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Abstract: This paper studies the problem of optimal network topology reconfiguration in sensor
networks for state estimation. Multiple sensors make observations of a process, which are then
transmitted, possibly via intermediate sensors, to a central gateway. Transmission over each link can
experience packet drops. The time-varying wireless network environment is modelled by the notion of
a network state as in Quevedo et al. (2013a). For each network state, different network configurations
can be used, which govern the network topology and routing of packets. Switching between different
configurations incurs a cost, in that unwanted links will need to be removed before the establishment
of new links, leading to a transient time in which some links may not be available. The problem is
to determine the optimal network configurations to use in each network state, in order to minimize an
expected error covariance measure that takes into account the cost of reconfiguration. A simpler sub-
optimal method which minimizes the upper bound of the expected error is also proposed, which in
numerical simulations gives essentially identical results to the optimal method.

1. INTRODUCTION

Wireless sensor networks, which consist of a number of small
and inexpensive sensors connected together via wireless links,
have had many applications in recent years, for instance in
environmental and industrial monitoring. The problem of es-
timation using wireless sensor networks has been an active
research area, due to the unreliable nature of wireless links and
the associated stability and performance issues.

The modelling of the wireless link as a packet dropping link,
in which transmission of packets is assumed to be dropped or
lost if the link is of poor quality, is common in the control
literature. Kalman filtering for a single sensor over a packet
dropping link has been considered in e.g. Sinopoli et al. (2004);
Huang and Dey (2007); Epstein et al. (2008); Schenato (2008),
to name a few. Extensions to multiple sensors include Liu and
Goldsmith (2004); Gupta et al. (2009b), and to sensor networks
with various different architectures such as Gupta et al. (2009a);
Chiuso and Schenato (2011); Quevedo et al. (2012, 2013b).
Kalman filtering over networks with tree structures include
Shi (2009); Mo et al. (2011), which don’t consider packet
drops, and Quevedo et al. (2013a) which does. The work of
Quevedo et al. (2013a) introduces the notion of a network state,
which models time variations in the wireless environment, for
example due to moving machines and robots in a factory. This
network state process can be either a Markov chain or a semi-
Markov process, which was also considered for a single sensor
case in Censi (2011).

In Quevedo et al. (2013a) the network topology, i.e. which
sensors communicate to each other and how packets are routed
through the network, is assumed to be fixed even over different
network states. In practice, if in a certain network state some
links are of poor quality, e.g. a robot in a factory is blocking
the line of sight between two sensors, then the sensors can
possibly bypass these links by seeking different paths through
the network, as is often done in networking by rerouting, see
Bertsekas and Gallager (1992); Kurose and Ross (2012).

In this paper, we consider the problem of determining the opti-
mal network topology configurations to use in each network
state. The problem is complicated by the fact that network
topology reconfigurations do not occur instantly, but may in-
cur a cost, see Baskaran et al. (2007); Krasteva et al. (2011);
Ramakrishnan et al. (2012) for examples of different cost func-
tions. The cost of reconfiguration we consider in this paper is
that in changing from one configuration to another, unwanted
links will need to be removed before new links can be estab-
lished (Baskaran et al. (2007)). This leads to a transient time
where some links may not be available, leading to poor per-
formance. We optimize an expected error covariance measure
over the possible network configurations, taking into account
this transient state when switching between different config-
urations. Computation of expected error covariances can be
computationally demanding, so we also consider optimizing an
upper bound to the expected error covariance.

The paper is organized as follows. The system model is de-
scribed in Section 2. The optimal network reconfiguration prob-
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lem is stated in Section 3, with computational issues discussed
in Section 3.3 and a suboptimal method given in Section 3.4. A
numerical example is studied in detail in Section 4.

