
Stochastic Dynamic Programming based

Energy Management of HEV’s:

an Experimental Validation

T. Leroy ∗ F. Vidal-Naquet ∗ P. Tona ∗

∗ IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852
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Abstract: This paper addresses an experimental validation of an energy management strategy
on a parallel Hybrid Electric Vehicle (HEV). The strategy under consideration is based on
Stochastic Dynamic Programming. The control law (determining the torque split between the
engine and the motor) is computed off-line by solving an infinite horizon optimization problem. It
results in a time-invariant state feedback controller function of vehicle acceleration and velocity,
battery state of charge and engine state. This controller is first validated in simulation and
then implemented in the vehicle electronic control unit. Experimental results highlight the good
behavior of the control strategy. During a 35 km urban route, the strategy succeeds in regulating
the battery state of charge and judiciously uses the powertrain.

Keywords: Hybrid vehicles; Automotive control; Energy management systems; Optimal
control; Stochastic dynamic programming; On-line control.

1. INTRODUCTION

The past few years have seen an unprecedented effort
towards the definition of energy management strategies
able to manage the energy flow in hybrid electric vehicles
(HEV, see Serrao [2009] for a complete survey). Focusing
the analysis on the charge sustaining hybrids, it is possible
to identify two directions that have been followed by the
industry and by academia.
On the one hand, vehicle manufacturers have predomi-
nantly been developing heuristic controllers, also called
rule-based controllers. If such controllers have proven be-
ing effective and reliable for practical applications, they
also present a structural disadvantage in terms of fuel
consumption with respect to the local optimal control
strategies (see Opila et al. [2009]) and require a long and
expensive development process.
On the other hand, academic institutions have been
proposing a variety of control strategies, some requiring
information about the future driving conditions (off-line
strategies), others not needing any future information
(on-line strategies). Among the former, it is possible to
mention the Pontryagin’s Minimum Principle (Chasse and
Sciarretta [2011], Serrao et al. [2009]) and the Dynamic
Programming (Perez et al. [2006]). These strategies, also
referred to as global optimal strategies, are very useful for
reference purposes thanks to the guarantee of optimality
they provide. Nevertheless, they cannot be implemented in
real vehicles without future driving conditions identifica-
tion. Conversely, several local optimal strategies belonging
to the group of on-line strategies have been developed with
the thought in mind that in a real vehicle information
about the future vehicle state is usually unavailable. It is
evident how such strategies are more suitable for practical
implementation on a vehicle. Among these strategies, a

particular interest has been given to the Equivalent Con-
sumption Minimization Strategy, in its various declina-
tions (Paganelli et al. [2001], Musardo et al. [2005], Chasse
and Sciarretta [2011]). More recently, the potentialities
of the Stochastic Dynamic Programming have been illus-
trated (Tate et al. [2008], Leroy et al. [2012], Bardini and
Leroy [2013]).

More and more studies of the literature focus on on-
line energy management strategies. Nevertheless, very few
include experimental results (Kermani et al. [2009], Pa-
ganelli et al. [2001] Opila et al. [2012]). Experimental tests
are however necessary to validate the potential of optimal
control strategies, in terms of consumption but also in
terms of driveability, implementation and calibration. All
this in a context including numerous additional constraints
in comparison with ideal world of simulation.

The contribution of the paper is to present experimental
results of an optimal energy management strategy, namely
Stochastic Dynamic Programming (SDP). The SDP based
control strategy is designed for a parallel charge sustaining
hybrid vehicle. The control law is computed off-line by
solving an infinite horizon optimization problem and takes
the shape of a time-invariant state feedback controller.
This control law is implemented in the existing control
software of the vehicle electronic control unit. Compared
to ideal hypothesis that are used for designing the con-
trol strategy (straightforward system modeling, neglected
dynamics), lots of constraints due to real-life context may
modify the expected behavior.

The paper is organized as follows. The hybrid electric
vehicle is presented in the next section. Then, the steps of
the control design are detailed: system modeling, definition
of the control problem and problem resolution. The ob-
tained control law is validated in simulation before real-life
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testing. The fourth section deals with energy management
implementation in the existing vehicle control software.
Finally, some experimental vehicle results consisting of a
35 km route under urban conditions are presented.

2. VEHICLE

2.1 Vehicle architecture

The hybrid electric vehicle considered for this study is a
parallel full hybrid leisure activity vehicle. This prototype
is used as a laboratory car for experimental validation
of models and hybrid control strategies. Its architecture
is presented in Figure 1, and its basic specifications are
reported in Table 1.

