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Abstract: In the standard formulation of a game, a player’s payoff function depends on the
states and actions of all the players. Yet, real world applications suggest to consider also a
functional of the probability measure of states and actions of all the players. In this paper, we
consider cooperative mean-field type games in which the state dynamics and the payoffs depend
not only on the state and actions but also on their probability measure. We establish stochastic
maximum principle and provide a time-dependent payoff allocation procedure for coalitions. The
allocated payoff considers not only fairness property but also the cost of making the coalition.
Finally, time consistency and subgame perfectness solution concept equations are established.
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1. INTRODUCTION

Modeling the joint interactive behavior of players in a
finite or infinite dynamical systems has been one of the
major challenges. This is usually addressed with dynamic
game theory. In the standard formulation of a game, a
player’s payoff function depends on all the states and
actions of all the players. Yet, recent observations suggest
to consider also a functional of the probability measure
of states and actions of all the players. This leads to the
introduction of Mean-Field Type Games which constitutes
a class of games in which the payoff functions depend not
only on the states and actions of the players but also
on the probability distribution of states and actions. In
this setup, the number of players is not necessarily large
and the influence of a single player strategy can have a
big impact on the states and the mean field term. We
examine the possibility for players to cooperate in a such
a scenario. One of the fundamental element in the theory
of cooperative games is the formulation of the optimal
behavior for the players. Player behavior (control action
and imputations) satisfying specific optimality behaviors
then constitutes a solution of the game. In other words,
a solution concept of a dynamic cooperative game is
produced by a set of optimality principles such as dynamic
bargaining solution and payoff allocation procedure, Yeung
and Petrosyan (2006).

Substantial progress have been done in the last decade in
mean field games in the non-cooperative setup. However,
very little is known about cooperative mean-field games.
The main reason is that the classical optimality equation
used in Cooperative Stochastic Differential Games (see for
example Petrosjan (1977); Yeung and Petrosyan (2006))
are not valid when the mean-field is involved. As we will see
in Theorem 1, the mean-field of actions plays an important
role in the optimality equations Tembine (2012).

⋆ The authors would like to thank Prof. Boualem Djehiche (KTH)
for his comments.

Altruism and cooperation are fascinating research areas.
One has attempted to claim that the players are better off
they all work cooperatively. However, we are often observ-
ing very strange behaviors that are far from cooperation.
So, if cooperation is answer, what is the question and why
these strange behaviors?

Let us consider a simple example with two players. Assume
that if they work together (jointly) they will be able to get
v({12}). Player 1 gets v({1}) if he or she works alone and
Player 2 gets v({2}). From these three numbers, it is not
clear why these players should work together.

To formalize it in terms of their interest, we introduce a
cost of making a coalition, c({12}) ≥ 0 which is the cost
incured when both players pool their effort (it includes
information exchanging cost, coalition creation cost, etc).
While this cost is often neglected in the literature, it may
be important in many setups.

Thus, a necessary condition for possible cooperation be-
tween the players is

v({12})− c({12}) > v({1}) + v({2}).

Then, the next question is: what will be their payoff if
they cooperate? To answer to this question, we need to
know how to share the outcome of the cooperation. It is
clear that allocating the equal share 1

2 [v({12}) − c({12})]
to each player is not necessary appropriate since it can be
less than max(v({1}), v({2})). Thus, the allocation has to
be done in a more clever way.

Cooperative game-theoretic solutions such as Bargaining,
Core, Shapley, Nucleolus dealt with such problems. When
stochasticity and time-dependency are involved, the solu-
tion concepts require a careful adaptation. In addition, if
the payoff function and the state dynamics are of mean-
field type, the optimality equations need to be established
(see Result 1 and 2).
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In this paper we consider cooperative mean-field type
games for state processes governed by a controlled stochas-
tic differential equation of mean-field type which is also
called McKean-Vlasov type equation, in the sense that the
coefficients of the state dynamics are allowed to depend
on the state of the process as well as its distribution in
general, so that we need to introduce two adjoint processes.

The general cooperative game of mean-field type of interest
can be formulated as a collective reaction to the evolutive
states, actions and distribution of state and actions of
the players. The fact that the payoff functional (grand
coalition value) may be nonlinear with respect to the con-
ditional expectation, makes the cooperative game problem
time inconsistent in the sense that Bellman’s optimality
principle, based on applying the law of iterated conditional
expectations on the payoff functional, does not hold. A
way to solve this cooperative game problem is to derive an
extended version of the Dynamic Programming Principle
and extended Hamilton-Jacobi-Bellman equation which
turns out to be very complex.

