process noise 

and measurement noise are denoted by w and v for a stochastic 

system with covariance Q and R respectively. Eigenvalues are 

denoted asλ. 

2. SYSTEM MODEL AND A POPULAR METHOD 

2.1  System Model 

Consider the following homogeneous multi-agent system 

consisting of n agents in which superscript “ i ” is used as the 

agent index  

( ) ( ) ( )i i i
x x BuA   (1)   

( ) ( )i iy Cx  (2)   

 , 

 controllable and observable

1, 2, ,

( , , )

i n

A B C


 (3)   

where x
( i )

 is the state, u
( i )

 the control, and y
( i )

 the output of 

agent i. The main objective is to reach consensus among all the 

networked agents. It is assumed that communication is oc-

curring between neighboring agents only, which is represented 

by the so-called adjacency matrix. In addition, the directional 

graph corresponding to the communication topology does not 

have any disconnected components. Namely, we assume that 

the network topology has a directional spanning tree ensuring 

that the problem is well-posed, which is pivotal. 

2.2  A Popular Method 

Here we discuss a popular method: the observer-based ap-

proach, which could be exemplified by a recent work. Recall 

the definition of relative-output (Li et al., 2010) 

 ( ) ( ) ( ) ( ) ( )

1

( ),   0,1
n

i i j i j i j

j

y a y y a


    (4)   

where τ is the so-called coupling strength; a
(i i )

 = 0, a
(i j )

 = 1 if 

ith agent can get information from jth agent and a
(i j )

 = 0 oth-

erwise. The matrix with entries of a
(i j )

 is called the adjacency 

matrix.  

The following protocol was proposed in a recent work (Li et 

al., 2010) to solve the consensus problem 

( ) ( )ˆi iu Kx  (5)   

( ) ( )

( ) ( ) ( ) ( )

1

ˆ ˆ

ˆ ˆ           

( )

( )

i i

n
i i j i j

j

x A BK x

y x xL a C


 
 
 

 

  
          (6)   

where x̂ represents the observer’s state (also called protocol 

state (Li. et al., 2010)). The two matrices K and L in the above 

equations denote a stabilizing state feedback gain and the 

observer gain respectively. The above protocol possesses 

several advantages (Li. et al., 2010). First, unlike many ex-

isting methods which mostly handled integrator-type systems, 

the protocol (5)-(6) extends that to general systems. Second, 

the framework unifies consensus and synchronization treating 

them with the same approach. Third, it solves the consensus 

problem using relative-output rather than absolute-output or 

absolute-state. The latter is important in terms of its practi-

cality (Li. et al., 2010; Antonelli et al., 2013b).  

The above approach has some disadvantages, however. First, 

it utilizes as many full-order observers as the number of agents. 

Yet each observer has its own dynamics as depicted in (6). 

This results in increase of overall communicational and 

computational burdens. Reduced-order observer-based 

method has been reported (Li et al., 2011) to fix this problem 

but only to some extent. One major difference between our 

new method and the existing ones is that all the observers will 

be eliminated. 

Second, if one follows their Algorithm 1 closely, specifically 

the 3
rd

 step (Li et al., 2010), one should find that in order to 

find a proper coupling strength such that the consensus prob-

lem is solvable by the protocol (5)-(6), one must compute the 

eigenvalues of the Laplacian matrix so as to find a thresh-hold 

value, which is computationally expensive. The latter will be a 

major problem if the dimension of that matrix becomes very 

large. Worse than that, one has to perform the expensive 

computation again if the underlying communication topology 

changes. Besides, the coupling strength in their approach is 

constant instead of being agent-dependent. As a measure of 

protocol robustness against parametric uncertainties (Li et al., 

2010), one has to carefully tailor this coupling strength so as to 

enlarge the consensus region. The simple design for the cou-

pling strength proposed in this paper makes also a major dif-

ference, especially when its adaptability is a big concern. 

Third, the information of relative-output is used only for state 

estimation but not for control purpose, which means the agent 

receives useful information from neighbours without maxim-

izing its use. Fourth, useful information such as relative-input 

(will be defined shortly) is not utilized. The above disad-

vantages motivate us to propose a new method.  

Note that one starting assumption, which is critical for the 

agents to reach consensus at a nontrivial value, is that the 

eigenvalues of the given matrix A are all located along the 

imaginary axis (Li et al., 2010). The procedure of moving the 

eigenvalues of A to the imaginary axis will be covered in the 

present paper through the root agent. 

