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Abstract: A Constrained Model Predictive Control (CMPC) approach for regulating
blood-glucose levels in people with type 1 Diabetes is proposed. The controller uses the past
suggested insulin, the subcutaneous glucose level, and an estimation of the carbohydrate amount
of the future meals provided by the patient as inputs to decide the quantity of insulin to inject
by a subcutaneous pump. This strategy achieves good control performance by keeping into
account a series of bounds which allow the control law to be as conservative as possible to
avoid hypoglycemia phenomena without increasing the risk of hyperglycemia. The constraints
definition is based on the knowledge of in-vivo clinical trials performed with an unconstrained
MPC. In order to avoid the solution of the constrained optimization problem, a saturated MPC
(SMPC), where all the constraints are applied as saturations, is also considered. The controller
performance is evaluated in an in-silico study on 100 virtual patients of the UVA/Padova
simulator. In order to underline the robustness of CMPC and SMPC in presence of model
uncertainties, the simulations are performed both in nominal and in perturbed scenarios.

Keywords: Control of physiological and clinical variables; Chronic care and/or diabetes;
Artificial pancreas or organs.

1. INTRODUCTION

Individuals with Type 1 Diabetes Mellitus (T1DM) require
external insulin injections to maintain the blood glucose
(BG) level within an optimal range. If the BG concen-
tration reaches too low levels (e.g. below 50 mg/dl), the
patient may enter into a hypoglycemic state with very
near-term dangerous consequences. If the BG level stays
high over long periods (e.g. above 200 mg/dl), long-term
consequences may arise.
The Artificial Pancreas (AP) is a system resulting from the
integration of subcutaneous (sc) glucose sensors, sc insulin
pumps, and a control algorithm. Since 1999, when the
first commercial Continuous Glucose Monitoring (CGM)
system was introduced, several research projects on AP
were stimulated and founded by the Juvenile Diabetes
Research Foundation, the European Commission, and the
National Institutes of Health (see Weinzimer et al. [2008],
Cobelli et al. [2009], Hovorka et al. [2010], El-Khatib et al.
[2010], Kovatchev et al. [2010], Bequette [2012], and Luijf
et al. [2013]). Designing a sc-to-sc glucose-insulin system is
challenging because the system is characterized by signif-
icant inter-individual variability, time varying dynamics,
nonlinear phenomena, and time delays due to the absorp-

? This work was supported by ICT FP7-247138 Bringing the Ar-
tificial Pancreas at Home (AP@home) project and the Fondo per
gli Investimenti della Ricerca di Base project Artificial Pancreas:
In Silico Development and In Vivo Validation of Algorithms for
Blood Glucose Control funded by Italian Ministero dell’Istruzione,
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tion of the insulin from the sc level to the blood and, in
reverse, of the glucose from the blood to the sc level. In
the literature, several algorithms have been presented (see
Cobelli et al. [2009], and Bequette [2012]).
The aim of this work is to design a controller for regu-
lating BG levels in people with T1DM by a Constrained
Model Predictive Control (CMPC) strategy. This ap-
proach achieves to define a control law able to consider dif-
ferent objectives with the formulation of a Finite Horizon
Optimal Control Problem (FHOCP) that involves specific
control bounds. The control bounds definition is based
on the knowledge obtained using previous MPC versions
(see Magni et al. [2007], Magni et al. [2009], and Patek
et al. [2012]) in-silico and in-vivo (see Luijf et al. [2013]).
These bounds are designed to avoid dangerous situations
for the patients like e.g. hypoglycemia or hyperglycemia
phenomena, too aggressive controller reactions on glucose
level rising, and ketone bodies formation.
CMPC performance is evaluated on an in-silico study on
100 virtual patients of the UVA/Padova simulator de-
scribed in Dalla Man et al. [2014]. The FHOCP of CMPC
is converted into a QP problem and it is solved through
the Matlab R© quadprog function. CMPC performance is
compared with the performance obtained by using an
unconstrained (UMPC) and a saturated (SMPC) versions
of MPC where the constraints defined in the CMPC opti-
mization problem are added to the solution of UMPC as
saturations.
In order to account for the model uncertainties, the simula-
tions are performed in nominal and in perturbed scenarios.
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Particularly, the latter is characterized by random insulin
sensitivity variations used to simulate a non optimal in-
sulin therapy or an unexpected response of the patient to
the insulin injections.
The paper is organized as follows. In Section 2 the CMPC
controller designed in this work is entirely defined. In Sec-
tion 3 the CMPC implementation is presented. In Section
4 the results of the performed simulations both in nominal
and in perturbed scenarios are analyzed.