Architecture Pre-transmission parallel

Engine 4 cylinders, 1.4 L, 63 kW

Motor 38 kW

Transmission Automated manual gearbox

Battery Li-ion, 39 Ah

Vehicle Mass 1720 kg

Table 1. Basic vehicle information

Gear Box

Engine

Motor

Battery + -

Clutch

Te

Tm

Tpwt

Fig. 1. Vehicle architecture scheme.

The electric motor is located upstream the transmission,
and is permanently coupled to the 5-speed automated
manual gearbox primary shaft through a series of gear
wheels, reducing the electric motor rotation speed by
a total ratio of rtr. By design, this ratio ensures that
both engine and electric motor can simultaneously reach
their maximum speed. The electric motor is used for full
electric mode, take-off assistance, and battery recharge.
Notice that although the vehicle is a plug-in hybrid electric
vehicle, it is used as a non plug-in one for this study since
the paper focuses on charge sustaining control strategy.

2.2 Notes on the pre-transmission architecture

On the one hand, its pre-transmission positioning per-
mits a wider range of use of the electric motor. On the
other hand, torque interruption cannot be avoided during
gearshifts, and the permanently increased primary shaft
inertia is an issue : it implies a specific electric motor
speed control during gearshifts to avoid damaging the
gearbox. For a extended description of the gearshift control
algorithms, please refer to Zito [2012].

3. CONTROLLER DESIGN AND SIMULATION
VALIDATION

3.1 Notes on the system model

The model here employed consists of a low-dimensional
dynamical model neglecting transient engine operation.
The states of the system are: the velocity of the vehicle,
its acceleration, the battery State of Charge (SOC), and
the engine state, designated by v, a, x, and eon, respec-
tively. The engine state eon is identified by a Boolean
variable, with eon = 0 when the engine is off and
eon = 1 when it is on. For a more compact notation, let
Xk = (vk, ak, xk, eon,k)T be the state of the system at
the kth time sample.
Let Te,k, Tm,k, and Tpwt,k be, respectively, the torque
of the engine, the torque of the motor, and the torque
delivered by the powertrain to the wheel, all at the time
instant k (see Figure 1 for the representation of the differ-
ent torques in the powertrain). Tpwt,k is an input to the
energy management strategy, its value mainly depends on
the position of the accelerator pedal. Let uk ∈ Uk be the
control variable, defined as

uk = Te,k

with Uk encompassing all the feasible values of the control
variable at time k. The choice of the engine torque (over
the motor torque) as the control variable is arbitrary since
once the torque identified by the control variable is defined,
the other torque is univocally defined by

(Te,k + Tm,k · rtr · ηtr) · rgb,k · ηgb,k = Tpwt,k (1)

where rgb,k is the reduction ratio between the engine and
the wheel for the selected gear at time k, rtr and ηtr are
the reduction ratio and efficiency between the motor and
the primary shaft respectively, ηgb,k is the efficiency of the
path to the wheels.
Gathering the states own dynamics, the system dynamics
write as

Xk+1 = F (Xk, uk) (2)

Among the states, particular interest is dictated by the
SOC dynamics, following

xk+1 = g(xk, uk)

For a thorough treatise on the formulations presented
above, the reader is invited to refer to Guzzella and
Sciarretta [2007].

3.2 Definition of the control problem

Considering a single objective optimization directed to
minimize the fuel consumption alone, the instantaneous
cost function C is defined as

C(Xk, uk) = Qfuel(Xk, uk) (3)

where Qfuel(·) is the fuel mass flow in the engine at the
instant k.
The control problem consists in finding the control law
u⋆ that minimizes the integral fuel consumption over the
driving cycle while meeting the system constraints
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u⋆ = arg min
u∈U

[

N
∑

k=1

C(Xk, uk)

]

subject to







Xk+1 = F (Xk, uk)

xN = x̄

G(Xk, uk) ≤ 0

(4)

N being the final sample time. The first constraint consists
in the system following its dynamics (2). The second
constraint imposes the final SOC value being equal to
a target value x̄ - a necessary condition for insuring
the self sustainability of the battery SOC. The third
constraint groups into function G all the instantaneous
system constraints, such as the imposition of the SOC level
within given boundaries or the powertrain torque limits.

