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Abstract: The recursive identification of a parsimonious nonlinear Wiener model for the
neuromuscular blockade in closed-loop anesthesia is considered. The performance of two popular
nonlinear estimation techniques, namely the extended Kalman filter (EKF) and the particle filter
(PF), is evaluated on synthetic and clinical data. The parameter estimates obtained with the
PF, that does not rely on model linearization, exhibit less bias and shorter settling time than the
ones produced by the EKF. This behavior persists when the parameter tracking capabilities of
both estimation algorithms are assessed for the model in hand. Taking advantage of the model
parameters that were recursively estimated from clinical data, it is demonstrated that the main
source of intra-patient variability lies in the nonlinear pharmacodynamic part of the model.
The distance to a bifurcation phenomenon leading to nonlinear oscillations of the Wiener model
under PID feedback is also evaluated.
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1. INTRODUCTION

The recursive estimation of a parsimonious nonlinear
Wiener model for the neuromuscular blockade (NMB) in
closed-loop anesthesia is addressed in this paper.

Nonlinear dynamical models provide a broad framework
for biological and physiological systems and are well
suited for the problem of drug delivery control, Haddad
et al. (2006). While pharmacokinetic/pharmacodynamic
(PK/PD) models offer a detailed insight into the under-
lying physiological processes, they usually raise identifia-
bility concerns whenever the aim of parameter estimation
from measured input-output data of the system is model
individualization, Silva et al. (2014). Therefore, minimal
parsimonious models for the effect of drugs in anesthesia
were proposed in Silva et al. (2012) and Silva et al. (2010).
Other reduced models followed, namely Hahn et al. (2012)
and Hodrea et al. (2013), further supporting the idea that
simple model structures can capture the most significant
dynamics of the system, i.e. the human body, in response
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to drug administration, allowing at the same time model
individualization.

Owing to the nonlinear nature of the system, it is expected
that estimation algorithms making direct use of the non-
linear model perform better than estimation methods that
rely on linearization. The first contribution of this paper
is hence the estimation of the parsimonious Wiener model
for the NMB proposed in Silva et al. (2012) with a particle
filter (PF) compared with that by an extended Kalman
filter (EKF). While the PF exploits the nonlinear model
structure, the EKF calculates the feedback gain from a
linearization of the nonlinear model dynamics around the
state estimates at each time instant.

The inter-patient variability in response to administration
of drugs in anesthesia greatly complicates the automatic
drug delivery and necessitates individualized control of it.
The phenomenon has been extensively assessed for the
two main components of anesthesia: the NMB, in e.g.
Caiado et al. (2012) and Silva et al. (2013); and the depth
of anesthesia (DoA), in e.g. Niño et al. (2009), Dumont
et al. (2009), and van Heusden et al. (2013). The perfor-
mance of an individualized feedback controller is, in fact,
directly influenced by the intra-patient variability, i.e. the
uncertainty incurred by the changes in the PK/PD char-
acteristics of the patient throughout a general anesthesia

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 9258



u(t)
Linear Dynamics

y(t)
Static Nonlinearity

y(t)

Fig. 1. Block diagram of a Wiener model.

episode, due to e.g. variations in cardiac output, and/or
co-administered drugs, Absalom et al. (2011).

Considering the tracking capabilities of the PF and the
EKF, the intra-patient PK/PD variability in terms of
model parameter estimates variation is also assessed here,
being this the second contribution of the paper.

Recent research has shown that complex nonlinear dynam-
ics may arise in the closed-loop system of a Wiener model
for the NMB controlled by a PID feedback. According
to Zhusubaliyev et al. (2013), there exists a region in
the parameter space where the system possesses a sin-
gle stable equilibrium and, when varying the parameters,
this equilibrium undergoes a bifurcation that leads to the
emergence of self-sustained nonlinear oscillations. Notably,
oscillating PID loops in closed-loop anesthesia have been
observed in clinical experiments, e.g. Absalom and Kenny
(2003). The third contribution of this paper is hence a
quantification of the distance to bifurcation for the identi-
fied models. This quantification provides insight into how
close to a nonlinear oscillation the closed-loop system is
and may be used as a flag in a safety net for PID controlled
anesthesia.

