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Abstract: The paper presents a fault tolerance control strategy for distributed multi-robot
systems. The proposed approach is based on a distributed controller-observer architecture that
allows each robot to estimate the global system state using local communication. We derive
residual dynamics that allows each robot to detect and isolate faults of other robots, even if
they are not directly connected. Then, maximum time values to detect the faults are used to
implement a fault tolerant control strategy that, in case of fault of one of the robots, allows to
reconfigure the team. Numerical simulation results are provided to validate the approach.

1. INTRODUCTION

Networked robotic systems have been widely investigated
in the last decade due to their flexibility, large applica-
tion domain and their capability to accomplish complex
missions not possible with a single unit. However, when
considering more units, the probability of occurrence of
a fault of one of the robots increases accordingly and,
to accomplish the assigned mission even with a reduced
number of agents, a proper strategy to make the system
tolerant to faults is required. Such a strategy requires, at
first, the adoption of a Fault Detection and Isolation (FDI)
schema to detect the occurrence of a fault and identify
the faulty robot; then, a Fault Tolerant Control (FTC)
strategy is required to make the system able to accomplish
the mission by handling the faults.

Despite several FDI and FTC approaches have been pre-
sented for single unit systems, very few approaches have
been designed for the case of decentralized multi-robot
systems. In Wang et al. [2009] a FDI scheme for networked
systems is presented where a centralized station collects
information about actuators and sensors of the robots, and
detects and isolates faults over the network. A compari-
son between a centralized and decentralized architectures
is presented in Meskin and Khorasani [2009], where the
diagnosis problem is formulated in terms of isolability
index for a given family of fault signatures. Works Fer-
rari et al. [2009] and Zhang and Zhang [2012] present
a bank of local adaptive observers where each observer
uses only measurements and information from neighbor-
ing subsystems and allows to detect and isolate faults
in interconnected subsystems. Unknown Input Observers
(UIOs) are proposed in Shames et al. [2011] for the FDI
of networks of interconnected systems controlled with a

1 The research leading to these results has received funding from
the Italian Government, under Grant FIRB - Futuro in ricerca 2008
n. RBFR08QWUV (project NECTAR).

decentralized control law. Most of the proposed approaches
allow a healthy unit to detect and isolate the faulty ones
only if the latter are directly connected to the former, i.e.,
they can communicate or sense each other. This limitation
prevents these solutions from being used in case the control
law of each robot depends on the state of all the others.
In this case, it is required all robots are able to detect
and isolate faulty units in order to re-arrange their control
laws to accommodate the fault. Voulgaris and Jiang [2004]
find conditions so that a controller, distributed under n
nodes, guarantees pre-specified performance levels taking
into account nodal failures and communication noise. In
Xiao-Zheng and Guang-Hong [2009], a class of distributed
state feedback controllers is constructed to automatically
compensate the fault and the disturbance effects that are
adaptively estimated. In Panagi and Polycarpou [2011],
multiple faults occurring in local subsystem dynamics and
the interconnections between the subsystems are compen-
sated via adaptive laws. In Fonti et al. [2011], a FDI
strategy is designed for fleet of underwater gliders where,
in presence of a faulty vehicle, the formation automatically
rearranges if the recovery is not possible.

The approach proposed in this paper originates from a
distributed controller-observer architecture derived in An-
tonelli et al. [2011, 2013b,a] and that allows formation con-
trol of a multi-robot system by making each robot of the
team able to estimate the global system state using local
communication. In Arrichiello et al. [2013], we developed
a FDI schema for the above mentioned controller-observer
schema that allows each robot to detect and isolate faults
on board of other robots. Here, we analytically derive the
residual dynamics that allows each robot to detect and
isolate faults on board of other robots, and we design a
proper fault-tolerance strategy that consists in reducing
the observer size by excluding the faulty vehicles from
the team. Numerical simulation results are provided to
validate the approach.
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2. DECENTRALIZED OBSERVER-CONTROLLER

Let us consider a system composed of N robots, where
the ith robot’s state is denoted by xi ∈ IRn. Each robot is
characterized by a single-integrator dynamics

ẋi = ui + φi, (1)

where ui ∈ IRn is the input vector and φi ∈ IRn is an addi-
tive fault term that is zero in normal operating conditions.

