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Abstract: An adaptive regulator is proposed for parameter dependent families of linear systems
subject to changes in the zero structure. Adaptation is required for the parameter dependent
family of plants but continuous adaptive regulation is limited by relative degree and right half
plane zeros. A form of adaptive regulation is presented that accommodates parameter induced
changes in the zero structure. The conditions for regulation divide the parameter space into
disjoint sets thereby defining subfamilies of plants. These plant subfamilies guide controller
design. Controller stability is guaranteed by Linear Matrix Inequalities (LMI) and a switch
logic based on Lyapunov functions.
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1. INTRODUCTION

A single controller may be inadequate for systems that ex-
perience change in their zero structure. Such systems may
be modeled by a structurally diverse family of plants. At
any given time the appropriate plant model is uncertain.
Multiple model adaptive techniques have been proposed to
accommodate such systems Anderson (2000); Angeli and
Mosca (2002); Boskovic (2008). Multiple model adaptation
selects a controller from a predefined set. In general, the
set of controllers is finite although the family of plants may
be continuous.

The importance of the open loop zero structure for closed
loop regulation has long been known, c.f. Kwakernaak
and Sivan (1991); Francis (1977); Kwatny et al. (1991).
For a parameter-dependent family of plants, points in
the parameter space that do not satisfy the open loop
existence conditions for regulator design are called singular
points. Singular points form codimension-1 submanifolds
that divide the parameter space into disjoint sets. These
disjoint sets of the parameter space form subfamilies of
plants that have the same zero-structure. A regulator
designed for one subfamily will generically fail to regulate
a plant in a different subfamily Berg and Kwatny (1994).
This bound on simultaneous regulation of subfamilies is
the basis for the novel multiple model adaptive control
design technique presented here.

The design of a finite set of controllers to guarantee
stability across the family of plants, called the covering
problem, is fundamental. Several authors have considered
covering from the perspective of controller robustness,
Anderson (2000); Boskovic (2008). These designs start
with a finite set of plant models and employ robustness
metrics to cover the family of plants. We propose a
covering method that starts with plant subfamilies and
obtains controllers for convex regions of the subfamily’s
parameter space.

The design of a switch logic to select a stabilizing controller
from the set of controllers is the second fundamental prob-
lem of multi-model adaptive control. The design method
proposed here unifies switch logic and control covering into
a single computation. Recall that a single algebraic Riccati
equation (ARE) obtains a quadratic Lyapunov function
matrix and linear quadratic regulator (LQR) gains. And
the quadratic ARE can be written as a convex linear
matrix inequality (LMI) to facilitate fast solution. A set
of algebraic Riccati inequalities for a convex region of the
subfamily’s parameter space may be solved for a common
LQR state feedback gain and a common quadratic Lya-
punov function (CQLF). By choosing Lyapunov function
based switch logic and LQR control gains, the multi-model
covering and switch logic design computations are unified
into a set of LMIs.

This paper is organized as follows. Section 2 defines the
specific problem considered herein. Section 3 summarizes
the regulation problem and details the relationship be-
tween zero dynamics and simultaneous regulation. Sec-
tion 4 presents our conception of multiple model adaptive
regulation (MMAR). Section 5, our main results, details
MMAR. Section 6 gives simulation results and Section 7
summarizes the main conclusions.

2. PROBLEM DEFINITION

Define a parameter dependent family of linear plants

ẋ=Aθx+Bθu (1)

e=Cθx

as P (θ) ∈ P where x ∈ Rn, u ∈ Rm, e ∈ Rp. The
parameter dependent matrices are Aθ = A (θ) , Bθ =
B (θ) , Cθ = C (θ) where θ ∈ Rk is a vector of unknown but
bounded constant parameters. The goal is to regulate the
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plant with respect to a set of exogenous signals generated
by the model

ϑ̇ = Zϑ (2)

where ϑ ∈ Rr. The set of exogenous signals considered in
this paper are step commands and constant disturbances
such that Z = 0r. The exogenous signals are assumed to
drive the plant (1) through matrices E and F ; accordingly