3.3 Stochastic Dynamic Programming

Shortest path problem An on-line solution for the con-
strained optimization problem defined in (4) is provided
by the Stochastic Dynamic Programming (for an extended
treatise on the subject, refer to Bertsekas [2005]). The first
prerequisite for employing the SDP for energy manage-
ment of the powertrain is seeing the driving cycle as a
Markov chain. This means assuming that the next time
step acceleration solely depends on the current vehicle
state and not on previous ones. Such a statement implies
game-shifting consequences as it entails the elimination of
the time dimension from the optimization problem (4). In
this way the problem is reported from a global optimiza-
tion to a local optimization, whose solution is a control
law that can be easily implemented on-line.
The cost function Csdp is given by

Csdp (Xk, uk) = Qfuel (Xk, uk) + β (eon,k+1 − eon,k)
2

where β is a proportionality coefficient determining the
cost associated with an engine event. The control variable
u⋆ is found by solving the stochastic shortest path problem

u⋆ (Xk) = arg min
u∈U

E

[

∞
∑

n=1

Csdp (Xn, u⋆)

+ α (xk − x̄)
2
· P (Von,k+1 = 0)

] (5)

where Von defines the vehicle state (equals to 0 if the vehi-
cle is off and equals to 1 if the vehicle is on). The selected
control strategy u⋆ is the one that minimizes the expected
cost (i.e. the cost of each system state times the probability
of it taking place) over an infinite horizon, starting from
the present system condition Xk. Considering that, with
the removal of the time dependence, the terminal condition
in (4) is lost, the control on the SOC oscillations is realized
by means of a penalty in the cost function proportional to
the distance from the target SOC, x̄. The importance of
this penalty is determined by the value of parameter α,
another proportionality coefficient. It is also noteworthy
to point out that this cost is, again, a probabilistic cost,
having as a multiplier the probability of shutting off the
vehicle (key off) in the following time step 1 (Tate et al.
[2008]).

1 This implies the SOC in mainly regulated when the vehicle is close

to the zero velocity-zero acceleration state. This constraint is relaxed

when the vehicle is far from a potential key off.

Problem resolution Figure 2 presents a scheme of the
resolution of problem (5).

Control law

Vehicle
Transmission

Engine
Battery
Motor

System
parameters

Driving statistics Recursive
resolution of
the stochastic
shortest path
problem (4)

Off-line
computation

u⋆

Calibration
parameters

α, β

Fig. 2. Resolution of the shortest path problem.

The resolution of problem (5) requires three types of
inputs.
First, some system parameters are necessary to model
the system: vehicle (mass, road law), transmission (gear
ratios and efficiencies), engine (fuel map, torque extrema),
battery (capacity, SOC limits, nominal voltage, internal
resistance), motor (torque extrema, efficiency).
The second input is the driving statistics. Indeed, the
probability associated to the future system states are
derived from a statistical analysis of a sample of official
driving cycles and real-driving routes (Leroy et al. [2012]).
The last inputs are the calibration parameters. The values
of these parameters are chosen with the goal of minimizing
the fuel consumption while insuring the system compliance
with the constraints in (4). Parameter α is tuned to
allow a sufficient SOC maintainability and parameter β is
calibrated to avoid having too many engine events (Bardini
and Leroy [2013]).

In practice, the definition of the strategy consists in solving
recursively (5) off-line for all the possible combinations
of the four states v, a, x, and eon, which are properly
discretized.

The output of the off-line computation is a four dimen-
sional map, with the states on the axes and containing
the optimal values of the control variable u⋆. During the
vehicle utilization, the map dictates the optimal value of
the engine torque for the current vehicle state, managing
the energy split in the powertrain on-line. Figure 3 shows
the required engine torque for different speed, acceleration
and SOC, in case the engine is on. On the one hand, the
engine torque is high at low SOC while the electric motor
torque is negative to recharge the battery. On the other
hand, at high SOC, the engine torque is lower than the
powertrain torque requested, the rest being carried out
by the electric motor. In addition, notice that the SOC
regulation is relaxed at high speed as mentioned above.

3.4 Simulation results

Before being implemented in the Electronic Control Unit
(ECU) of the vehicle, the strategy is validated in simula-
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Fig. 3. Control law obtained via SDP.

tion. This validation consists in testing the strategy over
a sample of 100 random cycles (see Leroy et al. [2012])
representing different driving conditions (urban, suburban,
and mixed), in order to assess the robustness to real-life
utilization conditions.