The collective state is given by x =
[

xT
1 . . . xT

N

]T ∈ IRNn

and the collective dynamics is then expressed as

ẋ = u+ φ, (2)

where u =
[

uT
1 . . . uT

N

]T
and φ =

[

φT
1 . . . φT

N

]T
are

respectively the collective input and fault vectors.

It is supposed that each agent has access to a noisy
measure xi,m of its own state:

xi,m = xi + ηi , (3)

where ηi ∈ IRn is the additive noise, assumed norm-
bounded by a positive scalar, η, i.e.,

‖ηi‖ ≤ η ∀i = 1, 2, . . . , N. (4)

The collective noisy measure of the system state is

xm = x+ η , (5)

where η = [ηT
1 . . .ηT

N ]T ∈ IRNn is the collective noise.

The information exchange between the robots is described
by a graph G(E ,V) characterized by its topology, i.e.,
the set V of the indexes labeling the N vertices (nodes),
the set of edges (arcs) E = V × V connecting the nodes,
and its L(N × N) Laplacian matrix. We assume that
the i th robot receives information from a reduced set of
neighbors Ni = {j ∈ V : (j, i) ∈ E}, and it does not know
the overall topology. Some properties and definitions about
the communication graphs, used in the following, are listed
in Antonelli et al. [2013b], while more details can be found
in Mesbahi and Egerstedt [2010].

Each vehicle runs a local observer, that uses only local
information and a suitable vector from neighbour vehicles,
in order to estimate the overall team state [Arrichiello et al.
2013]. It is worth noting that the same observer is adopted
both for control purposes and for the FDI strategy without
increasing the information exchange burden.

Let Γ i be a (n×Nn) selection matrix

Γ i = {On · · · In
︸︷︷︸

i th node

· · · On}

that allows to extract the components of the i th robot
from a collective vector and let Π i be the (Nn × Nn)

matrix Π i = ΓT
i Γ i. The estimate of the collective state

x is computed by the i th robot by using the observer

i ˙̂x = ko




∑

j∈Ni

(
j ŷ − iŷ

)
+Π i

(
ym − iŷ

)



+ iû, (6)

where ko > 0 is a scalar gain; ym = xm −
∫ t

t0
u(τ)dτ , and

iŷ = ix̂−
∫ t

t0

iû(τ)dτ , where t0 is the initial time instant;
iû is the estimate of the collective input elaborated by the
i th robot on the base of its estimate of the collective state
and of the control law; clearly, it is ui = Γ i

iû.
It is worth noticing that (6) depends only on local infor-
mation available to vehicle i, and that each observer is

updated using only the estimates j ŷ received from direct
neighbors. Thus, j ŷ ∈ IRNn is the only information that
is required to be exchanged among neighbors.

The collective estimation dynamics, in the absence of
faults (φi = 0, i = 1, 2, . . . , N), is

˙̂x⋆ = −koL
⋆ŷ

⋆ + koΠ
⋆ỹ⋆ + koΠ

⋆η⋆ + û
⋆
, (7)

where L⋆ = L ⊗ INn, with ⊗ denoting the Kronecker
product operator and

Π⋆ = diag {[Π1 . . . ΠN ]} , (8)

x̂
⋆=[1x̂T. . .N x̂

T]T∈ IRN2n, ŷ⋆ = [1ŷT. . .N ŷ
T]T∈ IRN2n,

û
⋆=
[
1û(t, 1x̂). . .N û(t,N x̂)

]
∈IRN2n, η⋆ = 1N ⊗ η and

ỹ⋆ = 1N ⊗ y − ŷ
⋆ ∈ IRN2n with y = x−

∫ t

t0
u(τ)dτ .

2.1 The control objective and the feedback control law

The control objective and feedback control law considered
in this work are inherited from Antonelli et al. [2011,
2013a,b]; here, we recall their essential concepts to make
this paper self-contained.