ẋ=Aθx+Bθu+ Eϑ

ϑ̇=Zϑ (3)

e=Cθx+ Fϑ

As is well known, such disturbance models can effectively
characterize command signals and disturbances. The prob-
lem of designing robust regulators for systems described
by (3) is well studied, e.g., Davison (1972); Francis (1977);
Kwatny and Kalnitsky (1978). In this work an adaptive
regulator is sought that associates an appropriate robust
regulator with the actual occurring member of the plant
family. The two central problems in doing this are:

• Covering Problem: Given a range of plant parameters
θ, design a set of controllers C such that each P (θ) ∈
P is stabilized by at least one Ci ∈ C.
• Switch Logic Design: Given a plant family P and a

finite control covering, design a switching logic that
guarantees convergence to a stabilizing regulator for
the actual occurring plant.

In subsequent sections, these issues will be addressed.

3. REGULATION

Before proceeding with adaptive regulation of the param-
eter dependent system defined in (3) it is necessary to
summarize some general results for the regulation of an
individual linear system.

3.1 The Linear Regulator Problem

Consider a parameter independent linear system with
disturbance state vector ϑ

ẋ=Ax+Bu+ Eϑ

ϑ̇=Zϑ (4)

e=Cx+ Fϑ

It will be assumed that B and C are of full rank.

Definition 1. Regulation requires both lim
t→∞

e (t) = 0 and

internal stability. Regulation in the presence of variation
in the plant matrices A,B,C is known as robust regulation
or structurally stable regulation.

Structurally stable regulation uses error feedback and
incorporates an internal model of the external signals to
be tracked and disturbances to be rejected.

Theorem 2. Francis (1977) Necessary and sufficient condi-
tions for structurally stable regulation are

(1) (A,B) stabilizable
(2) (C,A) detectable

(3) Rank

[
λi −A B
C 0

]
= n+ r for λi an eigenvalue of Z

The third condition requires the plant transmission zeros
to be different than the spectrum of Z. Furthermore, there
must be at least as many controls as there are outputs.
Since it is always possible to reduce the number of controls,
we will henceforth assume r = m, so the system is square.

3.2 Loss of Simultaneous Regulation

Theorem 2 specifies the open loop system {A,B,C} for
which robust regulation is possible. Now consider robust
regulation failure. The system matrix for {Aθ, Bθ, Cθ} is

Γθ (s) =

[
sI −Aθ Bθ
Cθ 0

]
Definition 3. The set of points in parameter space on
which regulation fails is the singular surface,{

θ ∈ Rk : det Γθ (0) = 0
}

The system matrix Γθ (s) can lose rank due to a zero at the
origin and also due to a defect in the input Bθ or output
Cθ matrices. The singular surface is dimension k − 1, or
codimension one in the parameter space. Since Γθ is either
a regular or singular pencil for fixed θ, the singular surface
partitions the parameter space into disjoint sets. Theorem
4 parallels Berg and Kwatny (1994).

Theorem 4. Consider a region of the parameter space bi-
sected by the singular surface. A robust regulator designed
for one half of the space will be unstable in the adjacent
half space for generic systems.

The singular surface divides the original family of plants
into sub-families. A robust regulator designed for (4) and
applied to (3) will fail to stabilize adjacent sub-families.

Proof: Loss of simultaneous regulation at a singular surface
is introduced in Kwatny et al. (1991) and proved in Berg
and Kwatny (1994). Loss of stability at a singular surface
for a state feedback regulator design is detailed in Section
5.1.

Traversing a singular surface is a sufficient but not a
necessary condition for loss of stability. Loss of stability is
certain at the singular surface. Loss of stability is possible
within an open region of the parameter space. In summary,
the singular surface partitions the parameter space. The
resulting disjoint regions are a starting point for multiple
model controller selection.