We establish a payoff allocation procedure for a class of
cooperative mean-field type games where the distribution
enters not only through states, but also through the control
actions. Our results are based on the recent development
of stochastic maximum principle of such systems.

To the best to our knowledge, time-consistent allocation
procedure in cooperative mean-field type games have not
been established in earlier works, is entirely new and, is
fundamentally different from the existing results in mean-
field type control case Buckdahn et al. (2011); Andersson
and Djehiche (2010); Bensoussan et al. (2011).

The remainder of this paper is organized as follows. In
next section we introduce the grand coalition mean-field
type game. In Section 3 we present the time-dependent al-
location and the stochastic maximum principle associated
the cooperative outcome. In Section 4 we propose subgame
perfectness solution concept via spike variation techniques.

2. PROBLEM STATEMENT

Let T > 0, t ∈ T = [0, T ], B be a standard Brownian
motion on T defined on a given filtered probability space
(Ω,F ,P, {Ft}t≥0). We consider a cooperative mean-field
type game given by G = (N , T , c(., T ), v(., T )), whereN =
{1, 2 . . . , n}, is the set of players, n ≥ 1, v(., T ) : 2N → R
is the value associated to a coalition and c(., T ) : 2N → R
is a cost of coalition making. The grand coalition problem
v = v(N , T ) is given by

sup
(a1,...,an)

E
[
g0(x(T ),Eξ(x(T )))+

∫
t∈T

r0(t, x,m, a) dt

]
,

subject to
dx(t) = b(t, x(t),m(t), a(t))dt+ σ(t, x(t),m(t), a(t))dB
+

∫
Θ

γ̄(t, x(t−),m(t−), a(t−), θ)N̄(dt, dθ),

x(0) = x0 ∈ X ⊆ Rd,
m(t) = Eϕ(t, x(t), a(t)) ∈ Rdϕ , t ∈ T

(1)

where N is the set of players (assumed to be finite),
t ∈ T , x(t) ∈ X ⊆ Rd is a d-dimensional state vector,
d ≥ 1; ai(t) ∈ Ai, is the control of the player i at time

t with A =
∏

i∈N Ai ⊆ Rk, the control action set Ai

is non-empty, B is a standard Brownian motion in Rl.
m(t) = Eϕ(t, x(t), a(t)) ∈ Rdϕ , is the aggregative term
which uses the probability distribution of (x(t), a(t)) at
time t, dϕ is the dimension of ϕ. The aggregate function is
ϕ : T × X ×A → Rdϕ .

Specification of the payoffs: The instantaneous payoff
function is r0 =

∑
i∈N ri : T × X × Rdϕ × A → R, the

terminal aggregate function is ξ : X → Rdξ . g0 =
∑

i gi :
X × Rdξ → R is the terminal payoff.

Specification of the state dynamics: The drift coefficient
function is b : T × X × Rdϕ × A → Rd, the diffusion
coefficient function is σ : T × X × Rdϕ ×A → Rd×l.

Specification of the jump process: The term N̄ is a Poisson
martingale measure with characteristic µ(dθ). N̄ is inde-
pendent of B and the measure µ is a σ−finite measure over
Θ. The function γ̄ : T × X × Rdϕ × A × Θ → Rk. The
filtration Ft is the one generated by the union of events
from B or N̄ up time t.

We will first provide the results for γ̄ = 0 the case of jump
is in Section 4.1.

Definition 1. We refer to mean-field type game, any game
in which the instantaneous payoffs and/or the state dy-
namics coefficient functions involve the distributions of
states or the distribution of actions or the joint distribu-
tions of state-actions.

From Definition 1, a mean-field type game can be static or
dynamic in time. The classical variance reduction payoff
such as mean-variance payoff is an example of mean-field
type.

Remark 1. Mean-field games are usually analyzed for in-
dividual states. Here we propose a shared state setup
because of its interesting applications.

Definition 2. An admissible control is an F−adapted and
square integrable process with values in a non-empty
subset A. Denote by A the class of admissible controls.
Any admissible control that solves (1) is called optimal
cooperative strategy.

Our objective is to find or to characterize (through a
Stochastic Maximum Principle) an optimal cooperative
strategy a∗ ∈ argmaxa v(.), a ∈ A.

