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Abstract: Mean-field games have been studied under the assumption of very large number of
players. For such large systems, the basic idea consists to approximate large games by a stylized
game model with a continuum of players. The approach has been shown to be useful in some
applications. However, the stylized game model with continuum of decision-makers is rarely
observed in practice and the approximation proposed in the asymptotic regime is meaningless
for networked systems with few entities. In this paper we propose a mean-field framework that
is suitable not only for large systems but also for a small world with few number of entities.
The applicability of the proposed framework is illustrated through a dynamic auction with
asymmetric valuation distributions.
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1. INTRODUCTION

Recently there have been renewed interests in large-scale
interactions in several research disciplines, with its uses in
wireless networks, financial markets, biology, power grid,
social and cloud networks. In mathematical physics, most
of models are analyzed in the asymptotic regime when the
size of the system grows without bounds. As an exam-
ple, the McKean-Vlasov model [9, 10, 12] for interacting
particles is analyzed when the number of particles tends
to infinity. Such an approach is referred to as mean field
approach. The seminal works of Sznitman [15] in the 1980s
and the recent work of Kotolenez & Kurtz [14] show that
the asymptotic system provides a good approximation of
the finite system in the following sense: For any ϵ > 0
there exists a population size nϵ such that for any n ≥ nϵ,
the error gap between the solution of the infinite system
and the system with size n is at most ϵ. Moreover, the
work in [14] shows that the number nϵ is in order of
O
(
log( 1ϵ )

1
ϵd+2

)
for a class of smooth functions, where d

denotes the dimension of the space. Thus, for n < nϵ

this current theory does not give an approximation that is
meaningful.

In queueing theory, the number of customers is usually
assumed to be large or follows a certain distribution with
unbounded support (e.g., exponential, Poisson etc) and
the buffer size (queue) can be infinite. However, many
applications of interests such as airport boarding queues,
supermarket queues, restaurant queue, iphone/ipad wait-
ing queue involve a finite number of customers/travelers.
Approximation by a continuum of decision-makers may
not reflect the reality. For example the number of clients
in the supermarket queue cannot exceed the size of avail-
able capacity of markets and there is a certain distance
between the clients to be respected. In other words, human
behaviors are not necessarily like standard fluid dynamics.
In game theory, the rapidly emerging field of mean-field

games [4] is addressing behavioral and algorithmic issues
[1] for mathematical models with continuum of players. We
refer the reader to [5] for a survey on (asymptotic) mean
field games.

The classical works mentioned above provide rich math-
ematical foundations and equilibrium concepts in the
asymptotic regime, but relatively little in the way of com-
putational and representational insights that would allow
for few number of players.

Our primarily goal in this article is to provide a simple
and easy to check condition such that mean-field theory
can be used for finite-scale which we call non-asymptotic
mean-field approach. We investigate two basic conditions
in the present paper. The first condition is indistinguisha-
bility (or interchangeability) of the payoff functions. The
indistinguishability property is easy to verify. The indistin-
guishability assumption is implicitly used in the classical
(static) mean-field analysis including the seminal works of
Aumann 1964 [11], Selten 1970 [13], Schmeidler 1973. This
assumption is also implicitly used in the dynamic version
of mean-field games by Jovanovic & Rosenthal 1988[2],
Benamou & Brenier 2000 [3] and Lasry & Lions 2007 [4].
The second condition is the (regularity) smoothness of the
payoff functions. The regularity property is relatively easy
to check.

Based on these two conditions, we present a simple approx-
imation framework for finite horizon mean-field systems.
The framework can be easily extended to infinite horizon
case. The non-asymptotic mean field approach is based
on a simple observation that the many effects of different
actions cancel out when the payoff is indistinguishable.
Nevertheless, it can lead to a significant simplification of
mathematical mean-field models in finite regime. The ap-
proach presented here is non-asymptotic and is unrelated
to the mean-field convergence that originates from law of
large numbers (and its generalization to de Finetti-Hewitt-
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Savage functional mean-field convergence) in large popula-
tions. The non-asymptotic mean field approach holds even
when there are only few players in a game, or few nodes
in a network.

The idea presented here is inspired from the works in
[17, 18, 16] on the so-called averaging principle. These
previous works are limited to static and one-shot games.
Here we use that idea not only for static games but also for
dynamic mean-field games. One of the motivations of the
asymptotic mean field game approach is that it may reduce
the complexity analysis of large systems. The present work
here goes beyond that. We believe that if the complexity
of the infinite system can be reduced easily then, the finite
system can also be studied using a non-asymptotic mean-
field approach.