4. MULTIPLE MODEL ADAPTIVE REGULATION

4.1 Covering

Due to Theorem 4, a multiple model approach is employed
to regulate the family of plants P. A generic multiple
model control structure is illustrated in Figure 1. This
generic structure can support numerous control design
methods for Ci, even within the same set C.
Here each Ci regulates some region of P and each P (θ) ∈
P is regulated by at least one Ci ∈ C. Previous authors,
for example Anderson (2000); Boskovic (2008), design
controllers for a finite set of plant models and then employ
robustness metrics to ensure P is covered. In this paper,
controllers are designed for a finite set of convex polytopes
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Fig. 1. Multiple Model Control Structure

Fig. 2. Lyapunov Function V with d
dtV < 0

Ωi in the parameter space as defined in Section 4.3.2
such that P ⊆ {P (θ) |θ ∈

⋃
Ωi}. This covering method

accommodates singular surfaces in the parameter space.

Advantages of convex regions Ωi include flexibility in shap-
ing regions, less overlap of regions than operator norms
(e.g. ‖·‖2), and efficient computation due to underlying
convexity.

A disadvantage of this covering method is that a Common
Quadratic Lyapunov Function (CQLF) must exist for all
P (θ) ∈ Ωi. This CQLF requirement is stronger than
exponential stability and may increase cardinality of C.
However, the CQLF undergirds the convex algorithm for
covering.

4.2 Switching

A CQLF produces a scalar metric that can be tested to
ensure stability. A Lyapunov function for the i’th convex
polytope Ωi with final state xf ,

Vi = (x− xf )
T
Pi (x− xf ) (5)

is monitored for the “in the loop” controller. If the Lya-
punov function is decrescent, ie

Vi (τ + dt) < Vi (τ) (6)

as shown in Figure 2, then the correct controller has been
identified. If the “on” Lyapunov function ceases to be
decrescent, a different controller is switched on. At least
one stabilizing controller exists by design. The controllers
are tried “in the loop.” For more detail see the prerouted
switch logic in Angeli and Mosca (2002). When applied
to linear systems, inequality (6) may be strengthened. A
Lyapunov function with bounds

0 ≤ V (x) ≤ k2 ‖x‖2 , d
dtV (x) ≤ −k3 ‖x‖2 ,

has a time rate of change Khalil (2002)

V̇ ≤ −
k3

k2
V (7)

For the linear quadratic case k2 = λmaxP and k3 =
λminC

T
z Cz where P and CTz Cz are symmetric positive

definite matrices defined in Sec. 4.3. Combine (5), (6), and
(7) for the switch logic inequality

x̃ (τ + dt)
T
Pix̃ (τ + dt) ≤ γ x̃ (τ)

T
Pix̃ (τ) (8)

where x̃ = x− xf and

e
−
λminC

T
z Cz

λmaxP
·dt
< γ < 1 (9)

If (8) is False a different controller is switched on. In
general, the final state xf = lim

t→∞
x(t) of (8) is a function of

unknown parameters, controller gains, and the exogenous
input. Although the observer based synthesis method
(Section 5.2) provides an estimate of the exogenous input
ϑ, estimation of xf (ϑ) is beyond the scope of this note.
Since the regulator design of Section 5 is independent
of ϑ and xf (ϑ), this paper assumes that the unknown
component of ϑ is arbitrarily small in relation to (7).

4.3 Common Quadratic Lyapunov Function

A Common Quadratic Lyapunov Function (CQLF) is
sought for subfamilies of the parameter dependent family
of plants (1). The next two sections adapt the LMI method
in Boyd et al. (1994), pg. 115 to provide state feedback
gains and CQLFs for systems described by (3).

LQR as LMI The quadratic LQR problem can be
expressed as a Linear Matrix Inequality (LMI). Given a
linear system

ẋ = Ax+Bu, z = Czx+Dzu (10)

with state feedback control u = Kx the LQR problem of
minimizing the energy ∫∞

0
zT z dt

can be solved by the inequality[
AQ+QAT +BY + Y TBT (CzQ+DzY )

T

CzQ+DzY −I

]
< 0 (11)

which is a function of system parameters A & B, design
weights Cz & Dz, and is convex in the symmetric matrix

variable Q > 0. Here Y = −
(
DT
z Dz

)−1
BT with Lya-

punov matrix P = Q−1. The above LMI is equivalent
to the quadratic Riccati matrix inequality via the Shur
complement

ATP + PA+ CTz Cz − PB
(
DT
z Dz

)−1
BTP ≤ 0

The controller is K = Y Q−1 = −
(
DT
z Dz

)−1
BTP .

