Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Quadratic MPC with /,-input constraint *

Ricardo P. Aguilera* Ramén Delgado ! Daniel Dolz *
Juan C. Agiierof

* School of Electrical Engineering and Telecommunications,
Australian Energy Research Institute (AERI)
The University of New South Wales, Australia
(e-mail: raguilera@ieee.org).
t School of Electrical Engineering and Computer Science,
The University of Newcastle, Australia
(e-mails: ramon.delgado@uon.edu.au, juan.aguero@newcastle.edu.au)

¥ Department of Industrial Systems Engineering and Design,
Universitat Jaume I, Castelld, Spain (e-mail: ddolzQuji.es)

Abstract: In this paper we propose a novel quadratic model predictive control technique that
constrains the number of active inputs at each control horizon instant. This problem is known
as sparse control. We use an iterative convex optimization procedure to solve the corresponding
optimization problem subject to sparsity constraints defined by means of the £y-norm. We also
derive a sufficient condition on the minimum number of active of inputs that guarantees the
exponential stability of the closed-loop system. A simulation example illustrates the benefits of
the control design method proposed in the paper.

1. INTRODUCTION

Controlling a process using a reduced number of inputs has
been a topic of increasing interest in the control literature
in the recent years (see e.g. Gallieri and Maciejowski
[2013]). This problem is known as sparse control (Schuler
et al. [2011], Gallieri and Maciejowski [2012]). A sparse
discrete-time signal, or a sparse vector is characterized
for having zeros on most of its elements. The use of
sparse vectors has become important in many applications
such as compressive sampling (Candés and Wakin [2008],
Delgado et al. [2012]), system identification (Godoy et al.
[2014]), channel estimation in wireless communications
(Carvajal et al. [2012]) and over-actuated control systems
(Gallieri and Maciejowski [2012]) among others.

Minimizing the number of active actuators (control inputs)
has several advantages. For instance, in Hartley et al.
[2013] sparse control is deployed to minimize propellant
consumption in the spacecraft rendezvous and to accom-
modate the minimum impulse constraint. Moreover, when
the transmission of the information (measurement and/or
control inputs) is done using scarce communication re-
sources (Chen et al. [2011]), sparse control have been used
to minimize the network bandwidth usage (Nagahara et al.
[2012]) and to minimize the energy consumption of the self-
powered devices due to transmission (Haupt et al. [2008]).

The fp-norm (number of non-zero elements of a vector) is
the natural measure of sparsity. However, to avoid com-
putational complexity when dealing directly with £g-norm
constraints in optimal control problems, two approaches
have been typically used: i) the use of ¢;-norm (Schuler
et al. [2011], Gallieri and Maciejowski [2013]) and ii) the
use of a greedy algorithm called Orthogonal Matching
Pursuit algorithm (Nagahara et al. [2012]).
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Orthogonal Matching Pursuit (OMP) (Tropp and Gilbert
[2007]) is an algorithm that computes a suboptimal so-
lution that satisfies an #y constraint. OMP is compu-
tationally inexpensive, however it is not straightforward
to modify the algorithm in order to incorporate extra
constraints properly. On the other hand, several meth-
ods developed for ¢;-norm optimization provide enough
flexibility to handle several kind of constraints. Moreover,
{1-norm regularization provides a convenient approach to
promote sparsity, however in most applications ¢;-norm
has no clear meaning, and the selection of the regular-
ization parameter could be difficult, specially in problems
where corrupted measurements are considered.

The control design techniques in Gallieri and Maciejowski
[2013] and Nagahara et al. [2012] promote sparsity on
the control actions. However, these techniques do not
incorporate a hard constraint on the number of active
control inputs at each control horizon instant. Moreover, in
Nagahara et al. [2012] the single-input single-output case
is analyzed and it is not clear how to include extra convex
constraints in the corresponding optimization procedure.

In this paper, we propose the design of quadratic MPC
controllers subject to £g-constraints on each control hori-
zon instant. This technique allows us to reduce the number
of actuators being used and the transmission bandwidth
usage (when dealing with networked control systems). We
formulate the problem with an fy-constraint optimization
problem that allows us to include any convex constraint
and also to consider multivariable systems. We also derive
a sufficient condition that allows to find the minimum
number of active inputs for guaranteeing global exponen-
tial stability. The layout of remainder of the paper is as
follows. In Section 2, we discuss the problem of interest.
In Section 3, we present an iterative convex optimization
procedure to solve the optimization problem in a quadratic
model predictive strategy subject to constraints in the
number of active inputs at each control horizon instant. In
Section 4, we establish a sufficient condition on the number
of active inputs that guarantees stability. A simulation
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study is given in Section 5, and finally we draw conclusions
in Section 6.