3. A RELATIVE-INPUT-OUTPUT APPROACH 

Before the main results are presented, some technical terms 

are introduced. First, let us define a normalization function for 

column-sum of the adjacency matrix  

 
( )

( ) ( )
1

1

if

otherwise

0,     0

1,   

n
mi

n
i mi

m

m

a
N a 



 
 


 (7)   

where i = 1, 2,……, n. The reason why we call this a nor-

malization function is because the value of column-sum is 

normalized to unity when it is nonzero, meaning that it is only 

counted once if the ith agent sends information to neighboring 
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agents regardless of how many. For compact notations, we 

will omit the argument (i.e. the column-sum) of the normali-

zation function hereafter. Next, we define the row-sum of the 

adjacency matrix as follows, which depicts how many 

neighboring agents send information to agent i 

( ) ( )

1

n
i i j

j

a


   (8)   

We may define the coupling strength as 

( )

( ) ( )

1i

i iN






 (9)   

Also introduced is the notion of local “centroid” variables 

( ) ( ) ( ) ( )( ) ( )

1

n
i i i j ji i

j

N x a xx 



   
 

 (10)   

( ) ( ) ( ) ( )( ) ( )

1

n
i i i j ji i

j

N y a yy 



   
 

 (11)   

( ) ( ) ( ) ( )( ) ( )

1

n
i i i j ji i

j

N u a uu 



   
 

 (12)   

where i = 1, 2,…… , n. Note that we allow the coupling 

strengthτto be agent-dependent whose usefulness will be-

come clear shortly. Corresponding to the local centroids we 

define the relative variables such as relative-state, rela-

tive-output, and relative-input respectively as 

( ) ( ) ( )i i ix x x    (13)   

( ) ( ) ( )i i iy y y    (14)   

( ) ( ) ( )i i iu u u    (15)   

One may easily verify that the relative-state, relative-input, 

and relative-output satisfy the following identities 

( ) ( ) ( ) ( ) ( )

1

( )
n

i i i j i j

j

x a x x


   (16)   

( ) ( ) ( ) ( ) ( )

1

( )
n

i i i j i j

j

u a u u


   (17)   

( ) ( ) ( ) ( ) ( )

1

( )
n

i i i j i j

j

y a y y


   (18)   

( ) ( )i iy Cx  (19)   

where i = 1, 2,……, n. The relative-input, appearing in (15) 

and (17) as a conceptual tool, is new.  

Now we are ready to present one of the main results. 

 

Theorem 1: For a network consisting of n homogeneous 

agents (1)-(3) under a time-invariant communication topology 

that has a directional spanning tree without any disconnected 

components, static protocol (20) solves the consensus problem 

where K is such that A+BKC is stable. 

( ) ( ) ( ) ( )( )

( ) ( )
1

1 n
i i i j ji

i i
j

K y a uu 
  

   
 

 (20)   

Proof: Let us define a positive definite Lyapunov function V 

for the system as follows where P is a symmetric and positive 

definite matrix.  

( ) ( )

1

n
i T i

i

V x P x


   (21)   

Differentiating V with respect to time we get 

( ) ( ) ( ) ( )

1

n
i T i i T i

i

V x P x x P x


 
 

   (22)   

Using the add-and-subtract technique we may rewrite (20) as 

 

( )

( )

( ) ( )( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( ) ( )
( ) ( )

1

1

i

i
n

i i ji i i j i

j

i i i i i
i i

Ky

u
a u u u

Ky u u

 

 
 



 
 
 
  

  


 

  

  (23)  

This expression further leads to the following relative-input 

( ) ( )i iu Ky  (24)   

Consider the time-derivative of relative-state (16). Using the 

relative-input (17) we obtain 

( ) ( )( )i ix A BKC x   (25)   

where i = 1, 2,……, n. The time-derivative of V now becomes 

( ) ( )

1

[( ) ( )]
n

i T T i

i

V x A BKC P P A BKC x


     (26)   

Since A+BKC is stable, there exists a symmetric positive ma-

trix P that satisfies the following two inequalities, in which the 

first implies the second,  

( ) ( ) 0TA BKC P P A BKC     (27)   

0V   (28)   

As a matter of fact, we took exactly this matrix P as the 

weighting matrix for the relative-state in the Lyapunov func-

tion (21). According to Lyapunov stability theory we know 

that V will converge to zero, that is, all relative-states will 

converge to zero asymptotically. Next, without loss of gener-

ality, consider the ith relative-state. According to (13) the 

following identity holds in the asymptotic sense. 