Polytopic LMI Now apply (11) to obtain a common
regulator for a subfamily of P. Consider first the parameter
space θ. Specify values in the parameter space as θij where
the index j signifies the vertex and the index i signifies the
convex polytope Ωi. This polytope is defined by the convex
hull (Co) of its vertices, i.e.

Ωi ≡ Co {θij} (12)

A family of plants with subfamilies on each side of the
singular surface |Γθ (0)| = 0 will need polytopes Ωi, i ∈
{1, . . . , N} where N ≥ 2. Figure 3 is an example covering
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Fig. 3. Convex Regions Cover the Parameter Space

of a parameter space containing singular surface where
N = 3. The index j for a vertex θij in polytope Ωi takes
values in the set {1, . . . , vi} where for example vi = 2k for
rectangular polytopes in θ ∈ Rk.

The singular surface is a natural partition for plant sub-
families. Per Theorem 4, if for any θ ∈ Ωi, |Γθ (0)| = 0,
then Ωi contains singular surface and neither a common
regulator nor a CQLF exist for all θ ∈ Ωi.

The map θ 7→ P (θ) is assumed to be linear in θ; if not,
a re-parameterization is required. Thus convexity in the
parameter space is preserved in the family of plants of (1).
Now extend the inequality (11) to a convex subfamily of
plants.

Definition 5. The image of the set of vertices {θij} under
P (·) is the set of plants {P (θij)}. A set of LMIs for
{P (θij)} is a polytopic LMI.

In particular, consider the polytopic LMI where the in-
equality (11) is enforced at each vertex θij of Ωi,LMI (θi1)

LMI (θi2)
. . .

 < 0 (13)

This polytopic LMI is formed by substituting

A→ A (θij), B → B (θij)

into (11) at vertices θij ∈ {θi1, θi2, . . . , θivi} of polytope
Ωi to obtain a set of inequalities for simultaneous solution.
Details of A (θij), B (θij) are left to Section 5.

Each polytopic LMI (13) obtains a stabilizing controller
Ci ∈ C with state feedback control Ki and Lyapunov
function matrix Pi for the continuous set of plants
{P (θ) |θ ∈ Ωi}. The state feedback control is

Ki = −
(
DT
z Dz

)−1
BTi Pi

with Lyapunov function matrix Pi = Q−1i . Choose Bi,

Bi ∈ Co {B (θij)} (14)

to obtain a constant Ki. It can be shown that if (13) holds
for all B (θij) and Bi is chosen according to (14), then a
solution Pi of the polytopic LMI

ATCL (θij)Pi + PiACL (θij) +Qi < 0 (15)

with ACL (θij) = A (θij) + B (θij)Ki exists. The Pi of
(15) is used in place of the Pi of (13) for the switch logic
of section 4.2 if either {B (θij)} is nonsingleton or if the
LMI (θij) in (13) are assigned different Cz, Dz, ie Dz (θij).

The distinction between LMI and polytopic LMI is con-
venient for assembling the inequalities. A numerical solver
makes no distinction between an LMI and a set of LMIs.

5. MULTI-MODEL ADAPTIVE REGULATION

Now apply (13) to design the set of controllers {C1, . . . , CN}
of the multi-model controller in Figure 1. Two types of
regulator design are identified in Kwatny and Kalnitsky
(1978):

• Error Augmentation, Davison (1972): The distur-
bance model (2) is used explicitly as the controller.
This controller is driven by the error dynamics, has r
states, and an observer is not required.

• Disturbance Estimation, Francis (1977): The distur-
bance model (2) is embedded in the observer. For a
full order observer, the controller has n+ r states.

The design of Error Augmentation type controllers for
MMAR is completed below. The design of Disturbance
Estimation type controllers is shown to be a Bilinear
Matrix Inequality.