In order to apply the mean-field approach to a system
with arbitrary number of players, we shall exploit more the
structure of objective function and the main assumption
of the model which is the indistinguishability property
i.e., the performance index is unchanged if one permutes
the label of the players. This is what we will do in
this work. The aggregative structure of the problem and
the indistinguishability property of the players are used
to derive an error bound for any number of players.
Interestingly, our result holds not only for large number of
players but also for few number of players. For example,
for n = 5 players, there is no systematic way to apply
the theory developed in the previous works [4, 11] but the
non-asymptotic mean-field result presented here could be
applied. The non-asymptotic mean-field result does not
impose additional assumptions on the payoff function. We
show that the indistinguishability property provides an
accurate error bound for any system size. We show that the
total equilibrium payoff with heterogeneous parameters
can be approximated by the symmetric payoff where the
symmetric is the respect to the mean of those parameters.
These parameters can be a real number, vector, matrix or a
infinite functional. The proof of the approximation error is
essentially based on a Taylor expansion which cancels out
the first order terms due to indistinguishability property.

We provide a basic auction example where the non-
asymptotic mean-field interaction is required and the in-
distinguishability property could be exploited more effi-
ciently. In models of first-price auctions, when bidders are
ex ante heterogeneous, deriving explicit equilibrium bid
functions is an open issue. Due to the boundary-value
problem nature of the equilibrium, numerical methods
remain challenging issue. Recent theoretical research con-
cerning asymmetric auctions have determined some qual-
itative properties these bid functions must satisfy when
certain conditions are met. Here we propose an accurate
approximation based on non-asymptotic mean field game
approach and examine the relative expected payoffs of
bidders and the seller revenue (which is indistinguishable)
to decide whether the approximate solutions are consistent
with theory.

The remainder of the paper is structured as follows. In
Section 2 we present a mean field system with arbitrary
number of interacting entities and propose a nonasymp-
totic static mean field framework. In Section 3 we extend
our basic results in a dynamic setup. In Section 4 we

present computation of error bound of equilibrium bids
in dynamic auction with asymmetric bidders.

We summarize some of the notations in Table 1.

Table 1. Summary of Notations

Symbol Meaning

N set of potential minor players
n cardinality of N
A action space
aj action of player j
rg(a1, . . . , an) global payoff function of the major player
1l{.} indicator function.

m̄

⊗
n

= (m̄, . . . , m̄)
τj strategy of player j
Rj,T long-term payoff of player j

2. MEAN-FIELD SYSTEM FOR ARBITRARY
NUMBER OF ENTITIES

Consider an interactive system with n + 1 ≥ 2 entities
(players) consisting of n generic minor players and one
major player (called designer). Each minor player has
a payoff function. The major player has its own payoff
function that could be the global performance of the minor
players or another generic payoff. The payoff function
of the major player is captured by a certain function
rg(a1, . . . , an) ∈ R which we call global payoff function.
Each decision variable aj belongs to a Polish 1 space A.

2.1 Main Assumptions on the structure of payoff function

Assumption A0: Indistinguishability. We assume that
the global payoff function is invariant by permuting the
index of the players, i.e.,

rg(a1, . . . , ai, . . . , aj , . . . , an) =

rg(aπ(1), . . . , aπ(i), . . . , aπ(j), . . . , aπ(n)),

for every permutation π : N −→ N , where N :=
{1, 2, . . . , n}.
To verify A0, it suffices to check for pairwise interchange-
ability, i.e., permutation of any two of the coordinates.
In mathematics, the indistinguishability property is some-
times referred as symmetric function, i.e., one whose value
at any n-tuple of arguments is the same as its value at any
permutation of that n−tuple.

Assumption A1: Smoothness. We assume that the ob-
jective function rg is (locally) twice differentiable with the
respect to the variables.

It is important to notice that the assumption A0 can be
easily checked by designers, engineers and non-specialists.
In practice, A0 will result in functions that can be ex-
pressed in terms of the mean m̄ = 1

n

∑n
j=1 aj ,

1
n

∑n
j=1 a

2
j ,

1
n

∑n
j=1 ϕ(aj , m̄) . . . ,

(∏n
j=1 aj

)
, etc. Assumption A0 is

implicitly used in [11, 13, 2, 4].