2. CONSTRAINED MPC DESIGN

In this section the CMPC designed for an AP is presented.
The model considered to synthesize the controller is the
linearization around the nominal basal equilibrium of the
average Dalla Man et al. [2014] glucose-insulin system,
which can be written as follows:{

x(k + 1) = Ax(k) +Bu(k) +Md(k)
y(k) = Cx(k)

(1)

where x(k) ∈ Rn (n = 13) is the state vector, u(k) ∈
R is the difference between the injected insulin and its
basal value ub(k), y(k) ∈ R is the difference between
the sc glucose and its basal value Gb, and d(k) ∈ R
represents the carbohydrates intake. The basal value Gb is
not individualized because it is unknown for a real patient
while the insulin basal value ub(k) is the one used in real
life by each patient.

2.1 Constraints Design

The input constraints design is a very critical issue that
must be based on a solid clinical evidence. In fact, a
too high insulin delivery may lead the patient into a
hypoglycemic state with the possibility to restore a correct
glucose level only through an administration of external
carbohydrates. On the other hand, leaving the patient
without insulin for long periods may lead to high glucose
levels especially after a meal assumption. In order to avoid
these situations, a series of input constraints have been
designed.

Pump Constraint The sc insulin pump is characterized
by physical limitations. The injected insulin cannot be
removed from the patient and this fact is translated into a
low insulin constraint that specifies the minimum quantity
of insulin that can be suggested by the controller. On
the other hand, the pump is characterized by a high
saturation that is hardware dependent. In order to obtain
a safer controller, a tighter low constraint is imposed
on the future inputs so that, even in the presence of
model uncertainties, hypo phenomena can be avoided in
a better way. In fact, it is expected that if the controller
must inject a higher quantity of insulin in the future,
the current suggestion will result more conservative. To
avoid a controller over-reaction (in particular just after
a meal where a significant error on the meal absorption
model is unavoidable due to different meals compositions),
a constraint on the maximum injected insulin in a specific
time window is introduced. The pump constraint can be
expressed as u(k + i) ≤ min{I(k)−

NH∑
j=1

u(k + i− j), uk+i}

u(k + i) ≥ (β(i)− 1)ub(k + i)

(2)

with

β(i) =

{
0 ∀i ∈ {0, Nβ , Nβ + 1, . . . , N}
β ∀i ∈ {1, . . . , Nβ − 1}

and with i = 0, . . . , N − 1, β ∈ [0, 1], Nβ ≤ N , uk = u −
ub(k) where u is the maximum insulin deliverable by the
pump in a sample time k. N represents the prediction
horizon while NH specifies the time interval in which the
past insulin is considered.

I(k) = αmax(lastibolus,
y(k)− yth

CF
)

where α > 0 is a suitable parameter, lastibolus is the last
insulin meal bolus, yth is a defined glucose threshold, and
CF is the Correction Factor and it is a patient’s clinical
parameter.

Maximum Variation Constraint This constraint is added
to obtain a smoother control law by limiting the maximum
variation between the controller suggestion at time k and
the previous suggestion at time k − 1 and it is defined as

u(k)− u(k − 1) ≤ ζ · ub(k) (3)

where ζ > 0 is a suitable parameter. The constraint is
inactive when an insulin bolus must be delivered for a
meal compensation.

Ketone Bodies Constraint If the patient reaches high
glucose levels and is left without insulin for long periods,
there is the possibility to encounter the ketone bodies
formation. This constraint is used to guarantee a minimum
quantity of delivered insulin when the patient’s glucose
level exceeds a specific security threshold. Thus, it is
imposed

u(k) ≥ γ · ub(k) if y(k) ≥ G
where G is the chosen security threshold and γ > 0 is a
suitable parameter. Since the UVA/Padova simulator does
not include the ketone bodies formation, the tuning of this
constraint is entirely based on data coming from real in-
vivo experiments.

2.2 Optimization Problem Formulation

The FHOCP is defined as

uo(k) = argmin
u(k)

J(x(k), u(·), k) (4)

such that the dynamics described by (1) and the con-
straints (2) and (3) are satisfied, and where uo(k) is the
computed optimal control vector and J(x(k), u(·), k) rep-
resents the cost function. The latter is given by

J(x(k), u(·), k) =

N−1∑
i=0

(‖y(k + i)− y0(k + i)‖2q

+‖u(k + i)− u0(k + i)‖2r) + ‖x(k +N)‖2P

(5)

where y0(k) is the reference output vector and it is the
difference between the reference value of the sc glucose and
Gb, u0(k) is the reference input obtained through the open
loop therapy, N is the prediction horizon, q > 0 represents
the output weight, r > 0 represents the input weight, and
P ≥ 0 is a positive semidefinite matrix that represents the
states weights at the end of the horizon. In view of the
reachability of the pair (A,B), the P matrix is set equal
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to the unique non-negative solution of the discrete time
Riccati equation

P = qC ′C +A′PA−A′PB(r +B′PB)−1B′PA .