2. SYSTEM MODEL

The process is a discrete time linear system of the form
x(k + 1) = Ax(k) + w(k)

where x(k) ∈ Rn and w(k) ∼ N(0, Q) is i.i.d. over time. The
process is observed by M sensors, with measurements

ym(k) = Cmx(k) + vm(k), m = 1, . . . ,M

where ym(k) ∈ Rlm , and vm(k) ∼ N(0, Rm) are i.i.d.
over time. We assume that {w} and {vm},m = 1, . . . ,M
are mutually independent. We make the standard assumption
that (A,C) is detectable and (A,Q1/2) is stabilizable, where
C , col(C1, . . . , CM ).

2.1 Sensor network model

We consider the case where the sensors are connected together
to form a sensor network with a gateway/fusion center. The
sensor network in general is assumed to have a mesh struc-
ture. Sensor measurements are to be transmitted to the gate-
way which runs a Kalman filter. The paths used in transmit-
ting from the sensors to the gateway are usually computed
using routing algorithms. We assume that the links which are
utilized in the set of routes from the sensors to the gateway,
which we denote as the set of active links, has a tree structure
(i.e. has no cycles). 1 In this model, the set of active links
can be described using a directed graph with nodes/vertices
{S0, S1, . . . , SM}, where the root node S0 denotes the gateway,
and Sm,m = 1, . . . ,M denote the sensors. See Fig. 1 for
an example with nine nodes (eight sensors and a gateway).
Each sensor aggregates its own measurement to the received

Fig. 1. Sensor network with nine nodes. The set of active links
represented by arrows forms a tree, while the dotted lines
represent inactive links.

packets from incoming nodes and transmits the resulting packet
to a single destination node. We assume that transmissions can
occur over a faster time scale than the process, as is typical in
the industrial wireless sensor networks standard WirelessHART
(HART Communication Foundation (2009a)), thus delays ex-
perienced in travelling through the network will be ignored.
Following the notation of Quevedo et al. (2013a), we call the
node that sensor Sm transmits to the parent of Sm, denoted by
Par(Sm). The outgoing link/edge from each of the nodes will
be denoted as Em = (Sm,Par(Sm)),m = 1, . . . ,M . For a
1 For instance, this will be the case when using shortest path type routing
algorithms (Bertsekas and Gallager (1992)).

given tree, there is a unique path from each node Sm to the
gateway S0, denoted by Path(Sm). We will call the set of edges
and the set of nodes along this path by Edge(Path(Sm)) and
Node(Path(Sm)) respectively.

In this paper, due to changes in the wireless environment, the
network topology formed by the set of active links can change
over time because of reconfigurations of the network. As in
Quevedo et al. (2013a), changes in the environment will be
modelled by the notion of a network state process Ξ(k) ∈
B , {1, 2, . . . |B|}, which is time-varying. As motivation for
this idea, consider Fig. 2, which plots some fading channel
measurements taken at a rolling mill at Sandvik in Sweden.
Mobile machines cause infrequent but substantial variations in
the expected channel gains.

Received	
  Signal	
  Strength	
  Indicator	
  

Fig. 2. Channel measurements taken at a rolling mill

We will assume in this paper that {Ξ} is a discrete-time semi-
Markov process (Ross (1996)), to model situations where net-
work state transitions do not necessarily have to occur at every
time instant k. The times of transitions between different net-
work states is denoted by

K , {kl},with k0 = 0, and k0 < k1 < k2 . . . all integers.
The holding times (the amount of time spent in a particular state
between transitions) are defined as

∆l , kl+1 − kl.
We assume that the holding times have finite support, thus

∆l ≤ ∆max, ∀l
By the semi-Markov property, we have

P(Ξ(kl+1) = j,∆l = δ|Ξ(k0), . . . ,Ξ(kl−1),Ξ(kl) = i,

k0, . . . , kl)

= P(Ξ(kl+1) = j|Ξ(kl) = i)P(∆l = δ|Ξ(kl) = i)

= qijψi(δ), ∀(kl, δ, i, j) ∈ K× N× B× B
where qij , P(Ξ(kl+1) = j|Ξ(kl) = i) are the transition
probabilities of the embedded Markov chain, and

ψi(δ) , P(∆l = δ|Ξ(kl) = i) (1)
are the conditional probabilities of the holding times.