Notation and Basic Definitions Let R and R denote
the real and non-negative real number sets. We represent
the transpose of a given matrix A and a vector x via
(Az) = a’A’. The Euclidean norm is denoted via | - |
while the weighted Euclidean norm (squared) is denoted
by |z|% = a/Pxz. Additionally, the induced norm of a
given matrix A is its largest singular value. The maximum
and minimum eigenvalues of a given matrix A are repre-
sented via Amax(A) and Apin(A) respectively. Z denotes
an identity matrix of appropriate dimension. 0,,, and 1,,
denote vectors with only zero or one entries respectively.
The operator diag, (x) transforms x € R™ into a diagonal
matrix A € R™*",

2. PROBLEM DESCRIPTION

Consider the following discrete-time linear time-invariant
system:

Tht1 = Axp + Buy, (1)
where x;, € R” is the system state , uxy € R™ is the control
input vector. The pair (A, B) is assumed to be stabilizable
where the matrix A is not necessarily Schur stable. We
are seeking to control system (1), if it is possible, with a
reduced number of active inputs, 7 < m. To this end, one
needs to design a controller which can provide the best
possible actuation considering only v active inputs while
the remaining v — m inactive inputs will take a null value.

o € R™ denotes a binary vector which indicates the active
and inactive inputs, i.e., the i —th component of ¢ is given
by:

(2)

for all ¢ € {1,...,m}. Thus, the number of non-zero
elements of vector o (p-norm) is |o|y = 7.

[ 1 if u; is active,
9= 0 otherwise (u; = 0),

To formulate the MPC optimal problem, we first consider
the following quadratic cost function
N—-1
A 12 52 12
Vn(z,w) = [&n[p+ Y 155 + 145]%, (3)
j=0
where 2 and 4 stand for the predicted values of the system
state and input respectively, and N is the prediction
horizon. The matrices @, R, and P are assumed to be
positive definite. The vector w contains the tentative
control actions over the prediction horizon, i.e.,

w=[ag,... dy_i] e RN™,

The optimization of interest for the current state, xj = z,
is given as

Py(z): Vi(z) = min {Vy(z,u)}, 4
subject to: ZTjp1 =AZ; + Bay, 5

(4)
(®)
|@1]& <J(2), (7)
for all j € {0,...,N — 1}, where &y = a2k, v < m, G is
a positive definite matrix and J(x) is a positive function
decreasing in z, i.e., J(x) > 0 for all z #£ 0.

Here constraint (6) encompasses the fo-norm for the con-
trol input along the prediction horizon, while (7) is a
constraint introduced to guarantee stability. Therefore, the
design of G and J(x) will be studied in Section 4.

Fig. 1. Vector of active inputs in the horizon.

Consequently, the optimal input sequence, u°?(z), is the
one which minimizes the cost function,

wro) 2ag{ iy Ve f. )

Thus, the resulting optimal solution is the, so-called, input
control sequence

A~ ~ !/
uP(z) = [(u(o)p)/, R (u%g_l)/] , (9)
while the resulting optimal state sequence is
x (z) = [2', (&57), ..., ()] .

Additionally, for this particular problem, we also obtain
the resulting optimal active input sequence, given by

o (z) = (o), ..., (o) (10)
Notice that the elements of o°?(z) may differ from each
other. However, [07"[o < for all j € {0,...,N — 1}. For
example, if N =4, m = 3, and v = 2 a possible o°?(z) is
shown in Figure 1.

Finally, we use a receding horizon technique, i.e., only the
first element of w°(x) is applied to the system at each
sampling instant (see e.g. Rawlings and Mayne [2009)]).
The solution of the optimal problem, Py (z) in (4), yields
the MPC control law, ky(-) : R — R™,

Ky (w) 2 agk. (11)
Thus, the resulting MPC loop can be represented via
Tht1 = Axy, + BRN(Ik).