The control objective is to make the team centroid and the
relative formation follow desired time-varying references.
The two tasks are represented via the task functions:

• the centroid of the system:

σ1(x) =
1

N

N∑

i=1

xi = J1x, (9)

where J1 ∈ IRn×Nn is the Jacobian of the task.
• the formation of the system, expressed as an assigned
set of relative displacement between the robots:

σ2(x)=
[

(x2 − x1)
T. . .(xN − xN−1)

T
]T
=J2x, (10)

where J2 ∈ IR(N−1)n×Nn is the Jacobian of the task.

Let us combine both the tasks in a single vector σ ∈ IRNn

σ =

[
σ1

σ2

]

=

[
J1

J2

]

x = Jx, σ̇ = Jẋ; (11)

it can be easily shown that matrix J ∈ IRNn×Nn is non
singular and, then, invertible.

Each robot, using its estimate ix̂, computes an estimate
of the collective input via the feedback control law:

iû = iû(t, ix̂) = J†
[
σ̇d + kc

iσ̃(ix̂)
]
, (12)

where

iσ̃(ix̂) =

[
iσ̃1(

ix̂)
iσ̃2(

ix̂)

]

=

[
σ1,d − iσ1(

ix̂)
σ2,d − iσ2(

ix̂)

]

,

is the estimate of the task error σ̃ = [σ̃1(x)
T σ̃2(x)

T]T.
The input vector ui to robot i is computed selecting the
relative component from iû, i.e., ui =

iûi = Γ i
iû.

2.2 Convergence of the observer-controller schema

First of all, the exponentially convergence to the origin of
ỹ⋆, in absence of error and measurement noise, is proven
by the following theorem.

Theorem 1. In the presence of a directed strongly con-
nected communication graph (or connected undirected
graph) and in the absence of faults (φi = 0, i = 1, 2, . . . , N)
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and measurement noise (i.e., ηi = 0, i = 1, 2, . . . , N , and
y = ym), with the update law in eq. (7), ỹ⋆ is exponen-
tially convergent to the origin.

proof 1. The proof can be found in Arrichiello et al. [2013].

In the presence of bounded measurement noise, the term
koΠ

⋆η⋆ in (7) can be viewed as a non-vanishing bounded
perturbation whose upper bound is given by

‖koΠ⋆η⋆‖ ≤ ‖koη‖ ≤ ko
√
Nη. (13)

The exponential stability of the origin of the nominal
system ensures that the solutions of the perturbed system
are globally uniformly ultimately bounded (see Lemma 9.2
p.347 in Khalil [2002]).

Theorem 2. In the presence of a directed strongly con-
nected communication graph (or connected undirected
graph) and in the absence of faults and measurement noise
(i.e., φi = 0,ηi = 0, i = 1, 2, . . . , N), with the update law
in eq. (7), the stacked vector of the collective state estima-
tion errors, x̃⋆, is exponentially convergent to the origin.

proof 2. The proof can be found in Arrichiello et al. [2013].

Again, in the presence of bounded measurement noise,
by resorting to the Lemma 9.2 in Khalil [2002], the
exponential stability of the origin of the nominal system
ensures that the solutions of the perturbed system are
globally uniformly ultimately bounded.

Remark 2.1. In Antonelli et al. [2011] has been proven
that the exponential stability of the observer leads also
to the exponential stability of the task errors σ̃l (l = 1, 2)
with the control law in eq. (12).

3. FAULT DETECTION AND ISOLATION

In order to detect the occurrence of a fault, let us define for
the robot ith (i = 1, . . . , N), the following residual vector

ir =
∑

j∈Ni

(
j ŷ − iŷ

)
+Πi(ym − ŷi); (14)

the above quantity does not require additional information
exchange since it makes use of the same quantity used in
the local state observer. The vector ir can be seen as a
stacked vector, i.e., ir =

[
irT

1 ,
irT

2 , . . . ,
irT

N

]T ∈ IRNn,

where each component irk ∈ IRn represents the residual
computed by robot i relative to robot k, and it can be
expressed as

irk = (di +
iδk)

iỹk +
∑

j∈Ni

j ỹk +
iδkηk, (15)

where iδk is 1 if i = k, 0 otherwise, and di is the dimension
of Ni (i.e., the indegree of node i).