The remainder of this paper is organized as follows.
Section 2 describes the parsimonious nonlinear Wiener
model that is used to parametrize the effect of the muscle
relaxant atracurium in the NMB. Section 3 introduces
briefly the EKF and the PF, while Section 4 summarizes
the data sets and the performance metrics that were
used to assess parameters convergence as well as filtering
and tracking capabilities of both considered parameter
estimation techniques. Section 5 presents the estimation
results and, finally, the conclusions are drawn in Section 6.

2. PARSIMONIOUS WIENER MODEL

A block diagram of a Wiener model is shown in Fig. 1. In
the parsimonious Wiener model for the NMB, Silva et al.
(2012), that is used in this paper, the model input u(t)
[µg kg−1min−1] is the administered atracurium rate, and
the model output y(t) [%] is the NMB level. It should be
noted that the intermediate signal y(t) is not accessible for
measurement.

The transfer function of the linear model dynamics is

Y (s) =
k1 k2 k3 α

3

(s+ k1 α)(s+ k2 α)(s+ k3 α)
U(s), (1)

where Y (s) is the Laplace transform of the continuous-
time output y(t) of the linear dynamic part of the model
and U(s) is the Laplace transform of the input signal u(t).
The latter is nonnegative and bounded, i.e. 0 6 u(t) 6
umax.

The constants ki, {i = 1, 2, 3} are positive, and α [min−1]
> 0 is the patient-dependent parameter in the linear block.
In the analysis that follows, the values chosen in Silva
(2011), k1 = 1, k2 = 4 and k3 = 10 are assumed.

The effect of the drug is quantified by the measured NMB
y(t) [%] and modeled by the Hill function as

y(t) =
100Cγ50

Cγ50 + y(t)γ
, (2)

where γ (adimensional) is the parameter to be identified in
the nonlinear block; y(t) is the output of the nonlinearity,
y(t) is the continuous-time output of the linear dynamic
part of the model (1), and C50 [µg kg−1min−1] is a
normalizing constant that is equal to 3.2435 in simulations.

In order to implement the model structure of (1), (2) in the
estimation algorithms, the continuous-time representation
expressed by (1) was sampled using a zero-order hold
method, Åström and Wittenmark (1984). The discrete-
time model becomes

xk+1 = Φ(α)xk + Γ(α)uk, (3)

yk =C(α)xk,

where

Φ(α) = eA(α)h, (4)

Γ(α) =

∫ h

0

eA(α)s dsB(α), (5)

and uk ∈ R is the input (piecewise constant atracurium
dose), xk ∈ R3×1 is the discrete-time state-vector in
a minimal state-space representation, yk ∈ R is the
discrete-time output of the linear block, Φ(α) ∈ R3×3

and Γ(α) ∈ R3×1 are the sampled system matrices, and
A(α) ∈ R3×3 and B(α) ∈ R3×1 are the continuous-time
state-space system matrices. The subscript (·)k denotes
the kth sample. Due to the fact that, in the surgery
environment, NMB data are monitored and acquired every
20 seconds to ensure that all the nerve fibers are recruited
every time an electrical stimulation is performed, the zero-
order hold method is applied using h = 1/3 min−1.

The sampling does not affect the nonlinear block, hence
(2) can be used as it is. The model output is then given
by:

yk =
100Cγ50
Cγ50 + yγk

. (6)

To enable the estimation of the model parameters, a
coupled identification model is defined. The model merges
the sampled model of (3) and (6) with a random walk
model for the parameter estimates, Söderström and Stoica
(1989). The resulting augmented state vector (denoted by
x) becomes

xk =
[
xTk αk γk

]T
. (7)

Using (7), the extended state-space model is the following:

xk+1 =

[
Φ(αk) 03×2
02×3 I

][xk
αk
γk

]
+

[
Γ(αk)
02×1

]
uk + vk

≡ f(xk, uk) + vk, (8)

yk =
100Cγk50

Cγk50 + (C(αk)xk)
γk + ek

≡ h(xk) + ek , (9)
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where vk ∈ R5 and ek ∈ R are white zero-mean Gaussian
noise processes, with the probability density functions
denoted by pv(v) and pe(e), respectively.

3. ESTIMATION ALGORITHMS

The EKF and the PF are two widely used algorithms for
nonlinear state estimation problems.

The EKF builds on the idea of adapting Kalman filtering
to nonlinear models. At each time step, the filter gain is
computed by linearizing the nonlinear model around the
previous state estimates. Unlike the Kalman filter, the
EKF is not an optimal filter and assumes that both the
process and sensor noises are Gaussian.