( ) ( ) ( ) ( )( ) ( ) ( )

1

n
i i i j ji i i

j

N x a xx x 



    
 

 (29)   
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Collecting x
(i)

 in (29) together with some straightforward 

algebraic manipulations we get 

( ) ( ) ( ) ( )

1 1

n n
i j i i j j

j j

a x a x
 

   (30)   

This equality holds asymptotically regardless of what the 

values of individual state are. The following expression then 

must hold in the asymptotic sense for the ith agent and its 

associated neighbors 

( ) ( )i jx x  (31)   

The above statement is true for any agent i. Recall the network 

has a directional spanning tree, which is a given condition for 

the problem to be well-posed. We conclude that asymptotic 

consensus will be reached. This completes the proof.  

Note that even though locally each agent will apply control 

law (20), the global picture lies in (24)-(25) instead. 

Remarks: Strictly speaking, protocol (20) does not apply to the 

root agent, for the latter has an important task to perform: 

generating a nontrivial trajectory for the rest agents to follow. 

We also note that some technical implementation issues are 

not covered here due to space limit such as how the input and 

output values of the neighbouring agents are transmitted (to-

gether or separately) through the communication channels.  

Unlike that in (6) where all agents share the same coupling 

strengthτ, rendering the analysis of consensus region difficult 

and requiring a multistep design procedure to obtain τ, in-

volving computation of all the eigenvalues of Laplacian ma-

trix (Li et al., 2010), our new approach (9) does not do so and 

the design is fairly straightforward and much simpler. The 

usefulness of using an agent-dependent coupling strength now 

becomes evident, as from the relative variable perspective it 

renders the resulting multi-agent system homogeneous re-

gardless of how complex the underlying network’s commu-

nication topology connecting all agents might be. It is worth 

pointing out that the coupling strength does not appear in the 

relative closed loop system (25).  

Note that this new method dissociates the effect from the 

agent’s and protocol’s dynamics on the consensus stability 

from the network’s communication topology (Li et al., 2010). 

One important consequence of this property is that one only 

needs to adjust the coupling strength according to (9), which 

could be done simply by hand, to solve the multi-agent con-

sensus problem if the underlying topology of the network 

changes whereas the individual agent dynamics does not. This 

is also an advantageous feature of agent-dependent coupling 

strength proposed here. The latter potentially may also be 

extended to handle the time-varying case, which is not treated 

here as it is beyond the scope of this paper. 

 

4. THE OUTPUT FEEDBACK GAIN 

In previous section we require the output feedback gain K be 

stabilizing. In this section we present a feasible method to find 

that gain (Lewis, 1992). Given below are the governing equa-

tions for obtaining the gain 

( ) ( ) 0T T TA BKC P P A BKC C K UKC X        (32) 

( ) ( ) 0TA BKC W W A BKC I      (33)   

1 1( )T T TK U B PWC CWC   (34)   

The matrices X and U in the above expressions represent 

weightings (which, for simplicity, could be chosen to be the 

identity matrices) in a linear-quadratic cost functional defined 

for the relative-state and relative-input respectively in  

 ( ) ( ) ( ) ( ) ( )

0

i i T i i T iJ dtx X x u U u


   (35)   

 

Fig. 1.An example of network topology (Li et al., 2010). 

 

5. DISTRIBUTED FILTERING 

Next, we extend the results to sensor networks, specifically to 

the consensus issue of distributed Kalman filtering. Again, the 

major difference between the proposed method and the ex-

isting ones (e.g. Olfati-Saber et al., 2012) is our utilization of 

relative-input. 

Consider the following linear stochastic system of which some 

networked sensors are making measurement. Suppose the 

process and measurement noises are Gaussian and zero-mean 

with covariance Q and R respectively. 

x Ax w   (36)   

( ) ( ), 1, 2, ,i iz Cx v i n    (37)   

( ): (0, ),    : (0, )iw Q v R  (38)   

The distributed filtering may be expressed as 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ( ) , 1, 2, ,i i i i ix Ax L z Cx f i n     (39)   

where f
( i )

represents input from the network to be designed 

and L is the Kalman gain satisfying the following identities in 

which P is symmetric and positive definite (Lewis, 1992). 