1 A Polish space E is a Separable topological space E for which there
exists a compatible metric d such that (E, d) is a complete metric
space. Here, ”‘separable”’ means has a countable dense subset.
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Our goal is to provide a useful approximation and error
bound for the global payoff rg in an equilibrium or in
function of the parameters of the game.

2.2 Approximation for static games

Next we provide the basic results that hold for both non-
asymptotic and asymptotic static systems.

Theorem 1. Assume that A0 and A1 hold. Then the
following results hold:

• ∂ajrg(m̄
⊗

n) = ∂a1rg(m̄
⊗

n) where m̄
⊗

n :=
(m̄, . . . , m̄) and

m̄ =
1

n

n∑
j=1

aj =

∫
b∈A

b

 1

n

n∑
j=1

δaj

 (db), (1)

δaj
is the Dirac measure concentrated at the point aj ,

m =
1

n

n∑
j=1

δaj (2)

• The structure of the payoff function implies that the
first order term in the Taylor expansion is cancelled
out.

• The cross-derivatives are independent of the labels:

∂2
aiaj

rg(m̄
⊗

n) = ∂2
a1a2

rg(m̄
⊗

n)

Note that this theorem can be used for games with
continuous action space as well as for games with discrete
action space via mixed extensions. Examples of games that
satisfy A0-A1 includes Prisoner Dilemma, Battle of Sex,
Hawk-Dove, coordination games, anti-coordination games,
minority games, matching pennies, etc.

Theorem 2. Suppose that the payoff function rg satisfies
the assumptions A0 and A1. Assume that a is in a small

neighborhood of the mean vector m̄
⊗

n := (m̄, . . . , m̄)
i.e., there is a small positive number cm̄,rg which may
depend on m̄ and the function rg such that ∥ (a1, . . . , an)−
m̄
⊗

n ∥≤ cm̄,rg then rg(a)− r̄(m̄) = O
(
∥ a− m̄

⊗
n ∥22

)
,

and
∥ rg(a)− r̄(m̄) ∥≤ δc2m̄,rg

where r̄(m̄) := rg(m̄, . . . , m̄) = rg(m̄
⊗

n), δ > 0.

The proof of result 2 follows from the following result 3
which gives the explicit error bound:

Theorem 3. Assume that A0−A1 hold. Then, the explicit
error bound for arbitrary number of players is rg(a)− r̄(m̄)
is in order of

δm̄,r̄

n∑
j=1

(aj − m̄)2,

where

δm̄,r̄ = | n

2(n− 1)

(
− 1

n2
r̄′′(m̄) + ∂2

a1a1
rg(m̄

⊗
n)

)
|

Remark 4. In order to compute the error bound, one needs

only r̄, and ∂2
a1a1

rg(m̄
⊗

n). The expression of the function
rg(a) is not required for vector with non-symmetric com-
ponents. This allows us to provide an approximation result
for unknown payoff function.

Remark 5. If r̄′′ is bounded by β and

∑n

j=1
(aj−m̄)2

n ≤ σ
then

rg(a)− r̄(m̄) ≤ β

2(n− 1)

∑n
j=1(aj − m̄)2

n
(3)

≤ βσ

2(n− 1)
≤ βϵ2

2(n− 1)
. (4)

In particular, if the finite regime has a solution in a certain
sense, that is ϵ−close to a vector with symmetric compo-
nent then, non-asymptotic mean field approach provides

automatically an O( ϵ2

2(n−1) )−solution for any number of

players n ≥ 2. This is a non-asymptotic result in the sense
that it holds for all range of system size n ≥ 2. Also, by
choosing ϵ = 1

nα , α ≥ 1 one gets an error bound in order

of 1
2n2α+1 . Note that ϵ can be very small even if n is not

large. For example, with n = 2 players and α = 10, one
gets an error bound in order of 1

222 which is satisfactory in
terms of computational accuracy.

3. DYNAMIC SETUP

In this section we provide very useful approximation
results for dynamic interactive systems. We consider a
finite horizon with length T ≥ 1.

3.1 Non-asymptotic mean-field optimization

Consider a designer who controls the action to be dictated
to n minor entities. Assume that the designer aims to
achieve a certain goal with objective function given by the
choice variables that the designer dictates to the minor

entities. The objective function is Rg,T (τ) =
∑T−1

t=0 rg(at)
where rg : An → An satisfies assumptions A0 − 1 and
at = (a1,t, . . . , an,t) ∈ An is the choice variable at time t.
Let m̄t =

1
n

∑n
j=1 aj,t be the sequence of mean actions and

set r̄T (m̄) =
∑T−1

t=0 r̄(m̄t).