According to the Receding Horizon criterion, only the first
element of the optimal control vector defined in (4) is kept
and applied to the system. Thus, the FHOCP must be
solved at each sample time k.

3. CONSTRAINED MPC IMPLEMENTATION

The FHOCP defined in (4) has been converted in a QP
problem and CMPC has been in-silico tested by exploiting
the Matlab R© quadprog function.

3.1 QP Optimization Problem

Defining the matrices Ac, Bc, andMc as described in Soru
et al. [2012], and the vectors

Y (k) = [ y(k + 1) · · · y(k +N − 1) x(k +N) ]
′

U(k) = [ u(k) u(k + 1) · · · u(k +N − 1) ]
′

D(k) = [ d(k) d(k + 1) · · · d(k +N − 1) ]
′

with Y (k) ∈ RN−1+n, U(k) ∈ RN , and D(k) ∈ RN , it is
proved that

Y (k) = Acx(k) + BcU(k) +McD(k)

and by defining the weight matrices

Q =


q 0 · · · 0

0
. . .

. . . 0
...

. . . q
...

0 · · · 0 P

 R =


r 0 · · · 0

0
. . .

. . .
...

...
. . . r 0

0 · · · 0 r


where Q ∈ R(N−1+n)×(N−1+n) and R ∈ RN×N , and the
reference vectors

Y0(k) = [ y0(k + 1) y0(k + 2) · · · y0(k +N − 1) 0 ]
′

U0(k) = [ u0(k) u0(k + 1) · · · u0(k +N − 1) ]
′

with Y0(k) ∈ RN−1+n and U0(k) ∈ RN , the controller cost
function (5) can be rewritten as

J(x(k), u(·), k) =
1

2
U ′(k)(B′cQBc +R)U(k)

+((A′cx(k) +McD − Y0(k))′QBc − U0(k)′R)U(k)
(6)

where only the terms depending from U(k) have been kept.
As described in Toffanin et al. [2013], the system states
vector x(k) ∈ Rn is estimated by a Kalman Filter.
In order to have only one parameter to tune in the cost
function (5), it is imposed r = 1. The tuning of the q
parameter is obtained with the calibration procedure de-
scribed in Soru et al. [2012] that leads to have a regression
model that depends from the Body Weight (BW) and
the Carbo-to-Ratio (CR) of the diabetic patient. Thus,
once the calibration procedure is performed on half virtual
population, the q parameter can be adapted to a specific
patient with the formula

q = eBW ·R1+CR·R2+kr (7)

where BW and CR are the only two considered clinical
parameters, and R1 and R2 are their related regressors.
The FHOCP (4) can be converted in the QP problem

Uo(k) = argmin
U(k)

1

2
U ′(k)HU(k) + F ′U(k)

AU(k) ≤ B
Θ ≤ U(k) ≤ Ω

(8)

where
H = (B′cQBc +R)

F = ((Acx(k) +McD −X0(k))′QBc − U0(k)′R)′

and where A = [AHL AMV ]′, and B = [BHL BMV ]′.

3.2 Constraints

The Pump Constraint is implemented by imposing the
matrices Θ ∈ RN×1 and Ω ∈ RN×1 defined in (8) as

Θ =



−ub(k)
(β − 1)ub(k + 1)

...
(β − 1)ub(k +Nβ − 1)

−ub(k +Nβ)
...

−ub(k +N − 1)


Ω =


uk
uk+1

...
uk+N−1

 .

and by imposing

AHL =



1 0 0 · · · · · · 0
... 1 0

. . .
. . .

...

1
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0 0

...
. . .

. . .
. . . 1 0

0 · · · 0 1 · · · 1


BHL =



I(k)− ũNH

I(k)− ũNH−1
...

I(k)− ũ1
I(k)

...
I(k)


where ũj =

∑j
i=1 u(k− i), AHL ∈ RN×N has a number of

ones diagonals equal to NH , and BHL ∈ RN×1.
The Maximum Variation constraint is implemented by
imposing

AMV =



1 0 · · · · · · 0

−1 1
. . .

. . . 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −1 1


BMV =


ζub(k)− ũ1
ζub(k)

...
ζub(k)


where AMV ∈ RN×N , BMV ∈ RN×1.