5.1 Error Augmentation & Full State Feedback

Design A robust regulator design procedure for a pa-
rameter dependent plant of type (3) is given in Kwatny
and Kalnitsky (1978), Davison (1972):

• Define an r dimensional, error driven dynamic system
with state η that incorporates the disturbance model,

η̇ = Zη + Je

where J is chosen such that (J, Z) is controllable.

• Form the composite system from (4)[
ẋ
η̇

]
=

[
A 0
JC Z

] [
x
η

]
+

[
B
0

]
u

and solve for the stabilizing state feedback control

u = [Kx Kη ] ·
[
x
η

]
(16)

Common Quadratic Solution The plant matrices for use
in (13) are

A (θij) =

[
Aθij 0
JiCθij Z

]
, B (θij) =

[
Bθij

0

]
(17)

Loss of Simultaneous Regulation According to Theorem
4, traversal of the singular surface is sufficient for loss of
stability. The plant and compensator closed loop system

ẋcl = Aclxcl with state xcl = [ x η ]
T

has dynamics matrix
Acl: [

Aθ +BθKx BθKη

JCθ Z

]
(18)

Recall that Z = 0r for step reference signals and constant
disturbances. Factor (18) as[

I 0
0 J

]
·
[
Aθ Bθ
Cθ 0

]
·
[
I 0
Kx Kη

]
(19)

where J is dimension r × p, Kη is dimension p × r, and
both J , Kη are full rank by design. Generically the singular
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surface is intersected transversely and one parameter at
a time. Thus (19) losses rank when det Γθ (0) = 0 by
application of rank inequalities.

5.2 Disturbance Estimation

Implement feedback control (4) using observed states x̂, ϑ̂,

u = K̄

[
x̂

ϑ̂

]
The closed loop dynamics of the plant, exogenous dynam-
ics, and observer is

ẋcl = Aclxcl, e = Cclxcl

with state vector

xcl =
[
x ˆ̄x ϑ

]
=
[
x x̂ ϑ̂ ϑ

]
where

Acl =

 A BK̄ E
−LC Ā+ LC̄ +BK̄ −LF

0 0 Z

,

Ccl = [C 0 F ]

and

Ā =

[
A E
0 Z

]
, B̄ =

[
B
0

]
,

C̄ = [C F ], K̄ = [Kx Kϑ ].

Let A11 be the top left block of the partitioned Acl. Ac-
count for plant (θ) and control(i)/observer(o) mismatch,

A11 =

[
Aθ BθK̄i

−LiCθ Āo + LiC̄o + B̄oK̄i

]
where the composite matrices are

Āo =

[
Ao Eo
0 Z

]
, B̄o =

[
Bo
0

]
, C̄o = [Co Fo ],

and the key requirement is that the spectrum of Z is
contained in the spectrum of the observer dynamics,

σ (Z) ⊂ σ
(
Āo + LiC̄o + B̄oK̄i

)
(20)

The design parameters are controller gains K̄i, Li and
observer matrices Āo,B̄o,C̄o subject to the internal model
condition (20). The algebraic Riccati equation

AT11P + PA11 < 0 (21)

is linear in both the independent variable P and design
parameters K̄i, Li, Āo, B̄o, C̄o. Hence, (21) is a Bilinear
Linear Matrix Inequality (BLMI).

Remark 6. Were the observer model an exact copy of the
true plant dynamics, ie Ao = Aθ & etc., the separation
principle would hold and A11 could be transformed to an
upper triangular form. Then (11) could be solved for Ki

in Ao + BoKi and again for the dual problem of Li in
ĀTo + C̄To L

T
i . In this idealized case a CQLF is certain for

A11 in upper triangular form.

6. EXAMPLE

Consider a simplification of the aircraft longitudinal dy-
namics model in Kwatny et al. (1991). The states x1, x2,

Fig. 4. Example Problem Parameter Space with Two
Subfamilies

and x3 approximate angle of attack, pitch, and pitch rate
respectively. The angle of attack has relative degree one
and the zero structure of pitch & pitch rate is preserved.
The zero structure changes with operation at low and high
angles of attack.