Theorem 6. An explicit error bound for Rg,T (τ) − r̄T (m̄)
with arbitrary number of minor entities is given by

δT,m̄,r̄ ∥ a− m̄ ∥2l2
T
,

where

δT,m̄,r̄ = sup
t∈T

| n

2(n− 1)

(
− 1

n2
r̄′′(m̄t) + ∂2

a1a1
rg(m̄

⊗
n

t )

)
|

and l2T = {(xt)t≤T−1 |
∑T−1

t=0 |xt|2 < +∞}, and ∥a −
m̄∥l2

T
=

∑T−1
t=0 |at − m̄t|2

See Result 7 below for a proof.

3.2 Non-asymptotic mean-field stochastic games

Consider a stochastic game [22] with n minor players and
one major player (designer). Time is discrete. Time space
is T = {0, 1, . . . , T −1} where T ≥ 1. Each player j has its
individual state sj,t, t ∈ T which evolves according to a
Markovian process. The action space a player depends on
its current space, A(sj,t) ⊂ R. A pure strategy of player
j at time t is a mapping from history Hj,t up to t to the
current action space A(sj,t). Denote by τj = (τj,t)t the
strategy of player j. For hj,t ∈ Hj,t, τj,t(hj,t) = aj,t ∈
A(sj,t). The instantaneous payoff function of player j is
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r(sj,t, aj,t,mt) where mt is the state-action distribution,
which satisfies the indistinguishability property with the
respect to the other players. We assume that the payoff
function r is smooth.

The long-term payoff of player j is Rj,T (s0, τ)

= E

[
ḡ(sT ) +

∑
t∈T

r(sj,t, aj,t,mt) | (sj,0, τj)j∈N

]
where ḡ is the terminal payoff. A strategy profile τ∗ is a
(Nash) equilibrium if no player can improve her payoff by
unilateral deviation, i.e., for every player j,

Rj,T (s0, τ
∗) = max

τj
Rj,T (s0, τj , τ

∗
−j).

Let Vj,T (s0, τ−j) be the value function of the bidder j , i.e.,
it is the supremum, over all possible bidding strategies, of
the expectation of the payoff Rj,T starting from an initial
state s0 when the other players strategy profile is τ−j .

Vj,T (s0, τ−j) = max
τj

[Rj,T (s0, τ) | τ−j , s0].

Taking the expectation over the other players state, the
recursive Bellman-Kolmogorov equation is given by

Vj,t(sj) = sup
aj

[
r(sj , aj ,mt) + Es′

j
Vj,t+1(s

′
j |sj , aj , τ)

]
,

mt+1 ∼ P(.| mt, τt)
sj,t+1 ∼ q(.|sj,t, aj,t,mt, τt) = P(.| sj,t, aj,t,mt, τt),

where q,P define the transition probabilities between
states.

Theorem 7. Let aj,t(hj,t) = m̄t(hj,t) + ϵγj,t(hj,t), where

γj,t(hj,t) =
aj,t(hj,t)− m̄t(hj,t)

ϵ
,

m̄t(hj,t) =
1

n

n∑
j′=1

aj′,t(hj′,t),

and

ϵ = max
j

sup
t∈T

sup
hj,t∈Hj,t

|aj,t(hj,t)− m̄t(hj,t)|,

Assume the state transition q is continuous. Then the total
term payoffRg(s0; τ1, . . . , τn) is in order ofRg(s0; m̄, . . . , m̄)+
O(ϵ2) for any n ≥ 2.

Using similar lines as in result 3, one gets that any time
t ∈ T , |rj(st, at)−rj(st, m̄t)| is bounded by δt,m̄t,r̄(st)∥at−
m̄t∥2. Now, a small changes in the action may change the
state, and hence the term δt,m̄t,r̄ is changed. Using the con-
tinuity of the state transition q, we take a uniform bound
by considering the supremum: δ̄t,m̄t,r̄ = sups δt,m̄t,r̄(s).
Then, the global error is bounded by ϵ2

(
supt∈T δ̄t,m̄t,r̄

)
.