The collective residual vector r⋆=
[
1rT . . . NrT

]T∈IRN2n

can be expressed as

r⋆= L̃
⋆
ỹ⋆ +Π⋆η⋆. (16)

From Theorem 1 and (16), it is straightforward to derive
that, in the absence of faults and measurement noise,
r⋆ converges exponentially to zero, while, in presence of
bounded noise, the collective residual is bounded as well.

3.1 Adaptive thresholds

In the presence of nonzero initial observer estimation
errors and measurement noise, the residuals in eq. (14)

can be different from zero even in the absence of faults. To
avoid the occurrence of false alarms, adaptive thresholds
can be defined and, then, the decision about the occurrence
of a fault is made when a residual exceeds such thresholds.

In order to choose the thresholds, let us consider the

vector ỹ⋆
k =

[
1ỹT

k ,
2ỹT

k , . . . ,
N ỹT

k

]T ∈ IRNn, collecting
the estimation errors of yk computed by the observers of
each robot. It can be easily shown that it holds:

ỹ⋆
k = diag{Γ k, Γ k, . . . , Γ k}ỹ⋆ = Γ ⋆

kỹ
⋆.

From Arrichiello et al. [2013], the dynamics of ỹ⋆
k is

˙̃y⋆
k = Γ ⋆

k
˙̃y⋆ = −koΓ

⋆
kL̃

⋆
ỹ⋆ − koΓ

⋆
kΠ

⋆η⋆ + Γ ⋆
kφ

⋆

=−koL̃
⋆

kỹ
⋆
k − koΠkη + 1N ⊗ φk. (17)

where L̃
⋆

k = L ⊗ In + Πk has all its eigenvalues in the
right half-plane when the communication graph is strongly
connected (this can be proven analogously to the case of

L̃
⋆
). Thus, system (17) is asymptotically stable and its

solution is

ỹ⋆
k(t) = e−

˜L
⋆

ktỹ⋆
k(0) + (18)

+

∫ t

0

e−
˜L

⋆

k(t−τ) (1N ⊗ φk(τ) − koΠkη(τ)) dτ .

Since L̃
⋆

k is Hurwitz, there exists a constant λ > 0 such as

‖e−
˜L

⋆

kt‖ ≤ e−λt, (19)

therefore, in the absence of faults, the following bound for
ỹ⋆
k(t) can be derived

‖ỹ⋆
k(t)‖ ≤

∥
∥
∥
∥
e−

˜L
⋆

ktỹ⋆
k(0)

∥
∥
∥
∥
+

∫ t

0

∥
∥
∥
∥
e−

˜L
⋆

k(t−τ)koΠkη(τ)

∥
∥
∥
∥
dτ

≤ ‖ỹ⋆
k(0)‖ e−λt +

√
Nkoη

λ

(
1− e−λt

)
. (20)

By virtue of (15) the following chain of inequalities holds

∥
∥irk

∥
∥≤ (di +

iδk)
∥
∥iỹk

∥
∥+ di ‖ỹ⋆

k‖+ iδk ‖ηk‖
≤ (2di +

iδk) ‖ỹ⋆
k‖+ iδkη. (21)

Thus, on the basis of (20) and (21), the following time-
varying threshold iµk can be defined for the residual irk

iµk(t) = (2di +
iδk) ‖ỹ⋆

k(0)‖ e−λt + (22)

+

[

(2di +
iδk)

√
Nko

λ

(
1− e−λt

)
+ iδk

]

η.

The threshold calculation requires a reliable estimate of
‖ỹ⋆

k(0)‖ and λ; the first one can be estimated on the basis
of approximate information about the initial conditions of
the system (e.g., the vehicles start from a known bounded
area), while the latter can be estimated as the minimum

eigenvalue of the matrix L̃
⋆

k computed by considering the
worst case for the Laplacian matrix.

3.2 Residuals in the presence of faults

Let us consider a fault occurring on the lth robot at time

tf > 0, namely φ =
[

0T . . .φT
l . . .0T

]T

.
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In order to analyze the influence of the fault on the
residuals, it is worth deriving the dynamics of the vector
iỹk (∀i, k ∈ {1, . . . , N}) in (15). From (17), it is

i ˙̃yk=−i̺kIn
iỹk + ko

∑

h∈Ni

hỹk − ko
iδkηk +

lδkφl. (23)

where i̺k = ko(di +
iδk).