The PF uses Monte Carlo simulation to obtain a sample
from the posterior distribution, from which the state esti-
mate can be extracted. It provides a general framework
for estimation in nonlinear non-Gaussian systems. The
PF does not make any approximations to the underlying
model, but yields an approximation to the true solution
of the filtering problem. The approximation can be made
arbitrarily accurate by increasing the number of particles,
but comes with the cost of an increasing computational
burden, that is the main drawback of the method. How-
ever, the PF can be parallelized on e.g. multicore comput-
ers with linear speedup in the number of cores Rosen et al.
(2010), Rosen and Medvedev (2013).

3.1 Extended Kalman filter (EKF)

The EKF assumes that vk and ek in (8) and (9) are
mutually independent Gaussian white noise sequences
with zero mean and the covariances Q and R, respectively.
The algorithm may hence be summarized as follows (cf.
e.g. Söderström (2002)):

Hk =
∂h(x)

∂x

∣∣∣∣
x=x̂k|k−1

Kk = Pk|k−1H
T
k [HkPk|k−1H

T
k +R]−1

x̂k|k = x̂k|k−1 +Kk[yk − h(x̂k|k−1)]

Pk|k = Pk|k−1 −KkHkPk|k−1

x̂k+1|k = f(x̂k|k, uk)

Fk =
∂f(x, uk)

∂x

∣∣∣∣
x=x̂k|k

(10)

Pk+1|k = FkPk|kF
T
k +Q.

In this case, the linearization of f(xk, uk) and h(xk) from
(8) and (9) was performed analytically. The formulas for
Fk and Hk are omitted here for brevity.

3.2 Particle filter (PF)

For the present application, the commonly used sampling
importance resampling (SIR) PF was implemented. Let
x(i) denote a particle, w(i) the corresponding weight, and
N the number of particles. Then, following Ristic et al.
(2004), the estimation algorithm is

x̃
(i)
k+1 = f(x

(i)
k , uk) + v

(i)
k

w̃
(i)
k+1 =w

(i)
k pe(yk − h(x̃

(i)
k , uk)) (11)

w
(i)
k+1 = w̃

(i)
k+1/

N∑
j=1

w̃
(j)
k+1

x̂k+1 =

N∑
j=1

w
(j)
k+1x

(j)
k+1.

In the three first equations above, i ranges over 1, 2, .., N ,

and v
(i)
k is a draw from pv(v). The particles are then

resampled, via a bootstrapping procedure, by drawing

N new particles {x(i)k+1}Ni , with replacement such that

Pr(x
(i)
k+1 = x̃

(i)
k+1) = w

(i)
k+1, where Pr(·) is the probability

operator, and the weights are set to w
(i)
k+1 = 1/N .

3.3 Tuning

The EKF and the PF with 4 × 104 particles were tuned
individually over a synthetic database (see Section 5)
aiming at the best performance in terms of convergence
speed and bias with reasonable output filtering. For the
sake of evaluation consistency, this tuning was used for all
simulations in this paper. Notably, the initial covariance
matrix of the EKF was not increased further, which would
result in a reduced settling time of the estimates. This is
because, with a more aggressive tuning, the estimates of
the nonlinear parameter γ diverged, in some cases, during
the initial transient.

The tuned covariances matrices for the EKF are as follows:

P1|0 = diag
(
10−4 10−4 10−4 10−4 100

)
,

Q = diag
(
100 100 100 10−6 10−1

)
, (12)

R = 102,

where diag(·) denotes a diagonal matrix with the specified
elements of the main diagonal.

The tuned covariance matrices for the PF are as follows:

P1|0 = diag
(
10−4 10−4 10−4 10−2 100

)
,

Q = diag
(
10−3 10−3 10−3 10−8 10−3

)
, (13)

R = 0.7.

The initial estimates of the parameters were calculated as
the mean over the synthetic database (see Section 4.1), i.e.
0.0378 for α and 2.8338 for γ.

4. DATA SETS AND PERFORMANCE EVALUATION
METRICS

The two data sets and the metrics used for the performance
evaluation of the EKF and the PF are described below.