In order to avoid a Mixed Integer implementation, the
Keton Bodies constraint is applied as a saturation down-
stream the controller suggestions as follows:

uCMPC(k) =

{
uo(k), if y(k) < G
max(uo(k), γ · ub(k)) otherwise

where uo(k) is the first element of the Uo(k) vector in (8),
and uCMPC(k) is the final CMPC suggestion.

4. RESULTS

The control performance of CMPC is compared with the
performance obtained by UMPC and SMPC. The first uses
the closed form control law obtained without consider-
ing input constraints in the QP problem defined in (8).
The second is obtained by applying the input constraints
as equivalent saturations downstream the UMPC sugges-
tions. The three MPC are evaluated on an in-silico study
on 100 virtual patients of the UVA/Padova simulator. The
simulation scenarios start at 6:00 and last 34 hours. Five
meals are assumed by the patients: 2 breakfasts at 7:00
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Table 1. Abbreviations used in Table 2 and
Table 3.

Abbreviation Meaning

O Overall
N Night

PP Mean of postprandial periods
M BG mean
SD BG standard deviation

Tt
% of time spent in euglycemic range

(70 − 180 mg/dl)
Ta % of time spent above 180 mg/dl
Tb % of time spent below 70 mg/dl
Th % of time spent below 50 mg/dl

# HT Total number of hypo treatments
a p-value < .001
b p-value < .01
c p-value < .05

of the first and second day, 2 lunches at noon of the first
and second day, and dinner at 18:00. The carbohydrates
amounts are equal to 50g for the first breakfast, 60g for
the lunches and for the second breakfast, and 80g for the
dinner. Since the loop is closed at 8:00 of the first day,
the first breakfast is treated in open loop. Thus, perturbed
closed loop initial conditions are obtained for each patient.
The night is defined from 23:00 to 7:00 of the next morning
and a postprandial period is defined as a 3 hours time
interval after a meal. The sample time of the system is
equal to 15 min.
The simulated CGM sensor is affected by an error noise
whose model is described in Toffanin et al. [2013]. The
sensor is re-calibrated half hour before each meal and at
night start. A perturbed scenario is considered in which
a random ±25% variation factor is applied to the insulin
sensitivity (VSENS) of the virtual patient. This leads to
have simulated non optimal basal/bolus insulin.
If the glycaemia falls below 65 mg/dl, the protocol im-
poses 16 g of carbohydrates administration, called Hypo
Treatment (HT). Two consecutive HT are separated from
at least 30min.
The outcome indices used to evaluate the control perfor-
mance are shown in Tables 2, and 3, where the mean-
ing of the abbreviations are described in Table 1. The
p-values are referred to the comparisons between CMPC
and UMPC and between CMPC and SMPC.
An improved version of the Control Variability Grid Anal-
ysis (CVGA) defined in Magni et al. [2008] is also used
to evaluate the control performance. This improved ver-
sion was introduced in Soru et al. [2012] by allowing the
classic CVGA nine square zones to become concentric
rings zones ranging from A to D. A single point on the
CVGA represents the couple of minimum and maximum
BG values reached by the virtual patient during a closed
loop simulation.

4.1 Nominal Scenario

The outcome indices of the three MPC strategies reported
in Table 2 show that CMPC is able to obtain an acceptable
mean glucose and time spent in target range with a
statistically significant lower number of occurred hypo
treatments and time spent in hypoglycemia with respect
to UMPC. This fact is also confirmed by Figure 1, where
the UMPC global trend is affected by obvious undershoots
after each meal, and by the CVGA in Figure 2, where

Table 2. Simulations results obtained on Nom-
inal scenario.

O N PP

M (mg/dl)
UMPC 131.46a 113.25 149.64b

SMPC 139.55a 115.93 158.95
CMPC 136.50 114.38 156.46

SD (mg/dl)
UMPC 26.94c 8.63 24.46
SMPC 27.40 9.32 24.12
CMPC 27.18 8.86 24.12

Tt (%)
UMPC 91.12a 99.87 82.54
SMPC 87.66b 99.82 76.05
CMPC 90.01 99.86 78.80

Ta (%)
UMPC 7.99a 0.13 16.92
SMPC 12.29b 0.18 23.95
CMPC 9.92 0.14 21.17

Tb (%)
UMPC 0.87a 0.00 0.54
SMPC 0.05 0.00 0.00
CMPC 0.07 0.00 0.03

Th (%)
UMPC 0.15c 0.00 0.10
SMPC 0.00 0.00 0.00
CMPC 0.01 0.00 0.00

# HT
UMPC 52a 0 19c

SMPC 2 0 0
CMPC 5 0 0

06:00 10:00 14:00 18:00 22:00 02:00 06:00 10:00 14:00
50

100

150

200

250

PP PP PP PP PPNight

Time (h)