Therefore, the expression of iỹk is

iỹk(t) =
iχk(t)

iỹk(0) +ko

∫ t

0

iχk(t−τ)
∑

h∈Ni

hỹkdτ + (24)

−ko

∫ t

0

iχk(t−τ)iδkηkdτ +

∫ t

tf

iχk(t−τ)lδkφldτ,

where iχk(t) = exp(−i̺kInt).

By folding (24) in (15), it can be argued that all the
residuals irk for all i = 1, . . . , N , and for all k 6= l (i.e.,
all the residuals referred to a robot different to the faulty
one) are insensitive to the fault since the last term in (24)
is null (lδk = 0). Therefore the fault φl, affecting the lth
robot, can be detected and isolated by the robot i if
{
∃t > tf : ‖irl(t)‖ > iµl(t)
∀k∈(1, . . . , N), k 6= l, ∀t>0, ‖irk(t)‖ ≤ iµk(t).

(25)

Moreover, from (24) and (15) it can be easily shown that
the residuals irl (∀i ∈ {1, . . . , N}) are affected by the fault
φl via the following term

if l = (di +
iδl)

∫ t

tf

iχl(t−τ)φldτ +
∑

j∈Ni

∫ t

tf

jχl(t−τ)φldτ

=

∫ t

tf



(di +
iδl)

iχl(t−τ) +
∑

j∈Ni

jχl(t−τ)



φldτ. (26)

By straightforward calculations, omitted for the sake of
brevity, the following sufficient detectability conditions can
be derived

∃t > tf :
∥
∥if l

∥
∥ ≥2 iµl(t). (27)

Remark 3.1. Since the residuals are decoupled in such a
way that the fault φl affects only the residuals irl, the
proposed scheme is effective also in the presence of multiple
faults affecting different robots.

4. FAULT RECOVERY STRATEGY

The presence of faulty robots might cause the mission fail-
ure. The developed FDI strategy allows to recognize these
abnormal situations and to elaborate a proper recovery
scheme. Different approaches could be adopted. In a first
solution, the faulty vehicle locally modifies the control
input in order to compensate the fault (φi in (1)), of
course it requires that the vehicle mobility is not com-
pletely compromised. In a more conservative solution, the
faulty vehicle is removed from the team, and the remaining
robots reorganize themselves in order to accomplish the
mission. A combination of the two strategies is possible
as well: once the fault has been detected and isolated, the
faulty vehicle has a certain amount of time to recover itself
and make the residuals return below the thresholds, after
this time, it is excluded from the team. In this paper, the
second solution is addressed.

4.1 Exclusion of the faulty vehicle

The exclusion of a faulty vehicle from the team requires
to resize the dimension of all the involved variables: in
particular, each healthy robot must resize the estimate
of the collective state (ix̂) and input (iû) as well as the
exchanged variable iŷ, whose dimensions become (N−1)n
instead of Nn.

The detection time instant t in (25) is, in general, dif-
ferent for each robot, since each robot detects the fault
asynchronously from the others. Thus, let us suppose that
the ith vehicle has detected a fault on robot lth (i.e.,∥
∥irl

∥
∥ > iµl) at time ti. Then, the ith vehicle resizes the

vector iŷ to be exchanged with its neighbors. If one or
more of these neighbors has not yet detected the fault,
they would receive a reduced size vector from the robot
i but they have not any information about the faulty
teammate, so they do not know which components have
to be removed from their collective state estimate. This
issue does not arise if the neighbors already know which
one is the faulty vehicle, therefore the idea is to allow a
vehicle to exchange a reduced size vector only when all
the other healthy teammates have detected and isolated
the fault. To this purpose, let us define the time itd as the
first instant at which

∥
∥irl

∥
∥ > iµl in (25), i.e.,

itd = min
t

∥
∥irl(t)

∥
∥ > iµl(t).

and let be i∆td = itd − tf as the time occurring from the
fault occurrence and its detection/isolation by vehicle ith.
Moreover, we define

∆d,max = max
i=1,...,N

i∆td (28)

as the maximum detection delay. It is obvious that if robot
i sends a reduced size vector starting from itd + ∆d,max,
all the neighbors have complete knowledge about the
faulty vehicle as well, and can resize their state estimate
accordingly. In sum, the resize of the team occurs after

tr = min
i

itd +∆d,max. (29)

Thus, the problem is how to get a reliable estimate of
∆d,max. The solution of this problem is described in detail
in the following section.