2.1 On the well-posedness of the problem

We will make the following assumptions in this paper.

Hypothesis H1: The functions b, σ, r, g are twice contin-
uously differentiable with the respect to (x,m). Moreover,
b, σ, r, g and all their first and second derivatives with the
respect to (x,m) are continuous in (x,m, a) and bounded.

Lemma 2. (Existence). : Under H1, for each control a(.) ∈
A, the state dynamics admits a unique strong solution,
x(t) := xa(t).

The proof follows from Theorem 3.1 of Buckdahn et al.
(2009).

Next, we focus on how the cooperation outcome can be
allocated between the players in a dynamic setting.
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2.2 Payoff allocation

Noncooperative equilibrium plays the role of a benchmark
in a cooperative game, i.e., gives what players could secure
for themselves if there is no agreement, i.e., v({i}, T ) =

sup
ai

E
[
gi(x(T ),Eξ(x(T )))+

∫
t∈T

ri(t, x,m, a) dt

]
,

subject to
dx(t) = b(t, x(t),m(t), a(t))dt+ σ(t, x,m, a)dB
x(0) = x0 ∈ X ⊆ Rd,
m(t) = Eϕ(t, x(t), a(t)) ∈ Rdϕ

t ∈ T

(2)

Let Rc,i be the total before-side-payment cooperative
payoff of player i i.e.,

Rc,i = E
[
gi(x

∗
c(T ),Eξ(x∗

c(T ))) +

∫
t∈T

ri(t, x
∗
c ,m

∗
c , a

∗
c) dt

]
.

One has
∑

i∈N Rc,i = v(N , T ). However, one needs to find
a better way to share the payoff v(N , T )− c(N , T ). This
leads to the introduction of the notion of imputation, i.e., a
vector profile γ1, . . . , γn such that

∑
i∈N ′ γi ≥ v(N ′, T )−

c(N ′, T ) for any N ′ ⊂ N , and
∑

i∈N γi = v(N , T ) −
c(N , T )

By virtue of mean-field type joint optimization, the sum
of individual payoffs under cooperation is greater or equal
to its noncooperative counterpart, i.e.,∑

i

Rc,i ≥
∑
i

v({i}, T ).

Thus, the dividend of cooperation (without coalition mak-
ing cost) is DC =

∑
i Rc,i −

∑
i v({i}, T ) ≥ 0.

Thus, the dividend of cooperation (with coalition making
cost) to be distributed among the players is DC−c(N , T ).

As a first consequence, it is clear if the coalition making
cost is too high (compared to the game coalition value)
then there is no reason for the players to form coalition.

Therefore for cooperation purpose we require the positivity
of DC − c(N , T ). Using a cooperative game approach
yields individual payoffs for the whole interval T . The
selected imputation has, by definition, the property that
each player’s payoff in the cooperative game is higher or
equal to what she would get in a noncooperative game
played on the same time interval.

Let γi(s) = γ({i}, [s, T ]) be the cooperative payoff-to-go
after side payment for player i at position [s, T ], 0 < s < T
of the game. This is the amount that player i will actually
pocket. One way sharing the payoff is to use a dynamical
Shapley value.

Dynamical Shapley Value The allocated payoff to player
i is

γi =
∑

N ′⊂N ,i/∈N ′

|N ′|!(|N | − |N ′| − 1)!

|N |!

[(v − c)(N ′ ∪ {i}, [s, T ])− (v − c)(N ′, [s, T ])]. (3)

For two players case, the payoffs of the players are

γ1 = v({1}) + 1

2
[v({12})− c({12})− v({1})− v({2})] ,(4)

γ2 = v({2}) + 1

2
[v({12})− c({12})− v({1})− v({2})] .(5)

Definition 3. A cooperative solution is time consistent if,
at any position s ∈ [0, T ] the cooperation solution payoff to
go γ({i}, [s, T ]) ≥ v({i}, [s, T ]) where the deviating payoff
v({i}, [s, T ]) is computed along the state trajectory of the
cooperative state trajectory x∗

c(t).

This notion of time consistency and its implementation in
cooperative differential games was introduced in Petrosjan
(1977). A stringer notion of time consistency is that
the cooperative payoff-to-go dominates the noncooperative
payoff-to-go for any state x(s), s ∈ T . This is called
subgame consistent solution.