(12)

In the following section, we will present a general method
to solve an optimization problem subject to £y—norm con-
straints. This solution is then used to solve the quadratic
MPC problem in (4)-(6).

3. £,-CONSTRAINED BASED SOLUTION

The optimization problem that includes {y-norm in the
cost function or as a constraint is known to be computa-
tionally demanding since a combinatorial optimization is
typically considered. Many approaches have been devel-
oped that approximate or relax the original problem. One
of such approaches is /1-norm relaxation, which provides
a convenient way to promote sparsity. Several methods
developed for ¢;-norm minimization are flexible enough
to handle convex constraints. However, in #;-norm mini-
mization problems there is no way to know in advance the
number of non-zero elements of the solution.

Another approach to relax the original fp-norm problem,
is by computing a suboptimal solution. In this framework,
greedy algorithms such as OMP provide a computationally
inexpensive solution.

Recently, an interesting approach to deal with ¢y-norm
constraints has been proposed in Dattorro [2005]. This
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approach is based on the idea that imposing a {y-norm
constraint |u|y < 7 in a vector u € RZ,, is equivalent to
impose the constraint that the sum of the smallest m —
components of the vector u is equal to zero.

An important ingredient of the method to impose an ¢
constraint is that the computation of the sum of the
m — v smallest elements of v can be re-formulated as a
minimization problem. Consider that m(u) is the descend
sorting function, and m;(u) denotes the ¢ — th largest
element of u. The sum of the (m —~) smallest components
of a vector u € RT, i.e Z?;W_H m;(u), can be written as
the following minimization problem
m
. !/
Z mi(u) = wrél]é% w'u
i=y+1 20 (13)
subject to 0,, <w <1,

wl, =m—-v

Problem (13) has a closed form solution that correspond to
the vector w that has ones in the elements corresponding
to the m — ~ smallest values of u, and zeros elsewhere.

In Dattorro [2005] the above idea has been used to impose
£o-norm constraints, i.e. to solve the following feasibility
problem

find wu
UERZU
subject to uweC (14)
lulo <

where C is a convex set. This feasibility problem has
the same set of solutions that the following optimization
problem,

min  min w'u (15)

wERD, weRT,

subject to 0, <w <1,
w'ly, =m—7 (16)

ueC

where C is a convex set. Problem (15)-(16) can be solved
by alternating minimization between w and wu. In more
detail, given a current value for u, i.e. 4* at the iteration
k, the optimization update is given by

Wt = arg{ min w'a st (16)}

w G]Rgo

(17)

aF ! = arg { min (") u
u€RY,

s.t (16)} (18)
In problem (15), the constraint |u|o < +y is satisfied if and
only if

w'u=0 (19)
Thus, this condition can be used to test if the fg-norm
constraint has been satisfied.

Notice that the minimization steps in (17)-(18) can be
easily implemented using standard solvers such as CVX
(Grant et al. [2011]).

3.1 Method 1

Problem (15) provides an effective method to impose £o-
norm constraints. However, in several problems such as
MPC, it is desirable to also minimize a cost function f(u).
Thus, the following optimization problem is proposed

a2, 7w

s.t. ueC
lulo <
where C is a convex set. In order to achieve both: minimize
f(u) and satisfy the constraint |u|o < =, in this paper,

problem (20) is solved by using the iterative solution of
ly constrained feasibility problem. In more detail, given

a current control input @, a new control input @*t! is
obtained by solving the following problem

(20)

min  w'z

min
2ERY UER™ wERT
subject to  f(u) < f(a*) (1 —¢)
uel
0, <w<1l,
wl, =m—7
—z<u<z

(21)

where 0 < € < 1 is an user supplied parameter that
manages the reduction required in the cost function and z
is a dummy variable to handle negative values for u. When
the solution of problem (21) does not satisfy condition
(19), it means that at the current iteration, the method
couldn’t find an u € C that reduce the cost by as required
by e. Thus, € is reduced to ¢ = 0.5¢. The algorithm
continues until condition (19) couldn’t be satisfied for an
small enough e.

Method 1 could be computationally expensive, in the
sense, that each iteration requires to solve problem (21),
which is also solved by an iterative procedure. In the fol-
lowing section, a relaxed method that is computationally
less expensive is considered.