4. AUCTION WITH ASYMMETRIC BIDDERS

Static setup The theory of auctions as games of in-
complete information originated in 1961 in the work of
Vickrey. A seller has an object to sell. She adopted a
first-price auction rule. Consider a first-price auction with
asymmetric bidders. There are n ≥ 2 bidders for the
object. Each bidder independently submit a single bid
without seeing the others’ bids. If there is only one bidder
with the highest bid, the object is sold to the bidder
with biggest bid. The winner pays her bid, that is, the

price is the highest (or first price bid). If there is more
than one bidder, the object goes to each of these bidders
with equal probability. The bidder vj has a valuation of
the object. The random variable ṽj has a C1−cumulative
distribution function with support [v, v̄] where v < v̄. A
strategy of bidder j is a mapping from valuation to a bid
space: vj 7−→ bj(vj). The risk-neutral payoff of bidder j
is (vj−b)P (maxj′ ̸=j bj′(ṽj′) < b) . Using the independence
of the valuation ṽj′ , the risk-neutral payoff can written

as (vj − b)
∏

j′ ̸=j Fj′(b
−1
j′ (b)). The information structure of

auction game is as follows. Each bidder knows its value,
bid but not the valuation of the other bidders. Each bidder
knows the valuation cumulative distribution of the others.
The structure of the game is common knowledge. We
are interested in the equilibria, equilibrium payoffs and
revenue of the seller. Existence of equilibrium of auction
games have been widely studied ([6, 7, 8]).

Clearly, no bidder would bid an amount that is greater
than her value because of negative payoff. By fixing the
bidding strategy of the others one has attempted to com-
pute the best response correspondence. Any increase in the
bid will decrease the gain but increase the probability of
winning. This is a sort of tradeoff between the profit and
the probability of winning.

We differentiate the function

b −→ (vj − b)
∏
j′ ̸=j

Fj′(b
−1
j′ (b)).

In order to find an equilibrium one needs to solve n
Ordinary Differential Equations (ODEs) with 2n boundary
conditions.

v′j(b) =
Fj(vj(b))

F ′
j(vj(b))

 1

n− 1

n∑
j′=1

1

vj′(b)− b
− 1

vj(b)− b

(5)
vj(b) = v, vj(b̄) = v̄ (6)

The inverse of the function v is the optimal strategy b.
There is no need to mention that this is intractable even
with small number of bidders. Even for three bidders we
do not understand clearly how the solutions behave in
function of Fj .

Why this is not a simple ODE problem?

Non-standard existence theorem is needed: We cannot
apply the standard local existence and uniqueness theorem
to the ODE with initial value (lowest bid) vj(b) = v
because by the right-hand-side terms 1

vj(b)−b in the ODEs

are unbounded at v. In addition, the equilibrium satisfies
vj(b̄) = v̄ but the term b̄ is unknown. Due to these diffi-
culties, explicit solutions of (5) and (6) are not available.

A non-standard numerical method is needed:

Since explicit solutions are open issues, one may ask if it is
possible to solve the problem numerically. According to the
recent work in [17], the numerical implementation of the
system (5) , (6) remains a challenging task. One of the well-
known numerical methods consists to solve to find among
the solutions of ODEs together with the initial conditions,
that satisfy the highest equilibrium bid constraint. Such an
approach is known as forward-shooting method. However,
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the forward-shooting method of Marshall et al. [19] do not
converge to the solution due to approximation near b, with
the derivative v′j(b) It has been shown in [17] that for the
special case of power law (i.e. F (v) = vα), a dynamical
system approach can be used with the change of variable

vj(b) = bVj(b), b = ew.

In the backward approach, one searches for the value of
b̄ by solving Equation (5) backward in b subject to the
end condition vj(b̄) = v̄ and looking for the value of b̄
for which the initial value coincides with v. However, the
standard backward-shooting method is inherently unsta-
ble, specially when the bids are near v. The authors in [20]
showed that the backward-shooting method is unstable
even in the symmetric case.

If all the functions Fj(v) are the same, and hence equal to
m̄(v) then, we know from Vickrey 1961 that the symmetric
equilibrium is

b(s) = s−

∫ s

v
Fn−1(x)dx

Fn−1(s)
,

which is obtained as follows:

Instead of n ODEs we have one ODE to solve. The ODE
is

v′(b)(v(b)− b) =
G(v(b))

G′(v(b))
, (7)

where G the value distribution of the n − 1 bidders.
Using the bijection function and the fact that (h−1)′(x) =

1
h′(h−1(x)) Hence, 1

h′(x) (x− h(x))G′(x) = G(x) where h(x)

is the strategy. This means that xG′ = h′G+hG′ = (hG)′.
By simple integration between the minimum value and v,
one gets h(v) = v − 1

G(v)

∫ v

v
G(x) dx.