Dynamical proportional allocation Though one of the
most commonly used allocation principles is the dynamical
Shapley value, however, in the case when players may be
asymmetric in their powers and sizes of payoffs, equal im-
putation of cooperative gains may not be totally agreeable
to asymmetric player. To overcome this, one can suggest
the allocation principle in which the players, shares of the
gain from cooperation are proportional to the relative sizes
of their expected deviating payoffs. Thus, a proportional
time-consistent solution is given by

γi(s) =
v({i}, [s, T ])∑
i v({i}, [s, T ])

∑
i

γ({i}, [s, T ])

=
v({i}, [s, T ])∑
i v({i}, [s, T ])

[v(N , [s, T ])− c(N , [s, T ])]. (6)

Assuming these quantities are positive, one gets

γ({i}, [s, T ]) ≥ v({i}, [s, T ]), ∀s,
(individual rationality) and∑

i

γ({i}, [s, T ]) = v(N , [s, T ])− c(N , [s, T ])

(efficiency at any time).

Then one needs t find the appropriate instantaneous
distribution of the payoff γi, i.e. find function γ̂i such that

γi(0) = γ̂i(T ) +

∫ T

0

γ̂i(s) ds.

Next we establish necessary conditions under H1. These
conditions may not be sufficient in general. However,
if in addition convexity holds, these conditions become
sufficient.

3. STOCHASTIC MAXIMUM PRINCIPLE

Let H be H(t, x,m, a, p, q) = b′p + trace(σ′q) + r. In
order to simplify the notation, we remove the trace. This
Pontryagin function introduces two adjoint processes p an
q. The adjoint process p is associated with the drift f and
q is associated with the diffusion coefficient σ.

First order adjoint equation: Let

αϕ(t) = rx + (bx)
′p+ (σx)

′q

+(∂ϕ)′ (E[rm] + E[(bm)′p] + E[(σm)′q]) (7)
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then αϕ(t) ∈ Rd and the first order adjoint equation is
given by

dp = −αϕ(t)dt+ q(t)dB(t), (8)

p(T ) = gx(T ) + (∂ξ)′E[gm(T )]. (9)

Lemma 3. (Existence). Under assumption H1, the mean-
field type first order adjoint equation admits a unique solu-
tion F−adapted solution (p, q) such that E[supt∈T |p(t)|2+∫ T

0
|q(t)|2 dt] < +∞.

Second order adjoint equation: Let

βϕ = [Pbx + b′xP
′ + Pσ2

x +Qσx + σ′
xQ

′ +Hxx]

+ (E[r′m] + E[P ′bm] + E[σ′
mQ]′) ∂2ϕ. (10)

The second order adjoint equation is given by dP =
−βϕdt+QdB(t), P (T ) = gxx + E[g′m]∂2ξ.

Lemma 4. (Existence). Under assumption H1, the mean-
field second order adjoint equation admits a unique solu-
tion F−adapted solution (P,Q) such that E[supt∈T |P (t)|2+∫ T

0
|Q(t)|2 dt] < +∞.

3.1 Necessary condition under H1

Result 1. Let H1 holds. If (x∗, a∗) is an optimal solution of
the cooperative mean-field type game then there are two
pairs of processes (p, q), (P,Q) that satisfy the first order
and the second order adjoint equations such that

H(t, x∗,m∗, a∗, p, q)−H(t, x∗,m∗, a, p, q) +

1

2
P (t) (σ(t, x∗,m∗, a∗)− σ(t, x∗,m∗, a))

2 ≥ 0, (11)

for all a(.) ∈ A, almost every t and P−almost surely where{
dp(t) = −αϕdt+ qdB(t), p(T ) = gx(T ) + (∂ξ)′E[gm(T )],

dP = −βϕdt+QdB(t), P (T ) = gxx + E[g′m]∂2ξ.

The inequality involving the Pontryagin function in Theo-
rem 1 may be achieved at several control laws. In that case
we associate and properly define a specific state trajectory
to any optimal control law. Note that even if the optimal
control law is unique, the optimal state trajectory may not
unique (discontinuous) depending on the starting point.
This leads to the so-called Skiba point. Note that Theorem
1 does not say anything about the cooperative game G. For
the cooperative mean-field type games one needs to check
the stability of the coalitions and the allocation procedure
which is missing in the global optimization of mean-field
type. The cooperative strategy obtained in Theorem 1 may
NOT be time consistent, i.e., for t′ > t,

a∗(t0, x0, .) ̸= argmax
a

v(N , x′, [t′, T ]).