3.2 Method 2

In the method proposed in this section, problem (20) is
relaxed by allowing that Z:i,y 41 Ti(u) to be non-zero, but
forced to be small. Thus, the relaxed problem is as follows

min min  f(u) + aw'z
2€RT uER™ weRY

s.t. uecC
0, <w< 1,
wl, =m—v
—z<u<z

(22)

where « > 0 is a regularization parameter that manages
the tradeoff between minimizing f(u) and minimizing the
sum of the (m — ) smallest entries of u. The optimization
problem (22) is solved by using an iterative procedure like
the one in (17)-(18) to solve (15)-(16).

Remark 1. Note that the proposed algorithm can easily
handle £y-norm constraints over a selection in the vector,
ie. |S;ulp < 7, where S; is a given diagonal matrix with
entries {0,1}. We use this approach to solve problem (4)-
(6), where fp-norm constraints are imposed on several
selections of vector w i.e. to promote sparseness of control
signals in space (most actuators remain still) and/or time
(actuators stay still most of the time). In addition, we
can also minimize the £g-norm of the whole optimal input
vector, i.e., |u| < . Thus, this optimization strategy
can be applied to the data-rate limited network control
problem, see e.g., Nagahara et al. [2012].

4. STABILITY ANALYSIS

In this section, sufficient conditions to guarantee stability
of the MPC loop in (12) are established. These results
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provide a guide to choose the value of v in the optimal
control problem, Py (), in order to ensure stability of the
MPC loop.

Firstly, we define the predicted state sequence as
:c[l:N] = [i‘ll, v ’£9V]/'

Considering an initial system state &g = x, from (5), we
obtain
m[l:N] = AQZ + (D'U,,

where
B 0 0 0 A
AB B 0 0 A2
A A
@ = . . . ’ A =
AN-1B AN-2p ... AB B AN

Thus, the cost function (3) can be re-written as
Vn(z,u) = v(z) + v Hu + 2u'Fz,
where the term v(x) is independent of u and
H £ 3'Qd+R e RV,
F é (p/QA c RNan’
with
Q £ diag{Q,...,Q, P} € RNnxNn
R £ diag{R,..., R} € RN™xXNm,
Notice that, since @), R, and P are positive definite, sois H.
Based on this representation, the following unconstrained
optimal input, u%(x), can be defined, see Rawlings and
Mayne [2009].
Lemma 2. (Unconstrained Solution). If constraints (6) and
(7) are not taken into account in Py (z) in (4), i.e., vy = m,
then Vi (x,w) is minimized when

ul(z) £ arg {

)

min VN(x,u)} & _H 'Fz. (23)

ueRN™

The next theorem establishes a sufficient condition for
exponential stability of the MPC loop.

Theorem 3. Suppose that the matrix P in the cost func-
tion, Vi (z, ), is chosen to be the solution to the algebraic
Riccati equation

PAg —P+Q+K'RK =0, (24)
where
K=—(B'PB+R)"'B'PA, Ax=A+BK. (25
If in (6) a fixed ~ is chosen such that
Q+KRK-Y,=0 (26)
where
U, = ApWo Ak + (24K + A5) (P + Wo)A,, (27
A, =B(L, -I)K, (28)
W, =FH YL, -T)H(L, —T)H 'F, (29)
with
L, = d%agm{a} e R™X™, - (30)
L, =diag{Lsy,..., Ly} € RY™XN™,
and matrix G and function J(z) are chosen as
G=P+W,, (31)

J(z) = 2" (Ax + Ag)G(AK + Ay)x

Then, the MPC closed-loop system (12) is globally expo-
nentially stable.

Proof. Considering that matrix P in (3) satisfies (24), the
unconstrained solution, ujZ(z) in (23) can be expressed
via

ulh(e) = (K&)' (Kin)' ... (Kiy-1)] (32)
Now, the optimal cost function, V37 (z) = V¥ (z,u’?),
with x; = x, can be rewritten as:

VP (a) = o Pa + (u”(x) — ufl(2)) H (u(2)

uc - uop(l,))

uc

Notice that when the constraint (6) is saturated, i.e., vy =
m, we have that u°?(z) = w2 (x). Thus, V,°?(z) = z'Pz.
Therefore, it follows that

ViP(z) > 2’ Pz > ai|z|?,
where a1 = Apin(P).
Then, we obtain an upper bound for the cost function for
the case when v < m. To do this, we use the following
suboptimal solution:

@ = LouP(x) = (Lo K&)' (LoKi1) ... (LoKiy_1)"]
(34)

(33)

for a given feasible ¢ which satisfies that |o]o < 7.
Thus, the optimal cost function satisfies that:
Vji)/p(l‘) < VN(:]C,{L)
=2'Pr+ull(x) (L, — I)'H(L, — I)ull(z)

uc

Then, considering (23), we obtain that
Viv(z, ) < (P + Wo)o < asfal?, (35)
where ag = Apax(G). From (33) with (35), we have that
AVP(2) = V¥ (k1) = Vi (@)

< Vn(z, ) = Vi (ax) (36)
< @y G — 2y Py,
Taking into account (7), it follows that
AV P (z) < J(xg) — z, Py, (37)

Then, (37) can be expanded as:
AVF(z) <2'((Ax + Ay)'G(Ak + A,) — P)z
=2/ (AxGAx — P+ 2A%GA, + ALGA, )z

Since P satisfies (24), it follows that
AVPF(z) < —2'(Q+ K'RK — V,)z (38)

Considering that condition (26) holds, we have that the
cost function is monotonically decreasing in k, i.e.,

AVRP(z1) < —as|zi]® <0, (39)
where a3 = A\nin(Q + K'RK — ¥,). Now, taking into
account (35) and (39), it is posible to establish that

ViF (@r41) < VP (en) — aglog)?
O a O O
< VP () — a—ij’”m) < VP (1)

where p =1 — 2 € [0,1) and ag > 0 by (26). Hence, the

a
optimal cost funétion will be exponentially bounded by

VRP(xx) < p"ViP(20), VE>0,70 € R™.  (40)
Finally, considering (33) and (35), we obtain that
a
o] < =00, (41)
a

for all k > 0,z € R™.

Consequently, the MPC closed-loop system (12) is globally
exponentially stable. m
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Remark 4. Notice that decay rate p in Theorem 3 depends
on the binary variable o. One can use the results of
this theorem to reduce the number of input to guaran-
tee stability of the closed-loop while obtaining a desired
performance in terms of the decay rate p.

Remark 5. The proposed algorithm can be used to mini-
mize the fp-norm of the input by minimizing v, < m. To
do this, at each sampling instant, k, one can initiate the
algorithm with v = 0 and then increases it until obtain the
minimum value of v which guarantees that AVy(z) < 0.
Notice that, from (38), for the nominal case when v = m,
we have that AVP(z) < —2’/Qx. Therefore, there is al-
ways possible to find a positive constant v < m which
allows one to obtain a stabilizing predictive controller
Ky (x)

Remark 6. It is important to highlight that the subop-
timal input sequence, @(x), we have that z}_ ,Gryi1 =
J(xr). This implies that @(z) is a feasible stabilizing input
sequence. Hence, there is always possible to find an optimal
input sequence,u®?(z), that satisfies condition (7).
Remark 7. Tt is important to clarify that the suboptimal
input sequence, u, used in this proof, is generated using the
same active inputs over the prediction horizon, see (30).
Nevertheless, the active inputs in the resulting optimal
input sequence, @°’(x), in general, may vary over the
prediction horizon, as depicted in Fig. 1. This generates
discontinuities in the system dynamics and, therefore, in
the cost function. To establish stability of MPC with
discontinuous cost functions, one must guarantee that the
cost function is a uniformly strict Lyapunov function, i.e.,
AVP(z) < —z'Tx, with T' a positive definite matrix,
which is the case of our problem, see Lazar et al. [2009].

Remark 8. The optimization algorithms used in this work
may provide, in some cases, only a local optimum, uloP (),
since they are solved via a heuristic approach. However,
we initialize the optimization algorithm using the pro-
posed suboptimal input sequence, @(x) in (34). Thus, it
follows that Viy(z,u!°P(z)) < Vy(z,a(z)). Consequently,
by applying optimality in (37), resulting local optima also
guarantee stability.

5. SIMULATION STUDY

To verify the performance of the proposed control strategy
(using method 2 in Section 3), we apply our results to the

linear system (1) considering that » € R*, u € R3, and

[0.6122 0.2349 —0.0021 0.1362
—0.0366 0.7871 0.2047 —0.1814

A= 101941 —0.1420 1.1499 —0.2657] (42)
| -0.1864 0.0280 0.2042 1.2742
[—0.0151 0.2338 0.2710
—0.3032 —0.1504 0.0087

B=1 08390 —0.0009 —0.3200 (43)
| -0.0878 —0.4431 0.0016

Notice that matrix A has 2 unstable eigenvalues.