4.1 Synthetic Data

Synthetic data were obtained by simulating the system
given by (1) and (2) with the parameters database of 48
cases in Rocha et al. (2013), to assess the convergence
properties in terms of bias and settling time, as well as the
tracking properties of both algorithms. The parameter sets
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of
(
α(i), γ(i)

)
, {i = 1, . . . , 48} were initially obtained by a

prediction error method, as explained in Silva (2011), using
input-output real data collected in PID controlled closed-
loop NMB and further optimized in Rocha et al. (2013).
The input (i.e. drug dose) used to generate the 48 synthetic
data sets was the same as the one administered in the 48
real cases to guarantee that the excitatory properties of
the real input signals are preserved.

Convergence properties: In order to assess the conver-
gence properties in terms of bias and settling time of both
the EKF and the PF, the model parameters α and γ were
kept constant during the whole simulation.

The settling time for an estimate θ̂k of a scalar parameter
θ is here defined as the time ts = ksh, where ks is the
smallest value for which

max
k≥ks

θ̂k − min
k≥ks

θ̂k ≤ K (14)

is satisfied, i.e. the smallest ks for which the signal will
be confined to a corridor of width K, for k larger than or
equal to ks. If the signal settles, the bias in the estimate
is defined as

bθ = θ − 1

N∗ − ks

N∗∑
k=ks

θ̂k , (15)

where N∗ is the number of samples from ks to the end of
the case being evaluated.

Tracking properties: In order to assess the tracking
properties of both algorithms, the true value of γ for the
model simulation is made to evolve following a sigmoidal
decay of 20% after minute 50, i.e. time step k0 = 150,
according to

γk =


ρ , k ≤ k0,

ρ

(
1− 0.2

1

1 + ( k0
k−k0 )3

)
, k > k0,

(16)

where ρ = γ(i) for case i. This is to simulate slow drifts in
the patients’ dynamics that might occur during a general
anesthesia episode. The parameter in the nonlinear block
is chosen for this test over the parameter in the linear one
(i.e. α) to highlight the nonlinear estimation performance
of the evaluated algorithms.

Distance to bifurcation: Following Zhusubaliyev et al.
(2013), the condition for the birth of sustained nonlinear
oscillations of the PID closed-loop system is given by
a surface that is nonlinear in the model parameter α
and the controller gains R and L, as defined in the
Ziegler-Nichols tuning procedure. The choice of this tuning
procedure follows the work of Mendonça and Lago (1998).
The 48 models in the synthetic database were used to
obtain the

(
R(i), L(i)

)
, {i = 1, . . . , 48} via Ziegler-Nichols.

Considering a nominal model i, the nominal controller
gains

(
R(i), L(i)

)
define a point in the (R,L) 2-D space.

The parameter estimates α̂k from the PF estimation give
rise to different bifurcation conditions that, in the case
of a fixed α̂k at each sampling time k, degenerate to
lines in the (R,L) space. To assess how close the nominal
model defined by (Rj , Lj) is to the bifurcation condition at

each time instant, the minimum of the Euclidean distance
between this point and the bifurcation line was numerically
calculated by a grid search.

4.2 Real data

The database of real cases includes 48 datasets collected
from patients subject to PID-controlled administration of
the muscle relaxant atracurium under general anesthesia.
The demographics of the patients is 25 Male, 22 Female,
69±11 kg ([50,94]), 59±15 years ([18,92]). Between brack-
ets are the [min,max] values of the presented data. It
should be noted that the demographic data for one patient
in the 48 cases database were not registered by the time
the cases were collected. A detailed explanation on how
this data set was obtained can be found in Rocha et al.
(2013).

Real data were used to validate the conclusions drawn
from the synthetic data experiments. The output errors
obtained in the EKF and PF filtering were compared for
different phases of anesthesia reflected in the data set.
Similarly to Mendonça and Lago (1998), four phases were
defined. Phase 1, 0 < t ≤ 10 min, covers the induction,
where the system is driven by the bolus of 500µg/kg that is
manually administrated at time zero. Phase 2, 10 < t ≤ 30
min, comprises an intermediate phase where only a P-
controller was used. Phase 3, 30 < t ≤ 75 min, starts when
the recovery from the intial bolus is supposed to take place,
and ends when the reference reaches its final value of 10%.
Phase 4, 75 < t ≤ tend, corresponds to steady-state. In the
real cases, the system was PID-controlled during phase 3
and 4, i.e. for t ≥ 30 min.

5. RESULTS

This section presents the results of the EKF and the PF
estimation of the nonlinear Wiener model for the NMB
described in Section 2.