The network configuration π(k) at time k determines which
nodes each sensor will receive from and forward to, i.e. the set
of routes from the sensors to the gateway. The set of all possible
configurations is denoted by Π = {1, 2, . . . , |Π|}. Depending
on channel link conditions, some configurations may not be
feasible in certain network states. We call Πj ⊆ Π the set of
possible configurations when the network state is equal to j.
Thus (Ξ(k), π(k)) ∈ B × Πj for Ξ(k) = j. We assume that
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the set of all possible configurations have been precomputed
and are known at the gateway. This could be the case in some
industrial applications where the number of sensors is relatively
small. For instance, WirelessHART provides redundancy by
maintaining multiple sets of routes which the network can
switch to at different time instances (HART Communication
Foundation (2009b)). 2

Define the random variables γm(k),m = 1, . . . ,M by

γm(k) =

{
1, transmission via link Em at time k is

successful
0, otherwise

and the corresponding link success probabilities by

φm|(j,p) , P(γm(k) = 1|Ξ(k) = j, π(k) = p)

We will assume in this paper that, conditioned on a network
state, {γm} are i.i.d. Bernoulli processes, with {γm} indepen-
dent of {γn} for m 6= n. Note that in this model there is
temporal correlation, in that the packet reception probabilies
can be different in different network states. The special case
of i.i.d. Bernoulli processes (no temporal correlation) is often
considered in the literature, see e.g. Sinopoli et al. (2004); Liu
and Goldsmith (2004); Epstein et al. (2008); Schenato (2008).
Markovian packet losses as studied in e.g. Huang and Dey
(2007); You et al. (2011) can also be regarded as a special case
of this model, see Quevedo et al. (2013a) for details.

2.2 Kalman filter at Gateway

Define the random variables θm(k),m = 1, . . . ,M by

θm(k) =

{
1, transmission via Path(Sm) at time k is

successful
0, otherwise

Due to the fact that the set of active links forms a tree, we have

θm(k) =
∏

Ei∈Edge(Path(Sm))

γi(k)

and P(θm(k) = 1|Ξ(k) = j, π(k) = p) =
∏

Ei∈Edge(Path(Sm))

φi|(j,p).

Let θ(k) , [ θ1(k) . . . θM (k) ]
T ,

y(k) ,

 θ1(k)y1(k)
...

θM (k)yM (k)

 , C(k) ,

 θ1(k)C1

...
θM (k)CM


The Kalman filtering equations can then be written as:
x̂(k + 1|k) = Ax̂(k|k − 1) +K(k)(y(k)− C(k)x̂(k|k − 1))

P (k + 1|k) = AP (k|k−1)AT +Q−K(k)C(k)P (k|k−1)AT

(2)

where R , diag(R1, . . . , RM ) and

K(k) , AP (k|k − 1)C(k)T
(
C(k)P (k|k − 1)C(k)T +R

)−1
.

In the sequel, we will use the shorthand P (k) , P (k|k − 1).

3. NETWORK RECONFIGURATION

As stated in the previous section, the network states model
changes in the wireless environment, with changes in network
2 Another possible form of redundancy is by transmitting the same information
along multiple paths. However, due to large overheads this is usually not
implemented in practice.

states occurring at the random transition times k0, k1, k2, . . . .
Due to changes in the wireless environment, the packet recep-
tion probabilies of existing links can change, and there could
even be a complete loss of connectivity in some links. The pur-
pose of the present work is to illustrate how to compensate for
changes in the wireless environment through network reconfig-
uration. At each new transition time instant kl when the network
state changes, we wish to choose a new configuration π(kl) in
order to minimize an expected error covariance performance
measure. However, network configuration changes are not im-
mediate and there is often a cost involved in reconfiguring the
network, as explained below.