To design the quadratic cost function, Viy(x, u), we choose
Q = T4x4, R = Z343, and a prediction horizon of N = 4.
Then, the matrix P is obtained by solving the Riccati
equation in (24), yielding to

(k)
!
,

0 5 10 15 20 2

&

)
1
o

5 10 15 20 25

z3(k)
= o
7
\\
\

[ 5 10 15 20 25

)
7l

0 5 10 15 20 25

T
1205 — =2
S - = =Tk
N
100 \ o
\
80| \ 4
- \
< \
S oe0f \ .
N
N
40 ~9 .
N
20 \\ l
\‘\
0 o e e el
0 5 10 15 20 25

Fig. 3. Cost function Vi (k) for v = 2 and variable (k).

[ 1.5578 0.2584 —0.3077 —0.4575
0.2584 2.5204 0.7421 —1.1341
P= —0.3077 0.7421 3.0840 0.4355 |’ (44)
| —0.4575 —1.1341 0.4355 6.8907
[ 0.1405 0.1430 —0.7880 0.1778
K = |—-0.3576 —0.0909 0.4489 1.5468 (45)
| —0.2499 —0.0051 0.3768 —0.2046

In this case, based on Theorem 3, we found that
o = [110] satisfies the stabilizing condition (26) in
Theorem 3. Thus, we know a priori that, it is possible to
stabilize the system using only v = 2 inputs. With this
value of o, we obtain that

0.3139 0.1144 —0.3233 0.4152
- 0.1960 0.1787 —0.0572 0.3868 46
~ | —0.2092 0.0682 0.4107 —0.1013| "~ (46)

0.5400 0.3226 —0.3828 0.8892

Therefore, it is possible to check that Q + K'RK — ¥ > 0.
Consequently, the cost function and the system state can
be bounded by (40) and (41) respectively, where in this
case a1 = 1.3228, ay = 8.0175, ag = 0.3043, and p = 0.962.

We are going to analyze the implementation of two MPC
controllers. The first one, compute the optimal control
actions provided a time-invariant ¢y constraint, v = 2
(given by the sufficient stability condition of Theorem 3).
For the second controller, we let v to be time variant,
i.e., v(k) on compute the optimal controller that guarantee
stability with the minimum number of active inputs.

Fig. 2 and Fig. 3 show that the controller using v = 2
stabilizes the system quicker than the one with y(k) at the
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Si=

Fig. 4. o(k) and|u(k)|o for v = 2.

o
o
=)
o
N
=3
IS
o

o
o
=)
o
N
=3
o
o

Fig. 5. o(k) and|u(k)|o for minimum ~(k).

expense of using more active inputs at each instant (see
Fig. 4 and Fig. 5). This fact reveals the trade-off between
control performances (Vi (k)) and number of active control
inputs (|u(k)|o): the control performances get worse when
the number of active control inputs is lower and vice versa.
Note that the in some instants the system can be stabilized
even with |u(k)|op = 0.

Although the controller with (k) uses less active control
inputs, in general, the computational effort (and so time
calculation) is higher than for the case with a fixed ~
because more combinations have to be explored. This
makes the choice of the time-invariant 7 resulting from
Theorem 3 a good trade-off between performance, usage of
non-zero control inputs and on-line computational effort.

When the system state is close to the origin, in some cases,
a chattering effect may be produced. To avoid this, one
can apply directly the suboptimal solution, i.e., ky(z) =
L, Kz, which provides that |u(k)|op = 7 while guaranteeing
stability.

6. CONCLUSIONS

In this paper, we have considered the problem of designing
a quadratic MPC technique that constrains the number of
active inputs at each control horizon instant. We rewrite

the MPC optimization problem with £y input constraints
as an iterative convex optimization procedure. We have
also established a sufficient condition on the number of
active inputs in order to guarantee exponential stability.

Further research may include studying robustness against
disturbances and model uncertainties. The proposed tech-
nique provides the flexibility of incorporating any convex
constraint such as bounded signals, z € X and u € U
that can represent the control input saturation and/or
model uncertainties. However, the stability analysis has
to be extended to deal with this more complex problem.
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