5.1 Synthetic data

Figure 2 shows the parameter estimates of case number 34
in the synthetic database. The estimates obtained by the
PF, in solid blue line, converge faster than the estimates
obtained by the EKF, in dashed green line, and exhibit
less bias, as defined in (15). This behavior persists in most
of the cases in the database. Figure 3 illustrates this by
showing the true α and γ vs. bias (15) in the estimates
for the PF and EKF for the 48 cases in the database. It is
hence evident that the PF, in general, yields estimates with
less bias than the EKF, this being especially prominent
for large values of α and γ. The presence of a higher
bias in the estimates of the EKF for higher values of the
nominal parameters may be explained by the fact that the
gain of the EKF is calculated from a linearized version
of the nonlinear Wiener model while the PF performs no
linearization at all.

Figure 4 depicts the estimates of γ for a case where
the true value, plotted in dotted red, is made to change
obeying a sigmoidal function after minute 50, according
to (16). The estimates obtained by the EKF are plotted in
dashed green, while the estimates obtained by the PF are

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9261



0 20 40 60 80 100 120
0.025

0.03

0.035

0.04

0.045

Time [min]

α̂

 

 

20 40 60 80 100 120

1.5

2

2.5

3

3.5

Time (min)

γ̂

 

 

PF
EKF
True

PF
EKF
True

Fig. 2. Estimated α (upper plot) and γ (bottom plot)
for the EKF (in dashed green line) and the PF (in
solid blue line) for case number 34 in the synthetic
database. The points where the estimates settle, ac-
cording to (14), are pointed out by the arrows. The
true parameter values are plotted in dotted red line.
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Fig. 3. The true α and γ vs. estimation bias bα and bγ ,
respectively, for the 48 cases in the synthetic database.
The results for the EKF are plotted in green circles
and the results for the PF are plotted in blue crosses.

plotted in solid blue. This is a case representative of the
behavior of the estimates in all the 48 cases in the synthetic
database. As in the case of time-invariant parameters,
the EKF presents a higher bias at tracking the change
than the PF. This higher bias might be explained by the
fact that the PF possesses faster error dynamics than
the EKF. Since the simulations are limited by the length
of the input signals that were administered in the real
general anesthesia scenarios, as mentioned in Section 4.1,
the simulations could not be run for longer time in order
to assess whether the bias in the EKF estimate would be
reduced with time.

5.2 Real data

Keeping the tuning unchanged, the EKF and the PF
were applied to the 48 cases of real input-output data.
Figure 5 shows the estimates of α and γ over time for
case number 39 in the real database. Due to the fact
that the input-output data used to perform the estimation
came from a real case, the true parameter values are not

20 40 60 80 100 120

1.6

1.8

2

2.2

2.4

2.6

Time (min)

γ̂
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Fig. 4. Estimated γ for the EKF in dashed green line,
and for the PF in solid blue line. At minute 50 the
true γ, in dotted red line, drifts from its initial value
according to (16).
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Fig. 5. Estimated model parameters for the EKF, in
dashed green, and the PF, in solid blue, over time
for a case number 39 in the real database.

plotted in Fig. 5. The higher variance of the estimates of
γ when compared to that of the estimates of α supports
the choice of only assessing the tracking performance of
both estimation techniques with respect to changes in γ,
as argued in Section 4.1.2. The intra-patient variability is
hence mostly due to changes in the nonlinear parameter
describing the PD part of the model.

Figure 6 shows the mean of the absolute value of the
output error with the 1σ confidence interval over all 48
cases. Numerical values of the output errors are also
given in Table 1 for the four different phases described
in Section 4.2. The general result is that the PF exhibits
a much lower output error during the induction phase,
i.e. for 0 < t < 10 min, when compared with the output
error that is obtained with the EKF estimates. For 10 ≤
t < 30 min, the EKF provides slightly better output
errors, possibly due to less prominent nonlinear dynamics
exhibited in this interval. For t ≥ 30 min, the performance
is similar for the EKF and the PF. The better performance
of the PF during the highly nonlinear induction phase is
likely due to that the PF is designed to handle nonlinear
systems without recourse to linearization.

Given the fact that the PF outperforms the EKF in terms
of bias, tracking and convergence time, the intra-patient
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Fig. 6. The mean µekfe and µpfe of the absolute value of
output error over the 48 cases for the EKF and PF,
respectively. The 1σ confidence intervals are given by
the transparent areas.