3.1 Reconfiguration Issues

In what follows, we will use a similar cost of reconfiguration
as in Baskaran et al. (2007), where in changing from one con-
figuration to another, unwanted links will need to be removed
before the establishment of new links. We will refer to this as a
transient state. Thus there is a transient time or reconfiguration
time T ≥ 0 where some links will not be available, resulting in
poor transitory performance of the Kalman filter.
Example 1. Consider for example the network configuations
shown in Fig. 3 (see Section 4 for the full set of network con-
figurations). In reconfiguring from network configuration 2 to
network configuration 3, the links from sensor 3 to sensor 2, and
from sensor 4 to sensor 2, will first need to be removed, leading
to the transient state shown in Fig. 3 where sensors 3 and 4
do not have connectivity to the rest of the network for some
time T . Similarly, reconfiguring from network configuration 3
to configuration 2 will also lead to the same transient state. �

Fig. 3. Transient state when reconfiguring between two network
configurations, see Example 1.

The value of T is dependent on the underlying communication
technology. For instance, in IEEE 802.11 the time needed to
reroute a wireless network could be on the order of seconds
(Pham et al. (2007)). On the order hand, in WirelessHART
which actively maintains multiple routes that can be switched
at different time instances (HART Communication Foundation
(2009b)), it might be more appropriate to take T = 0. See
also Baskaran et al. (2007) and the references therein for
the reconfiguration time of optical networks. Therefore, in
choosing which new configuration to use, there is potentially
a tradeoff between a configuration that gives good performance
(after it is fully reconfigured) but requires many link changes,
versus a configuration that has fewer link changes but slightly
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poorer performance. We will state the problem formally in the
next subsection.

3.2 Optimal network reconfiguration

At each transition instant kl ∈ K, we seek to find a network
configuration π(kl) which is to be held until the next transition
instant kl+1 ∈ K, and which minimizes the expected state
estimation covariance over this holding period. Here we will
assume that the gateway has knowledge of the current error
covariance P (kl), the old network configuration π(kl−1), and
the current network state Ξ(kl). For ease of exposition, we
introduce the aggregated process

U(kl) ,
(
P (kl),Ξ(kl), π(kl−1)

)
, kl ∈ K. (3)

In terms of U(kl), the new configuration π(kl) ∈ Πj when
Ξ(kl) = j is found via the following optimization:

π(kl) = arg min
π∈Πj

V(U(kl), π), where

V(U(kl), π) = E
{ ∆l∑
i=1

trP (kl + i)
∣∣∣U(kl)

}
.

(4)

The quantity V(U(kl), π) amounts to the expected trace of the
error covariance over the holding time ∆l, when the config-
uration π is used. In (4), the expectation is taken over both
the packet loss processes (which affect the Kalman filter re-
cursions (2)) and the random holding times (using (1)).

Following the model in Section 2.1, the network state Ξ(kl)
determines the distribution of the holding time and thereby the
upper limit of the sum in (4), see (1); differences between the
decision variable π and the previous configuration π(kl − 1)
determine which links would be moved to a transient state. In
particular, the terms

E {P (kl + i) | U(kl)} (5)
are computed based on whether the network is still in the
transient mode (if i ≤ T ) or has been fully reconfigured
(if i > T ), with the expectation over the discrete variables
{θ(kl), . . . , θ(kl + i− 1)}.
Remark 1. Given the semi-Markov network model adopted, the
reconfiguration strategy (4) yields that the process U(kl) at
the transition instants kl ∈ K is Markovian. This opens the
possibility of analyzing estimator stability (see Sinopoli et al.
(2004)) by adapting the methods developed in Quevedo et al.
(2013a). These results will be detailed in future work.