1TL PC R  (40)   

1T TP AP PA Q PC R CP     (41)   

The objective of distributed filtering in current context is to 

achieve estimation consensus asymptotically among all the 

Kalman filters that are networked. Following the above 
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framework we define, in the same spirit, the relative-state, 

relative-input, and relative-measurement before we present 

Theorem 2, another main result of this paper. Again, the rela-

tive-input plays an important role in tackling the problem. 

( ) ( ) ( ) ( ) ( )

1

ˆ ˆ( )
n

i i i j i j

j

x a x x


   (42)   

( ) ( ) ( ) ( ) ( )

1

( )
n

i i i j i j

j

f a f f


   (43)   

( ) ( ) ( ) ( ) ( )

1

( )
n

i i i j i j

j

z a z z


   (44)   

Theorem 2: Given a stochastic system (36)-(38), and a com-

munication network consisting of n sensors under a 

time-invariant communication topology that has a directional 

spanning tree, static protocol (45) solves the estimation con-

sensus problem of the distributed Kalman filters. 

 

( ) ( ) ( ) ( )

( )
1

1 n
i i j j i

i
j

f a f Lz
 

 
   

 (45)   

 

The following identity will be used in proving the theorem. 

1 1 1d
P P PP

dt

     (46)   

 

Proof: Consider a Lyapunov function and its time-derivative  

( ) 1 ( )

1

n
i T i

i

V x P x



   (47)   

1
( ) 1 ( ) ( ) ( )

1 ( ) 1 ( )

i T i i T i
n

i i T i

dP
x P x x x

V dt

x P x




 

 
 
 
  


 



 (48)   

 

Using (42)-(46) and the same add-and-subtract technique that 

was applied in proving Theorem 1 we get 

 

( ) 1 1 1 ( )

1

( ) 0
n

i T T i

i

V x P QP C R C x  



 
     (49)   

lim 0
t

V


  (50)   

 

The rest follows the same argument from Theorem 1.  

 

We note that the proof for convergence of the error covariance 

is omitted. To deal with that, an augmented state containing 

both the estimation error and consensus error may be 

considered to start with. It is beyond the scope of this paper 

due to space limit, as our main focus is put on the filtering 

consensus itself. Intuitively, one may expect that the error 

covariance will converge asymptotically along with the 

convergence of the consensus error using the vanishing 

perturbation argument. 

 

 

Fig. 2. An example of sensor and filter networks. 

6. NUMERICAL EXAMPLES AND SIMULATIONS 

The network topology of the first example is shown in Fig. 1. 

Agent 4 is the root agent (K
( 4 )

 is designed separately), whose 

closed loop eigenvalues are placed at + j and – j.  

The second example is a stochastic plant of 4
th

 order with 

topology shown in Fig. 2 (the solid lines) where the triangle on 

the top represents the plant and the dotted lines denote the 

measurement. The objective is to achieve estimation consen-

sus. 

Example 1: 

2

(4) (4)

2 2 1
, ,  1 0 , ,  1, 

1 1 0

0.454, 1, ( )

A B C Q I R

K K A BK C j

   
      

      


    



   

 

Example 2: 

4 2

0 2 0 0 1 0

2 0 0 0 2 0
, ,  5 ,  3

0 0 0 3 1 1

0 0 3 0 2 1

TA C Q I R I

   
   
   
   
   
      



     
 

 

It can be seen from Fig. 3 that the states from the six agents 

reach consensus asymptotically in Example 1. Controls are 

shown in Fig. 4.  

Consensus of all the estimated states from the four Kalman 

filters can be observed in Example 2 as shown in Fig. 5 and 

Fig. 6. Fig. 7 shows how accurate the state estimation is. We 

chose Agent 2 as a reference agent in this example. 

7. CONCLUSIONS 

We addressed multi-agent consensus problem and proposed a 

relative-input-output approach to tackle the problem. New 

elements such as relative-input and agent-dependent coupling 

strength were utilized. The new approach improved the pop-

ular observer-based method. The results were then extended to 

solve the estimation consensus problem in distributed Kalman 

filtering. Two numerical examples were provided that vali-

dated the new method. 

 

(1)z
(4)z

(2)z

(3)z
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Fig. 3. Trajectories of states – Example 1. 
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Fig. 4. Trajectories of control – Example 1. 
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Fig. 5. Estimation difference – Example 2. 
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Fig. 6. State trajectories of all filters – Example 2. 
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