Nonasymptotic mean-field approach provides a useful error
bound in this open problem

For asymmetric distribution we are able to get a precise er-
ror bound when the distribution Fj are close to their arith-
metic mean, the equilibrium strategies and payoffs can be
approximated in a perturbed range. To do so, we use a
non-asymptotic mean field approach over function space.
First remark that the revenue of the seller, satisfies the in-
distinguishability property, since it is, up to a constant, the
integral of the product

∏
j∈N Fj . We rewrite the function

Fj as Fj(v) = m̄(v) + ϵγj(v), where γj(v) =
Fj(v)−m̄(v)

ϵ ,

m̄(v) = 1
n

∑n
j′=1 Fj′(v) and ϵ = maxj max[v,v̄] |Fj(v) −

m̄(v)|.
Using result 3, one gets a good approximate of the asym-
metric equilibrium strategies and the equilibrium payoff
with deviation order of O(ϵ2). The revenue of the auction-
eer is

R(F1, F2, . . . , Fn) = R(m̄, m̄, . . . , m̄) +O(ϵ2).

4.1 Fast algorithm for computing approximate equilibrium

We construct a fast algorithm for computing approximate
equilibrium. Recall that the first optimality equation can
be written as

1 + (b− vj(b))
∑
j′ ̸=j

F ′
j′(vj′(b))

Fj′(vj′(b))
v′j′(b) = 0.

Define the functional

Hj(b̄, v) := 1 + (b− vj(b))
∑
j′ ̸=j

F ′
j′(vj′(b))

Fj′(vj′(b))
v′j′(b).

We consider polynomial expansion of inverse-bid func-
tions. The function vj is written in a flexible functional

form vj(b) = b̄−
∑+∞

k=0 µj,k(b̄− b)k.

We truncate this polynomial to order K ≥ 2 and replace
it in the first order optimality equation. Denote v̂j,K(b) =

b̄ −
∑K

k=0 µj,k(b̄ − b)k. Taking into account 2n boundary
conditions, one gets that

L(b̄, v) =
n∑

j=1

Hj(b̄, v)
2+

n∑
j=1

(vj(b̄)−v̄)2+
n∑

j=1

(vj(b)−v)2 ≥ 0

has a minimum 0 and the minimizer is the equilibrium
inverse bid strategy v. Hence, it is reasonable to consider
the functional H when each of function v̂j,K belongs the
subspace DK the set of polynomial with degree at most K.
This is space with dimension K+1. The problem becomes

inf
(v̂j,K)j∈DK

L(b̄, v̂) = inf
(µj,k)j,k

L(b̄, v̂)

Remember that b̄ is the highest bid that is submitted in
equilibrium. It is therefore an unknown. Thus, we add this
into the optimization problem. Hence one has 1+n(K+1)
unknown variables to find. Using a grid decomposition
of the domain [v, v̄] with T points inside, we arrive at
a nonlinear least-squares algorithm for selecting b̄ and

(µj,k)j,k by solving inf
(ˆ̄bt)t,(µj,k)j,k

∑T
t=1 L(

ˆ̄bt, v̂K), which

yields

inf
(ˆ̄bt)t,(µj,k)j,k

T∑
t=1

n∑
j=1

Hj(
ˆ̄bt, v̂K)2+

T

n∑
j=1

(v̂j,K(b̄t)− v̄)2 + T

n∑
j=1

(v̂j,K(b)− v)2

The points ˆ̄bt on a grid will be chosen uniformly spaced,

i.e. ˆ̄bt = b̄+ t
T (v − b̄)

Standard Newton-Gauss-Seidel methods provide a very
fast convergence rate to a solution if the initial guess if
appropriately chosen. However the choice of initial data
and guess need to be conducted.

For n ≥ 2 we do not understand yet the behavior of b∗j,α(v).
However, we are able to provide a useful approximation
for asymmetric distribution in function of their deviation
to the mean. Moreover the approximation holds for the
revenue of the seller (auctioneer).