3.3 Computational Aspects

In principle, minimization of (4) can be carried out by checking
the values of V(U(kl), π) for each of the different configura-
tions π ∈ Πj . However, computation of the expectations (5)
involves considering the values of P (kl + i) for all possible
combinations of {θ(kl), . . . θ(kl + i − 1)}, with the number
of possibilities being O(2Mi) in general. In particular, com-
puting E {P (kl + ∆max) | U(kl)} will have a complexity of
O(2M∆max). Thus, for large holding times, minimization of (4)
is computationally intensive.

3.4 Suboptimal network reconfiguration

To address the computational issues outlined above, we propose
to adopt a suboptimal approach wherein, using U(kl) defined as
in (3), the new configuration π(kl) ∈ Πj is obtained via

π(kl) = arg min
π∈Πj

W(U(kl), π), where

W(U(kl), π) =

∆max∑
δ=1

δ∑
i=1

trY (kl + i)P{∆l = δ |Ξ(kl) = j},

(6)
Here, the sequence {Y (kl + 1), Y (kl + 2), . . . } is given by:
Y (k + 1) = AY (k)AT +Q

− E[AY (k)C(k)T (C(k)Y (k)C(k)T+R)−1C(k)Y (k)AT ]
(7)

for k ≥ kl, with initial condition Y (kl) = P (kl), and where the
expectation is with respect to the random matrix C(k). Again,
(7) is computed taking into account whether the network is still
in the transient mode or has been fully reconfigured.

The following result, linking the optimal and the sub-optimal
approaches is easy to show:
Lemma 1. The sequence Y (k) is an upper bound to
E{P (k)|U(kl)} for k ≥ kl.

Proof Define

gk(X) = AXAT +Q− E[AXC̃Tk (C̃kXC̃
T
k +R)−1C̃kXA

T ]

where C̃k is a random matrix having the same distribution as
C(k). Lemma 1 is proved by using the fact that gk(.) is concave
in X , and induction. The concavity of gk(.) is shown by using
similar techniques as in Sinopoli et al. (2004); Dey et al. (2009).
The details are omitted for brevity. �

Upper bounding sequences of the form (7) are much easier to
compute than the expected error covariance when the holding
times are large. Furthermore, the bounds generally seem to be
quite tight, see, e.g., Leong and Quevedo (2013). In the next
section we will look at a numerical example, where we will
see that the new configurations obtained using the suboptimal
method are essentially identical to the configurations obtained
using the optimal scheme.

4. SIMULATION STUDY

We consider a simple example with four sensor nodes. The
set of all network configurations are shown in Fig. 4. There
are two network states, with network configurations 1 and 2
possible in network state 1 (so that Π1 = {1, 2}), and network
configurations 1 and 3 possible when in network state 2 (so that
Π2 = {1, 3}). The reconfiguration time is taken to be fixed at
T = 1. The packet reception probabilities for the links in each
of the network configurations are:
φ1|(1,1) = 0.5, φ2|(1,1) = 0.5, φ3|(1,1) = 0.2, φ4|(1,1) = 0.5

φ1|(1,2) = 0.5, φ2|(1,2) = 0.5, φ3|(1,2) = 0.8, φ4|(1,2) = 0.5

φ1|(2,1) = 0.5, φ2|(2,1) = 0.5, φ3|(2,1) = 0.5, φ4|(2,1) = 0.2

φ1|(2,3) = 0.5, φ2|(2,3) = 0.5, φ3|(2,3) = 0.5, φ4|(2,3) = 0.8
(8)

Network state 1 could correspond to the case where there is a
robot between sensor nodes 1 and 3, giving a low probability
of packet reception of 0.2 for the direct link (from sensor
3 to sensor 1) in network configuration 1, while in network
configuration 2 sensor 3 will instead transmit to sensor 2 with a
higher packet reception probability of 0.8. Similarly network
state 2 will correspond to the case where the robot is now
situated between sensors 2 and 4.
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Fig. 4. Network configurations for example of Section 4

The holding times have the following distribution:
P(∆l = 1|Ξ(kl) = 1) = P(∆l = 1|Ξ(kl) = 2) = 0.1