The results are presented in Table 2. The designed strat-
egy is compared to some reference 2 . The initial SOC is
common to all cycles and equal to 50%. The consumption
obtained by SDP is close to the optimal. The mean of the
final SOC is above 45%, meaning that the charge sustain-
ability is well ensured 3 . The number of engine events is
limited to 2 events/minute by adjusting parameter β.

Consump- Final Engine Gain /
tion SOC events engine

[l/100 km] [%] [nb/min] only [%]

Engine only 6.93 - - -

Ref opti 4.13 50 6.3 40.4

SDP 4.66 46.8 2 32.8

Table 2. Simulation results for 100 random
cycles.

4. IMPLEMENTATION

The SDP-based energy management strategy is integrated
into the main control algorithm of the hybrid electric
vehicle. Figure 4 gives a scheme of the location of the
strategy in the vehicle control software.

Driver
interpretation

SOC

Energy
management

strategy Dynamics
coordination

Motor
control

Engine
control

Gearbox
control

Measurements

Pedal
position

T
sp
pwt

GBsp T osp
e

T osp
m

T sp
e , Nsp

e

GBsp

T sp
m , Nsp

m

speed

Fig. 4. Implementation of the SDP-based energy manage-
ment strategy.

2 Reference results are obtained using a Pontryagin’s Minimum

Principle based control strategy assuming the 100 cycles perfectly

know in advance. These results constitute the optimum that can be

reach by the vehicle.
3 Note that parameter α is calibrated to ensure that the final SOC

in all the 100 random driving cycles is equal or greater than 40%.

The SOC excursion is also kept between the SOC limits.

Focus on the software integration is mainly to ensure a
safe operation of the vehicle and an acceptable driveability
performance. Now, the corresponding blocs of Figure 4 are
detailed.

Driver interpretation Using driver input and operating
conditions, torque to the wheel T

sp
pwt and transmission

ratio GBsp setpoints are computed. The gearshift laws
are designed off-line using the Pontryagin’s Minimum
Principle, taking into account a balance between sportiness
and fuel economy (Vidal-Naquet and Zito [2012]).

Energy management strategy Optimal engine torque set-
point, T osp

e , is calculated by linear interpolation of the
previously computed map presented in Section 3.3. The
inputs are: the vehicle acceleration setpoint (derived from
the powertrain torque setpoint, T

sp
pwt, using the vehicle

parameters), the measured vehicle velocity, the estimated
battery SOC (given by the Battery Management System)
and the current engine state.
Optimal motor torque setpoint, T osp

m , is then computed
thanks to equation (1). Notice that, based on driveability
constraints, full electric mode is forced under a given
vehicle speed.

Dynamics coordination Transients phenomena and coor-
dination of the powertrain components are dealt with
here. For example, gearshifts imply the following events:
engine torque cut-off, clutch opening, motor torque cut-off,
gearbox disengaging, primary shaft speed synchronization
using the motor, gearbox engaging, clutch closing, and
torque application. The engine is also synchronized with
the primary shaft. As a consequence, dynamics coordi-
nation output setpoints can be either torque or speed
setpoints (T sp

m , T sp
e , Nsp

m , Nsp
e ).

Furthermore, torque interruptions, as well as steep changes
of optimal torque setpoints, need to be carefully filtered,
to avoid producing a very degraded driving comfort.
Dynamics compensation is also made: when the observed
engine torque is different from its setpoint, because of its
slow response time or during clutch operation, the torque
difference is compensated using the electric motor.

Low-level controllers Additional strategies are developed
to protect powertrain components and take into account
their dynamic limitations. Using the electric motor, an
anti-jerk filter is added to prevent strong oscillations of
the vehicle driveline during transients. Thermal derating
of the motor, as well as battery protection, diminishes
the available electric torque dynamically, and cannot be
directly integrated in the SDP based energy management.
Furthermore, the thermal torque available during warm-
up is limited, to prevent engine damage.

In the end, one can easily understand that all these
strategies create discrepancies between the optimal com-
mand from the energy management strategy and the final
torques actually applied to the engine and the electric mo-
tor. Still, the energy management controller was designed
using a very simple model, which proved to be sufficient,
as it is demonstrated in the next section.

5. EXPERIMENTAL RESULTS

The following results come from a 35 km route under
urban conditions. The initial SOC is about 70 %. A first
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macroscopic analysis is done on the whole route. Then a
focus is put on a particular part of the journey to highlight
the system behavior during transient conditions.