In order to characterize the payoff of the deviating players
v({i}, T ), one needs to understand the non-cooperative
game solution, which necessary condition under H1 is given
by the following system:

If (x∗
i , a

∗
i ) is an equilibrium solution of the non-cooperative

mean-field type game then there are 2n pairs of processes
(pi, qi), (Pi, Qi), i ∈ N that satisfy the first order and the
second order system of adjoint equations such that

Hi(t, x
∗,m∗, a∗, pi, qi)−Hi(t, x

∗,m∗, a, pi, qi)

+
1

2
Pi(t) (σ(t, x

∗,m∗, a∗)− σ(t, x∗,m∗, a))
2 ≥ 0, (12)

for all ai(.) ∈ Ai, almost every t and P−almost surely
where

dpi(t) = −αi,ϕdt+ qidB(t),
pi(T ) = gi,x(T ) + (∂ξ)′E[gi,m(T )],

αi,ϕ = ri,x + (bx)
′pi + (σx)

′qi
+(∂ϕ)′ (E[ri,m] + E[(bm)′pi] + E[(σm)′qi])

dPi = −βi,ϕdt+QidB(t), Pi(T ) = gi,xx + E[g′i,m]∂2ξ
βi,ϕ = [Pibx + b′xP

′
i + Piσ

2
x +Qiσx + σ′

xQ
′
i +Hi,xx]

+
(
E[r′i,m] + E[P ′

i bm] + E[σ′
mQi]

′) ∂2ϕ.

In the next section we focus on time-consistent and sub-
game consistent solution.

3.2 Aggregative term as the vector of mean states and
mean actions

We consider a particular case where ϕ(t, x(t), a(t)) =
(x(t), a(t)), i.e., the aggregative term is exactly the vector
of mean of states and mean actions. The payoff has
the form of r(t, x(t),Ex(t),Ea(t), a(t)). Similar for the
coefficient functions b, σ. This means that dϕ = 2.

αϕ(t) becomes rx + (bx)
′p + (σx)

′q + E[rm] + E[(bm)′p] +
E[(σm)′q].

The following result follows from Theorem 1

Corollary 5. Let H1 holds. If (x∗, a∗) is an optimal so-
lution of the cooperative mean-field type game then there
are two pairs of processes (p, q), (P,Q) that satisfy the first
order and the second order adjoint equations, such that

H(t, x∗,m∗, a∗, p, q)−H(t, x∗,m∗, a, p, q)

+
1

2
P (t) (σ(t, x∗,m∗, a∗)− σ(t, x∗,m∗, a))

2 ≥ 0 (13)

for all a(.) ∈ A, almost every t and P−almost surely where


dp = −(bxp+ E[bmp] + σxq + E[σmq] + rx + E[rm])dt

+qdB(t),
p(T ) = gx(T ) + E[gm(T )],

dP = −[2bxP + σ2
xP + 2σxQ+Hxx]dt+QdB(t),
P (T ) = gxx.

Example 1. (Variance Reduction). Let

−r(t, x(t),Ex(t),Ea(t), a(t)) = ⟨Qx, x⟩ + ⟨Q̂Ex,Ex⟩ +

⟨Ra, a⟩+ ⟨R̂Ea,Ea⟩.

−g(T, x(T ),Ex(T )) = ⟨Gx(T ), x(T )⟩+ ⟨ĜEx(T ),Ex(T )⟩.

b(t, x(t),Ex(t),Ea(t), a(t)) = Ax+ ÂEx+Ba+ B̂Ea.

σ(t, x(t),Ex(t),Ea(t), a(t)) = A1x+ Â1Ex+B1a+ B̂1Ea,
where Q, Q̂, R̂, R̂, A, Â, A1, Â1, B1, B̂1 are deterministic
matrix-valued functions chosen appropriately with the di-
mension of the control process a(t).

If R,Q,G R̂, Q̂, Ĝ are symmetric then our necessary con-
dition above becomes
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
2Ra+ 2R̂Ea+B′p+ B̂′Ep+B′

1q + B̂′
1Eq = 0

dp = −[2Qx+A′p+A′
1q + 2Q̂Ex+ Â′Ep+ Â′

1Eq]dt
+qdB(t)

1

2
p(T ) = Gx+ ĜE[x].