4.2 Estimate of the maximum detection delay

The estimate of ∆d,max in (28) can depend on the par-
ticular fault φ(t) occurred. In the following, the case of
instantaneous and constant fault is considered, then a
consideration is made for a more general class of faults.
To this aim, given the fault instant tf and a constant

fault φl(t) = φl affecting the lth robot, we are looking
for the time needed for condition (27) to be satisfied (in
the particular case,

∥
∥if l

∥
∥ ≥ iµl (i = 1, 2, . . . , N)).

In this case, the right-hand side of (26) can be written as

if l=
(di+

iδl)
i̺l

(
In−iχl(t−tf)

)
φl+
∑

j∈Ni

In−jχl(t−tf)
j̺l

φl.(30)

By taking into account that

iχl(t− tf ) = e(−
i̺kIn(t−tf )) = e(−

i̺k(t−tf ))In,

the following holds
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∥
∥if l

∥
∥=




(di+

iδl)
(

1−e−i̺k(t−tf )
)

i̺l
+
∑

j∈Ni

1−e−
j̺k(t−tf )

j̺l




∥
∥φl

∥
∥

≥
((

1− e−ko(t−tf )
)

ko
+

di
(
1− e−ko(t−tf )

)

koN

)

∥
∥φl

∥
∥

=
N + di

koN

∥
∥φl

∥
∥−

(
N + di

koN
ekotf

∥
∥φl

∥
∥

)

e−kot. (31)

Let us rearrange, now, the threshold in (22) as
iµl(t) = αe−λt + β , (32)

where

α = (2di +
iδk) ‖ỹ⋆

k(0)‖ −
(2di +

iδk)
√
Nkoη

λ
,

β =

(

(2di +
iδk)

√
Nko

λ
+ iδk

)

η.

Based on results in (31), condition (27) becomes

2αe−λt+

(
N + di

koN
ekotf

∥
∥φl

∥
∥

)

e−kot≤N + di

koN

∥
∥φl

∥
∥−2β;(33)

by defining γ = min{ko, λ} it is

2αe−λt+

(
N + di

koN
ekotf

∥
∥φl

∥
∥

)

e−kot≤
(

2α+
N + di

koN
ekotf

∥
∥φl

∥
∥

)

e−γt

≤ N + di

koN

∥
∥φl

∥
∥− 2β. (34)

Finally, the instant t in (27) is

itd ≥ − 1

γ
ln

N+di

koN

∥
∥φl

∥
∥− 2β

(

2α+ N+di

koN
ekotf

∥
∥φl

∥
∥

) , ∀ i (35)

and

∆d,i ≥ − 1

γ
ln

N+di

koN

∥
∥φl

∥
∥− 2β

(

2α+ N+di

koN
ekotf

∥
∥φl

∥
∥

) − tf .

It can be shown that ∆d,i monotonically decreases with
respect to di; thus, the detection time decreases with
respect to the in-degree (di). This agrees with the intu-
ition that the less the network is connected the less the
information flows through the network and more difficult
is the detection of a fault. Moreover, concerning tf , ∆d,i

reaches its maximum for tf = 0 (the initial instant); this
is in accordance with the fact that a fault in the initial
phase requires a larger time to be detected, because of the
larger value of the adaptive thresholds iµl in this phase.
In our analysis, the worst case is considered (di = 1,
tf = 0) for the computation of ∆d,max, i.e.,

∆d,max = − 1

γ
ln

N+1
koN

∥
∥φl

∥
∥− 2β

(

2α+ N+1
koN

∥
∥φl

∥
∥

) . (36)

Remark 4.1. Equation (34) provides also a sufficient con-
dition for a fault to be detected; in particular it is required:

∥
∥φl

∥
∥ ≥ 2

koN

N + di
β; (37)

since β linearly depends on the noise bound, η, the larger
the value of η, the larger

∥
∥φl

∥
∥ is required.