5.1 Whole route

Figure 5 presents experimental results over the whole
urban route. Figure 5(a) gives the vehicle speed, the engine
state and the battery state of charge. During the first
part of the route, motor only mode is favored. Indeed,
during the first 1500 seconds, the battery SOC is largely
above the target (50 %). Then, the energy management
strategy succeeds in keeping the SOC around to the
target value. Notice that the duration of the journey is
not know in advance. If the vehicle had been shut down
before the end of the route, final battery SOC whould
have been identically well maintained. This is a very
important aspect that highlights the robustness of the
proposed strategy. Figure 5(b) presents the engine and
motor torques (reported to the primary shaft). One can
notice that the engine torque is used more in the second
part of the route to ensure the battery SOC sustainability.
Negative motor torque permits to recharge the battery
during the vehicle decelerations.

Figure 5 emphasizes that, despite the energy management
strategy is derived from a simple model that neglects many
transient and constraint aspects, the controller succeeds
in sustaining the battery SOC. Unfortunately, rolling test
bench was not available to valid the strategy in terms of
fuel consumption. Nevertheless, Figure 6 highlights that
the engine is mainly used in its best efficiency area, i.e. at
high torque.
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Fig. 6. Engine utilization points during driving.

5.2 Zoom on a part of the route

Figure 7 details a part of the experiment presented
in Figure 5. The upper figure gives the vehicle speed profile
and the engine state. This speed profile is made up of a
take off followed by a deceleration (due to traffic), then
another acceleration followed by a roughly constant speed
and finally a braking until vehicle stop. The second figure
reports the evolutions of the accelerator pedal position and
the gear ratio. The third one presents the engine and motor
torque setpoints coming from both energy management
strategy and dynamics coordination -T osp

e , T osp
m , T sp

e and
T sp

m - and the global torque powertrain, T
sp
pwt, required by

the driver. Finally, the bottom figure gives the engine
speed and primary shaft speed.

At the beginning, the vehicle is propelled thanks to the
motor during take off. When the driver requires a high
torque through the accelerator pedal, the engine is started.
The electric motor ensures the torque transition until the
clutch is closed, which happens when the engine speed set-
point is reached. Notice that the engine and motor torque
setpoints are modified by the dynamics coordination block.
When the vehicle decelerates, the engine is turned off and
motor torque becomes negative to ensure battery recharg-
ing.
The next acceleration requires the engine which is then
turned on again. During the gear shift at 3870 s, the
dynamics coordination specifies a zero engine torque while
the clutch is open and requires a certain motor torque to
ensure a good gearshift (needed to limit the inertia, see
Section 2.2).
Then, the vehicle speed is oscillating around 40 km/h
during about 40 s. The driver controls the speed by adjust-
ing the accelerator pedal. The resulting powertrain torque
oscillates between positive and negative values. During
this part, the engine torque is higher than the powertrain
torque, meaning the battery is being recharged (negative
motor torque). It is really important to notice that, despite
a negative powertrain torque, engine is not turned off and
follows the variation of the required powertrain torque.
This highlights the ability of the SDP-based strategy to
be relevant in terms of driveability (providing the driver
with the expected engine response to the pedal).
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Fig. 7. Zoom on a particular part of the driving cycle.

6. CONCLUSION

This paper presents an experimental validation of an en-
ergy management strategy based on Stochastic Dynamic
Programming.
First, the methodology for designing the torque split con-
troller is presented. It consists in an off-line resolution of an
infinite horizon optimization problem. The resulting time-
invariant control law (engine torque) takes the shape of
a straightforward four dimensional map with the states
on the axes (vehicle acceleration and velocity, battery
SOC, engine state). The strategy is calibrated off-line to
match the performance objectives (low consumption, SOC
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Fig. 5. Experimental results obtained on vehicle during driving.

maintainability, number of engine events) using a hundred
of randomly generated cycles, assessing the robustness of
the strategy regarding very different driving conditions.
Second, the controller is implemented in the electronic con-
trol unit of the vehicle. Additional constraints not taken
into account in the controller design are added downstream
the control strategy (namely dynamics coordination and
hardware constraints).
Finally, an experimental validation on a pre-transmission
parallel hybrid vehicle is realized. Results show that, de-
spite the simple model used for the controller, the energy
management strategy succeeds in maintaining the battery
state of charge while ensuring a good engine utilization
and good driveability. This proves the capacity of a control
optimal based strategy to be relevant in an HEV industrial
context.
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