Table 1. Output error of estimation for the
EKF and the PF during the four phases de-

fined in Section 4.2.

EKF PF

Phase mean stdv [min,max] mean stdv [min,max]

1 4.16 0.62 [2.58,5.42] 0.95 0.47 [0.24,2.34]
2 0.49 0.17 [0.16,0.85] 0.58 0.39 [0.14,1.97]
3 0.31 0.16 [0.08,0.98] 0.30 0.16 [0.13,0.77]
4 0.25 0.16 [0.04,0.97] 0.25 0.13 [0.07 0.76]

Table 2. Mean, standard deviation and min-
max values for the variability in % of α̂, γ̂,
in the real database, during the maintenance

phase (t > 30 min).

mean stdv [min,max]

var(α̂) 0.007 0.0032 [0.0026,0.0145]
var(γ̂) 0.086 0.037 [0.035,0.187]

variability was only assessed using the estimates provided
by the PF.

Table 2 shows the relative mean, standard deviation and
min-max values of the parameter estimates in % for t > 30
min, i.e. during the maintenance phase. The mean value of
the variance of the estimates for the nonlinear parameter γ
is higher than for the linear parameter α which observation
supports the claim that the linear dynamics (PK) are
the most conserved among patients, while the nonlinear
dynamics (PD) are the most different between patients.
These values should be taken into account when designing
robust controllers for the administration of drugs for the
NMB.

In order to get some insight on the need of estimating
the model parameters throughout the whole surgery and,
consequently, the development of adaptive control strate-
gies, the system was simulated with the estimates of α and
γ obtained after induction (at time t=10 min), and the
estimates obtained from last time step of the estimation
(at t = tend). The mean and standard deviation over
the 48 cases of the output errors are shown in Tab. 3.
This result shows that, from minute 10 to the end of the
surgery, the changes in the model parameters affect the
goodness of fit of the simulated model to the real data. It is
therefore plausible that adaptive controllers would perform
better during maintenance phase than non-adaptive ones,
especially under longer surgical interventions.

Table 3. Mean, standard deviation of simula-

tion output error, with the parameters θ̂t =
{α̂t, γ̂t} obtained at t = 10 min, and t = tend

mean stdv

θ̂10 2.32 0.13

θ̂tend 4.13 0.22
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be
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Fig. 7. Histogram of the distance to bifurcation, at time t =
40 min, over the 48 cases in the synthetic database,
assuming PID control. Note the log-scale on the x-
axis.

Given the time-varying nature of the patient dynamics, in
a PID control setup, and for safety reasons, it is important
to judge whether the system is driven into a parameter
region where a bifurcation might lead to nonlinear oscilla-
tions. The distance to bifurcation is calculated according
to Zhusubaliyev et al. (2013) for the 48 cases at t = 40
min and presented in a histogram in Fig. 7. The histogram
is representative for all time instants t > 10 min, as the
distance depends only on α̂ which typically settles before
t = 10 min. It can be seen that most of the cases are
further than 10−2 from the critical surface. Three cases
are nevertheless closer to the surface, which may be of
concern in real practice.

It should be noted that the better performance of the
PF comes with a higher computational cost than that of
the EKF. For this application the EKF and PF require
about 103 and 106 floating point operations per iteration
respectively. For an unoptimized Matlab implementations
the EKF and PF was clocked to run one iteration of the
filtering in 0.39 ms and 1.34 s. For the implementations in
hand, the execution time for the PF is hence four orders
of magnitude greater than the EKF. In this application,
and since the sampling period is 20 s, this difference in
execution time is not an issue.

6. CONCLUSIONS

The recursive estimation of a parsimonious nonlinear
Wiener model for the NMB in closed-loop anaesthesia is
studied on synthetic and real datasets. It is shown that the
PF outperforms the EKF at estimating the model param-
eters when it comes to convergence rate, bias, and tracking
capability. Using the parameter estimates obtained by the
PF, the intra-patient variability of the model is quantified.
The results strongly indicate that the variability in the
nonlinear pharmaocodynamic part of the model is higher
than that of the linear part. It is also demonstrated that
the accurate parameter estimates provided by the PF can

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9263



under the PID-feedback be utilized for calculating the dis-
tance to a nonlinear oscillation and therefore characterize
robustness of the closed-loop system in real time.
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Söderström, T. (2002). Discrete-time Stochastic Systems.
Springer-Verlag, London, UK.
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