Remark 4.2. In the case of non constant faults, condition
(36) can still be used, since it still holds for any fault whose
absolute value is greater than φl for a time greater or equal
to the time needed for the fault to be detected (∆d,max).

5. NUMERICAL SIMULATIONS

A team of 5 robots (N = 5) moving in the plane (n = 2)
is commanded to track a time-varying centroid while
keeping a circular formation. Each vehicle implements
the observer-controller scheme presented in Section 2. In
particular, gains ko, kc in (6) and (12) were set to 5 and 3,
respectively. The measurement noise ηi in (3) is assumed
to be a normally distributed random vector with null
mean, uncorrelated components and standard deviation
of 0.03m. The network topology is fixed directed and
strongly connected. The desired trajectories of the cen-
troid, σ1,d(t) is time-varying, while the desired formation
σ2,d(t) is constant and it corresponds to a regular circular
formation around the centroid with radius 0.3m.
From instant tf = 60 s, one of the vehicles (the second
vehicle in our case) presents a constant fault given as::

φ2(t) =

{
0 if t < tf
[0.5 0.5]T if t ≥ tf .

(38)

Time ∆d,max in Section 4.1 was set to 6 s. After the
healthy vehicles have identified the faulty one, the latter
is excluded from the team. The remaining vehicles keep
tracking the same centroid while, for the formation, they
are required to assume again a regular circular formation
around the centroid with the same radius (0.3m).
Figure 1 shows the residual norms

∥
∥ir2

∥
∥ (i = 1, 2, . . . , N)

and the corresponding thresholds calculated by all the
vehicles of the team and relative to the faulty robot,
moreover, in each plot, it is also highlighted the instant tf
in which the fault occurs, the instant itd in which the fault
is detected and identified by vehicle i (red vertical line),
and the time tr in (29) in which the team is effectively
resized. It is worth noticing that, after the team resize, all
the residuals except

∥
∥2r2

∥
∥, return below their thresholds

since the data from the faulty robot are not fed to the
resized observers. The residuals relative to an healthy
robot are not shown for the sake of brevity; they remain
always below the thresholds, therefore the fault is correctly
isolated on the second vehicle.

In Figure 2 the team trajectories are plotted. In particular,
the faulty vehicle (before and after the fault) is represented
by a red marker. Moreover, the configurations at the fault
instant tf and at instant tr are represented. As it can
be seen, because of the fault, the second vehicle drives
away form the team, while the remaining ones reconfigure
themselves from instant tr in order to reach again a regular
polygon formation.

Finally, Figure 3 (top) shows the observer error ‖x̃⋆‖. It
can be noticed that, in healthy condition (t < tf = 60 s),
the error exponentially approaches a neighborhood of the
origin (depending on the bound η in (4)), then, in the
time interval [tf , tr], namely in interval between the fault
occurrence and the team resize, the error grows up and
finally it decreases again after the removal of the faulty
vehicle from the team (t > tr). The same behavior is
exhibited by the centroid task error σ̃1 (Figure 3 (center))
and by the formation task error σ̃2 (Figure 3 (bottom)).
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Fig. 1. Residuals
∥
∥ir2

∥
∥ (solid blue lines) as calculated by

vehicle i and relative to vehicle 2 (the faulty vehicle).
Dashed green lines represent the thresholds, vertical
green lines the fault instant td, vertical red lines the
detection instants itd, vertical black lines the team
resize time tr as in (29).
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Fig. 2. Vehicle trajectories. The dashed blue line is the
desired centroid path, while dashed green lines are
the vehicles’ paths. Vehicles’ positions at instants tf
and tr are shown. In red, the faulty vehicle.

6. CONCLUSIONS

A distributed fault tolerant scheme for multi-robot sys-
tem was presented which is based on a properly designed
observer-controller scheme. After the detection and isola-
tion phase, a recovery technique was developed consisting
in resizing the state vector by eliminating the faulty com-
ponents. Experiments will be run as future work.
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