A =

[
θ1 0 1
0 0 1
θ2 0 θ3

]
, B =

[
1
0
0

]
,

C = [ 1 1 0 ], D = 0, xT = [ x1 x2 x3 ],

Z = 0, F = −1, ET = [ 0 0 1 ]

Here θ1, θ2 and θ3 are unknown but constant parameters.
When θ2 = 0 the system is structurally unstable with

• a transmission zero at s = 0,
• a pole at the origin,
• (A,B) is uncontrollable

Parameter variation for the damping terms are

−5 < θ1 < −4, −5 < θ3 < −4

The two subfamilies (top & bottom) are a function of θ2
and may be defined by the sign of det Γθ. Figure 4 shows
the two families in the parameter space.

det Γθ (0) =

{
> 0 Top (T) : θ2 ∈ [−4,−1]

< 0 Bottom (B) : θ2 ∈ [1, 4]

Substitute (17) into (13) for A, B and solve for Ki, Pi,
i ∈ {B, T}, since a single controller fails to regulate plants
from both subfamilies.

Let the LQR design weights (10) be

[Cz Dz ] =

[
Qz 0
0 Rz

]
where for both subfamilies

Qz = 1
10 diag ([1 1 25 25]), Rz = 1

The state feedback (16) is

KB = [−3.5 −8.2 −2.6 −2.7 ]

KT = [−17.6 174 38.8 25.0 ]

Let θ∗, σ∗ be the correct values for the parameter and
switch logic index respectively. The switch index specifies
the “on” controller. Set

θ∗ = (θ∗1 , θ
∗
2 , θ
∗
3) = (−4, 1,−4)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

393



Fig. 5. (a) Switch index σ (left); (b) Regulation error e

Fig. 6. Normalized Lyapunov derivative d
dtVi (t) /Vi (0) (%)

Fig. 7. Normalized Lyapunov function Vi (t) /Vi (0) (%)

such that P (θ∗) ∈ ΩB and σ∗ = B. Initialize the plant
(x), controller (η), exogenous disturbance (ϑ), and switch
logic index (σ) states

[x1 (0) x2 (0) x3 (0) η (0)] = [ 1 0 0 0 ]

ϑ (0) =−0.5

σ (0) = T

The multiple model adaptive regulation system was simu-
lated in Mathematica. Observe in Figure 5(a) that switch-

ing is fast, t ≈ 0.03, and accurate since V̇ with the “wrong”
controller in the loop (i.e. σ = T ) quickly ceases to be
negative definite as shown in Figure 6.

The threshold γ for the percent decrease of the “on”
Lyapunov function can be scaled by changing the dt
between sample periods as shown in (9). Evaluating the
switch inequality less frequently, ie larger dt, is more robust
to noise but may retard model identification. A prerouted
switch logic is acceptable when the cardinality of C is small.

Output regulation lim
t→∞

e (t) = 0 succeeds as shown in

Figure 5(b). The bounded Lyapunov functions Vi, i ∈
{B, T}, of Figure 7 show internal stability.

The final state, xf is a function of the plant parameters,
controller gains, and the disturbance state. For state vector

x = [x1, x2, x3, η]
T
, feedback gain K = [k1, k2, k3, k4],

and set point ϑ,

xf =
[
− ϑ
θ2
ϑ
(

1 + 1
θ2

)
0 ϑ(θ1+k1−k2(1+θ2))

k4θ2

]T
A priori knowledge of the final state xf is an undesirable
feature of this generalized energy (Lyapunov) switch logic.

7. CONCLUSIONS

Multiple model adaptive regulation of parameter depen-
dent systems with zero structure change is implemented.
A finite set of controllers is obtained from linear matrix
inequalities for subfamilies of the parameter dependent
plant with equivalent zero structure. Switch logic ensures
that the appropriate stabilizing controller is chosen.

In summary, it is well known that regulation is not possible
at the singular point of a zero structure change. Less well
known is that regulation by a common controller is not
possible across points of zero structure change. Thus, a
common controller can only be used as parameters vary
within a family having equivalent zero structure. The finite
set of controllers with switch logic enables robust adaptive
regulation.
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