The optimal cooperative strategy under this procedure
may depend on the initial state x0.

Mean of actions as aggregative term For the particular
case where ϕ(t, x(t), a(t)) = a(t), the aggregative term
is exactly the mean of actions. The payoff has the form
r(t, x(t),Ea(t), a(t)). Similar for the coefficients b, σ. One
gets the payoff model used in Kamgarpour and Tembine
(2013) in a smart grid context.

Mean of states as aggregative term For the particu-
lar case where ϕ(t, x(t), a(t)) = x(t), the aggregative
is exactly the mean of states. The payoff has the form
r(t, x(t),Ex(t), a(t)). Similar for the coefficients b, σ. One
gets the model in Buckdahn et al. (2011).

4. TOWARDS A CREDIBLE COOPERATION

For dynamic games, an additional and stringent condition
on the solutions is required: The specific optimality princi-
ple must remain optimal at any instant of time throughout
the game duration along the optimal state trajectory. This
condition is known as dynamic stability or time consis-
tency.

In the context of mean-field type games, the notion of time
consistency is crucial since the initial distribution of states
and starting time influences naturally the Kolmogorov
forward equation. A cooperative solution is subgame con-
sistent if an extension of the cooperative strategy to a
situation with a later starting time and to any possible
state brought about by the prior optimal behavior of the
players remains optimal. Subgame consistent is a stronger
notion of time consistency. In the presence of stochastic
elements, subgame consistency is required in a credible
cooperative solution. In the field of cooperative mean-field
type games, little research has been published to date on
subgame consistent solutions.

If the set A is not necessarily convex, but a general separa-
ble complete metric space (Polish space), Pontryagin’s ap-
proach suggests the following perturbation method called
spike variation. The approach is well-adapted to subgame
perfection in games. Fix (s, x) ∈ [0, T ] × X and define
the control law aϵ as the spike variation of â over the set
[s, s+ ϵ], ϵ > 0 i.e.,

aϵ(t) = a(t)1l[s,s+ϵ](t) + â(t)1lT \[s,s+ϵ](t),

where a is an arbitrary admissible control and 1l[s,s+ϵ] is
the indicator function over the set [s, s+ ϵ].

Definition 4. Let R be objective to be maximized in v. We
say that â is a subgame perfect cooperative strategy under
spike variation if for any t0, x0, a,

lim
ϵ→0

1

ϵ
[R([t0, T ], x0, â)−R([t0, T ], x0, aϵ) ] ≥ 0.

Note that a subgame perfect cooperative strategy under
spike variation is in particular a time consistent solution.

The key difference here is that the solution that we are
looking for, should NOT depend on the initial data (when
and where we started).

Let Ht0,x0 be the Pontryagin function associated with
the random variable x that starts from x0 at t0 ∈ T .
Ht0,x0(t, x,m, a, p, q) = bpt0,x0 +σqt0,x0 +rt0,x0 , where the
notation rt0,x0 is obtained from r when the aggregate term
is m = Et0,x0 ϕ(t, x, a).

Let

αt0,x0

ϕ (t) = rt0,x0
x +(bx)

′pt0,x0 + (σx)
′qt0,x0+

(∂ϕ)′
(
E[rt0,x0

m ]+E[(bm)′pt0,x0 ] + E[(σm)′qt0,x0 ]
)

then the first order adjoint adjoint equation is given by

dpt0,x0 = −αt0,x0

ϕ (t)dt+ qt0,x0dB(t), (14)

pt0,x0(T ) = gt0,x0
x (T ) + (∂ξ)′Et0,x0 [g

t0,x0
m (T )]. (15)

Under assumption H1, the mean-field type first order
adjoint equation admits a unique solution F−adapted
solution (pt0,x0 , qt0,x0) such that E[supt∈[t0,T ] |pt0,x0(t)|2 +∫ T

t0
|qt0,x0(t)|2 dt] < +∞.

Let

βt0,x0

ϕ = P t0,x0bx + b′xP
′t0,x0 + P t0,x0σ2

x

+Qt0,x0σt0,x0
x + σ′

xQ
′t0,x0 +Ht0,x0

xx

+
(
E[r′t0,x0

m ] + E[P ′t0,x0bm] + E[σ′
mQt0,x0 ]′

)
∂2ϕ.