P(∆l = 2|Ξ(kl) = 1) = P(∆l = 2|Ξ(kl) = 2) = 0.1

P(∆l = 3|Ξ(kl) = 1) = P(∆l = 3|Ξ(kl) = 2) = 0.1

P(∆l = 4|Ξ(kl) = 1) = P(∆l = 4|Ξ(kl) = 2) = 0.7

The transition probabilities for the embedded Markov chain
{Ξ(kl)}, kl ∈ K are

P(Ξ(kl+1) = 1|Ξ(kl) = 1) = q11 = 0.5

P(Ξ(kl+1) = 2|Ξ(kl) = 1) = q12 = 0.5

P(Ξ(kl+1) = 1|Ξ(kl) = 2) = q21 = 0.5

P(Ξ(kl+1) = 2|Ξ(kl) = 2) = q22 = 0.5

We consider a system with parameters

A =

[
1.1 0.2
0.2 0.8

]
, Q =

[
0.2 0
0 0.2

]
,

C1 = C2 = C3 = C4 = [ 1 1 ], R1 = R2 = 10, R3 =
R4 = 0.1. The differences in the sensor measurement noise
covariances correspond to the situation where the process to
be observed is located much closer to sensors 3 and 4, than to
sensors 1 and 2.

In Fig. 5 we plot the simulated values of trP (k + 1) obtained
by solving the network reconfiguration problem (4). We also
include the case where only network configuration 1 is used
when in both network states 1 and 2, which can be regarded as
the case of no reconfiguration. We see that there are times where
the optimal reconfiguration has error covariance that is either
larger or smaller than the case of no reconfiguration, illustrating
the tradeoff mentioned at the end of Section 3.1. From Monte
Carlo simulations, the trace of the average error covariance is
around 1.56, whereas the case of no reconfiguration is around
1.87, which amounts to a performance gain of about 20%.

Fig. 6 illustrates the corresponding network states Ξ(k) and Fig.
7 the corresponding network configurations π(k) used at each
time instance. For this example, the network configurations
obtained using the suboptimal method of Section 3.4 by solving
problem (6) is identical to Fig. 7. It seems that for the packet
reception probabilities given in (8), network configuration 1
will not be chosen. However, different behaviour can be ob-
served by modifying these probabilites. In Fig. 8 we plot the
simulation run of the network configurations used at each time
instance, with the same network states as in Fig. 6, but now with
φ3|(1,1) = 0.45 and φ4|(2,1) = 0.45, so that the probability of
packet reception in these two links (for these network states) is
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Fig. 5. Error covariances at different time instances
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Fig. 7. Network configurations at different time instances using
both proposed methods, given success probabilities as
in (8).

increased. Simlarly, in Fig. 9 we plot the network configurations
used when φ3|(1,1) = 0.6 and φ4|(2,1) = 0.6. Again, the
network configurations obtained using the suboptimal method
of Section 3.4 are identical to Fig. 8 and Fig. 9. We see that as
φ3|(1,1) and φ4|(2,1) are increased, the network is less likely to
reconfigure. The cost of reconfiguration which causes links to
be lost in the transient state leads to the network not changing
its topology.

5. CONCLUSION

We have presented a network topology reconfiguration method
for state estimation in sensor networks. Network reconfigura-
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Fig. 8. Network configurations at different time instances:
φ3|(1,1) = 0.45 and φ4|(2,1) = 0.45
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Fig. 9. Network configurations at different time instances:
φ3|(1,1) = 0.6 and φ4|(2,1) = 0.6

tions are triggered when the wireless environment, modelled
by the notion of a network state, changes. The optimization
of an expected error performance measure which takes into
account the cost of reconfiguration has been studied, and a less
computationally intensive suboptimal method proposed. Future
work will include the derivation of stability conditions for the
estimation scheme with reconfigurations, and consideration of
more general fading channel distributions.
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