G
lu

co
se

 (
m

g/
dl

)

 

 

UMPC
SMPC
CMPC

Fig. 1. Glucose profiles for UMPC (blue, circles), SMPC
(magenta, squares), and CMPC (orange, diamonds)
with mean ± standard deviation obtained in 100
virtual patients on nominal scenario. OL, open loop;
PP, postprandial period.

points in C and D zones are increased by UMPC.
SMPC has a global trend that is closer to the CMPC one
(Figure 1) and also the CVGA differences are minimal
(Figure 2). Table 2 shows that SMPC is able to obtain
good control performance without increasing the number
of occurred hypo treatments and it could be considered as
a good approximation of CMPC.
An example of glucose and injected insulin trends obtained
in nominal scenario is shown in Figure 3. The UMPC
injects a higher quantity of insulin (especially just after the
dinner) bringing the virtual patient into a hypoglycemic
state in which five HT are needed in order to recover a
safe glycaemia. SMPC and CMPC have similar and safer
behaviors and glucose trends, as expected.

4.2 Perturbed Scenario

CMPC is able to obtain statistically significant lower
number of occurred hypo treatments and time spent in
hypoglycemia with respect to UMPC also on VSENS
scenario. In this case there is no significant difference on
the time spent in target, as shown in Table 3. Moreover,
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Fig. 3. Glucose (upper panel) and injections (lower panel) trends of the virtual patient #54 obtained by UMPC (solid
black), SMPC (dot dashed blue), and CMPC (dashed magenta) on nominal scenario.

Fig. 2. CVGA representing the results obtained using
UMPC (blue, circles), SMPC (magenta, squares), and
CMPC (orange, diamonds) on nominal scenario.

UMPC experiences more pronounced undershoots on the
global glucose trends after each meal treated in closed loop
(Figure 4), and an evident increase of the number of CVGA
points that fall in C and D zones (Figure 5).
Albeit SMPC obtains a higher BG mean and lower time in
target with respect to CMPC, there are no significant dif-
ferences for what regards the times spent in hypoglycemia
and the number of occurred hypo treatments (Table 3).
SMPC and CMPC have also similar global glucose trends
(Figure 4) and similar CVGA (Figure 5), demonstrating
once again that SMPC could be considered as a good
approximation of CMPC.

Table 3. Simulations results obtained on
VSENS scenario.

O N PP

M (mg/dl)
UMPC 134.54a 116.14 152.50
SMPC 142.36a 118.46 161.84
CMPC 139.20 116.82 159.16

SD (mg/dl)
UMPC 28.21 9.51 25.22
SMPC 28.62 10.25 24.89
CMPC 28.26 9.64 24.72

Tt (%)
UMPC 84.33 98.19 74.02
SMPC 83.06a 98.69 70.23
CMPC 84.97 98.92 72.29

Ta (%)
UMPC 11.79a 0.22 23.06
SMPC 15.55a 0.53 28.99
CMPC 13.66 0.30 26.94

Tb (%)
UMPC 3.88a 1.59 2.92
SMPC 1.39 0.78 0.79
CMPC 1.37 0.78 0.77

Th (%)
UMPC 1.66a 0.13 1.60c

SMPC 0.41 0.09 0.24
CMPC 0.35 0.00 0.24

# HT
UMPC 256a 18 106
SMPC 86 9 28
CMPC 86 9 26

5. CONCLUSION

CMPC presented in this work shows that the inclusion
of well designed input constraints can significantly im-
prove the performance of an unconstrained MPC. The
constraints considered in the control variable have been de-
rived from clinical evidences achieved from in-vivo clinical
trials and they have been implemented directly into the
controller cost function. Despite its good control perfor-
mance, CMPC has still not been implemented in AP due to
the need of an online optimizer. Thus, SMPC has been for-
mulated with a closed form control law and with equivalent
constraints implemented as saturations. The results show
that SMPC can be considered as a good approximation
of CMPC and it is actually used in outpatients trials.
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Fig. 4. Glucose profiles for UMPC (blue, circles), SMPC
(magenta, squares), and CMPC (orange, diamonds)
with mean ± standard deviation obtained in 100
virtual patients on VSENS scenario. OL, open loop;
PP, postprandial period.

Fig. 5. CVGA representing the results obtained using
UMPC (blue, circles), SMPC (magenta, squares), and
CMPC (orange, diamonds) on VSENS scenario.

Possible future improvements of the glucose control could
be obtained by considering constraints also in the system
states, with the possibility to further increase the global
control performance.
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