The second order adjoint equation is given by

dP t0,x0 = −βt0,x0

ϕ dt+Qt0,x0dB(t),
P t0,x0(T ) = gt0,x0

xx + Et0,x0 [g
′t0,x0
m ]∂2ξ.

Under assumption H1, the mean-field second order ad-
joint equation admits a unique solution F−adapted so-
lution (P t0,x0 , Qt0,x0) such that E[supt∈[t0,T ] |P t0,x0(t)|2 +∫ T

t0
|Qt0,x0(t)|2 dt] < +∞.

Result 2. Let H1 holds. If (x̂, â) is an optimal solution of
the cooperative mean-field type game then there are two
pairs of processes (p, q), (P,Q) that satisfy the first order
and the second order adjoint equations, such that

Ht,x̂(t)(t, x̂, m̂, â, pt,x̂(t), qt,x̂(t))−Ht,x̂(t)(t, x̂, m̂, a, pt,x̂(t), qt,x̂(t))

+
1

2
P t,x̂(t)(t) (σ(t, x̂, m̂, â)− σ(t, x̂, m̂, a))2 ≥ 0,

for all a(.) ∈ A, almost every t and P−almost surely.

The proof of Theorem 2 follows similar steps as for
Theorem 1 conditioning on t0 = t, x0 = x. Note that now
the cooperative solution â does not depend on the initial
data x0 and can therefore be used for any t ∈ [0, T ] in any
subgame.

Example 2. (Mean-Variance Approach). In the line of the
variance reduction example 1 above, we consider a termi-
nal payoff g as Ex(T )−λ var(x(T )), λ > 0 and Q, Q̂,R, R̂
are zeros, which is obviously of mean-field type. The state
dynamic is control-dependent and is obtained by setting
Â, B̂, Â1, B̂1 to zero. By Theorem 2, one has

(∗)

 B′
1q +B′p = 0

dp = −Apdt+ qdB
p(T ) = 1l− λ[x(T )− Et0,x0x(T )].
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The final form of p(T ) gives an incentive to look for a
solution in the following form:

pt0,x0(t) = η1(t)− η2(t)[x(t)− Et0,x0x(t)],

where the terminal values are η1(T ) = 1l and η2(T ) = λI.
By conditioning on t0, x0, it is clear that

pt0,x0(t0) = η1(t0),

which is independent of x0. Using system (*), one deduces
qt0,x0(t0) = −(B′

1)
−1B′η1(t0). By Ito’s formula applied to

p, and arranging the coefficient functions, one gets,

(η̇1 +Aη1)− (η̇2 + η2A+Aη2)[x(t)− Et0,x0x(t)] = 0,

and q = −η2B1â.{
η̇1 +Aη1 = 0, η1(T ) = 1l

η̇2 + η2A+Aη2 = 0, η2(T ) = λI

The optimal cooperative control action is

â(t) = −(η2B1)
−1q = (η2B1)

−1(B′
1)

−1B′η1(t),

which is time-consistent and independent on which state
the system starts at time t0 and is a subgame perfect
optimal cooperative strategy.

The unidimensional case,

(∗∗)



η1(t) = eA(T−t)

η2(T ) = λe2A(T−t)

pt,x(t) = eA(T−t)

qt,x(t) = −(B′
1)

−1B′e−A(T−t)

â(t) =
1

λ
B−2

1 B′eA(T−t).

Note that, now, the optimal control-action â(t) is indepen-
dent of the initial data x0.

4.1 With jump process

In this section we reconsider the state process with non-
zero jump term γ̄. In this case the Pontryagin function will
be modified to H̄ = H +

∫
Θ
trace[γ̄µ(dθ)q̄] where q̄ is an

adjoint process associated to the jump rate coefficient,

ᾱϕ = αϕ +

∫
Θ

γ̄xµ(dθ)q̄ + (∂ϕ)E[
∫
Θ

γ̄mµ(dθ)q̄]

and the adjoint process dp will be modified with an extra
term +

∫
Θ
q̄N̄(dt, dθ)

5. CONCLUDING REMARKS

We have presented cooperative mean-field type games and
derived necessary condition for optimality under assump-
tion H1. These optimality equations apply for non-convex
domain as well as non-convex Hamiltonian functions. The
maximum principle involves two quasi-linear mean-field
backward stochastic differential equation for which the
existence and uniqueness are established under H1. How-
ever, the conditions we provided here are NOT sufficient
in general and non-transferable payoff is not considered.
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