5. CONCLUDING REMARKS

We have presented a mean field framework where the
indistinguishability property can be exploited to cover not
only the asymptotic regime but also the non-asymptotic
regime. In other words, our approximation is suitable not
only for large systems but also for a small system with few
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players. The framework can be used to approximate un-
known functions in heterogeneous systems, in optimization
theory as well as in game theory.

This work suggests several paths for future research.
First, the approach introduced here can be used in a
large number of applications, starting from other auctions
formats in particular to private information models in
general where strategies are functions of types. Second,
more progress needs to be done by considering a less
restrictive action and belief spaces that are far from the
mean of the mean field. The smoothness condition on the
objective function may not be satisfied in practice. Finally,
we would like to understand how large the deviation of the
non-asymptotic result is, compared to a symmetric vector.

REFERENCES

[1] H. Tembine, Distributed Strategic Learning for Wire-
less Engineers, CRC Press/ Taylor & Francis, 496
pages, May 2012, ISBN: 9781439876442.

[2] Jovanovic, Boyan and Rosenthal, Robert W. Anony-
mous sequential games, Journal of Mathematical Eco-
nomics, Elsevier, vol. 17(1), pp. 77-87, February 1988.

[3] J. D. Benamou, Y. Brenier, A computational fluid
mechanics solution to the Monge-Kantorovich mass
transfer problem. Numer. Math., vol. 84, pp. 375-393,
2000.

[4] J.M. Lasry and P.L. Lions. Mean field games. Japan.
J. Math., 2:229-260, 2007.

[5] Jean-Michel Lasry, Pierre-Louis Lions, and O.
Gueant. Mean field games and applications. Paris-
Princeton lectures on Mathematical Finance, 2010

[6] Maskin E. S., J. G. Riley. 2000. Asymmetric auctions.
Rev. Econom. Stud. 67, 413-438.

[7] Lebrun B: First-price auctions in the asymmetric n
bidder case. International Economic Review 40:125-
142, (1999)

[8] Lebrun B: Uniqueness of the equilibrium in first-price
auctions. Games and Economic Behavior 55:131-151,
2006.

[9] M. Kac. Foundations of kinetic theory. Proc. Third
Berkeley Symp. on Math. Statist. and Prob., 3:171-
197, 1956.

[10] D. A. Dawson. Critical dynamics and fluctuations for
a mean-field model of cooperative behavior. Journal
of Statistical Physics, 31:29-85, 1983.

[11] Aumann R.: Markets with a continuum of traders.
Econometrica, 32, 1964.

[12] Villani C.: Optimal transport : old and new, Springer,
Berlin, (2009).

[13] Selten, R. Preispolitik der Mehrprodktenun-
ternehmung in der statischen Theorie, Springer-
Verlag. 1970

[14] P. Kotolenez and T. Kurtz. Macroscopic limits for
stochastic partial differential equations of McKean-
Vlasov type. Probability theory and related fields,
146(1):189-222, 2010

[15] A. S. Sznitman. Topics in propagation of chaos. In
P.L. Hennequin, editor, Springer Verlag Lecture Notes
in Mathematics 1464, Ecole d’Ete de Probabilites de
Saint-Flour XI (1989), pages 165-251, 1991.

[16] G. Fibich, A. Gavious, and E. Solan, Averaging prin-
ciple for second-order approximation of heterogeneous
models with homogeneous models, Proceedings of the

National Academy of Sciences of the United States of
America, doi: 10.1073/pnas.1206867109, PNAS, 2012.

[17] G. Fibich and N. Gavish. Asymmetric first-price auc-
tions: A dynamical systems approach, Mathematics of
research operations, vol. 37 no. 2 219-243, May 2012.

[18] Fibich, G. and Gavious, A., Asymmetric first-price
auctions - a perturbation approach, Mathematics of
Operational Research, 28, 836-852 (2003)

[19] Marshall R. C., M. J. Meurer, J.-F. Richard, W.
Stromquist. Numerical analysis of asymmetric first
price auctions. Games Econom. Behav. 7(2) 193-220.
1994.

[20] Fibich G., N. Gavish. Numerical simulations of asym-
metric first-price auctions. Games Econom. Behav.
72(2) 479-495. 2011.

[21] Vickrey, W.: Counterspeculation, auctions, and com-
petitive sealed tenders. J. Finance 16, 837.1961.

[22] Shapley L. S.: Stochastic games. PNAS 39 (10): 1095-
1100, 1953.

[23] H. Tembine, Mean field stochastic games, notes 2010.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8994


