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Abstract: In this work, we propose a solution to the inverse kinematics problem based on
the differential kinematics and on a recently proposed algorithm which estimates the inverse of
the Jacobian matrix dynamically. The output of the algorithm can be interpreted as a filtered
inverse (FI) of the Jacobian matrix. An interesting property of the FI algorithm is its ability
to cope with kinematic singularities. The update law of the estimator is driven by error signals
that consider both the left and the right inverse matrices, thus enabling trajectory tracking and
minimization of the control effort simultaneously. This paper shows that the FI algorithm can
be applied to a Jacobian matrix augmented with additional constraints, which allows for setting
the priority or weight to different control objectives, such as obstacle avoidance. Simulation
results are presented to illustrate the performance and feasibility of the proposed solution.
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1. INTRODUCTION

In the past years, considerable research efforts have been
directed towards the development of a generic and robust
solution to the inverse kinematics (IK) problem, commonly
found in several applications, such as 3D computer graph-
ics animation (Grochow et al., 2004), protein backbone
structure determination (Kolodny et al., 2005) and control
of robotic manipulators (Chiaverini et al., 2008). The main
difficulty in dealing with the IK problem is the presence
of kinematic singularities, that is, those configurations at
which the Jacobian matrix of the system is rank-deficient.
At a singularity, the mobility of the structure is reduced
and infinite solutions to the IK problem may exist (Sicil-
iano et al., 2009). Most of the techniques discussed in the
literature to tackle the IK problem are based on numerical
methods or optimization (Maciejewski and Klein, 1989).
The performance of these solutions is evaluated according
to the stability, computational cost and robustness to
singularities (Wampler, 1986; Tchon and Muszynski, 1998;
Nenchev et al., 2000). The methods using the pseudo-
inverse Jacobian may fail to find an acceptable solution in
the neighborhood of a singularity since they can generate
large steady-state error. In addition, the methods based on
the transposed Jacobian, although numerically efficient in
the presence of singularities, do not guarantee asymptotic
stability of the tracking error (Siciliano et al., 2009).

Other methods for solving the IK problem use optimiza-
tion techniques, such as the cyclic coordinate descent
(CCD) method, which is based on nonlinear programming
(Wang and Chen, 1991). The well-known damped least
square (DLS) algorithm finds the inverse kinematics based
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on the pseudo-inverse Jacobian and uses a damping factor
to avoid singularities, setting a trade-off between accuracy
and feasibility of the solution (Nakamura and Hanafusa,
1986). The feedback inverse kinematics (FIK) method does
not require a damping factor and employs a feedback loop
to minimize the difference between the actual and desired
velocities in the operational space (Pechev, 2008).

In this paper, we consider the method recently described
in Vargas et al. (2013) which is based on an algorithm that
dynamically estimates the inverse of the Jacobian matrix.
In the particular case, where the matrix to be inverted is
constant, the output from the algorithm can be viewed
as its filtered inverse (FI) and, for this reason, it was
called FI algorithm. The FI algorithm has some notable
features and one is its ability to cope with kinematic
singularities. It is shown that the only situation to be
avoided is a Jacobian matrix converging to a singularity
slower than any exponential, which is not a restrictive
condition for application purposes. Another feature is
related to the update law of the estimator, which is
driven by error signals that consider both the left and the
right inverse matrices, allowing for trajectory tracking and
minimization of the control effort simultaneously.

This paper is a follow-up of our recent work (Vargas
et al., 2013) and here we show that the FI algorithm
can also be applied to a Jacobian matrix augmented
with additional constraints, thus enabling the weighting
of different control objectives by adjusting the design
gains. Simulation results comprising a case study for
the trajectory tracking problem of robot manipulators in
the neighborhood of singularities are shown to illustrate
the performance and feasibility of the filtered inverse
approach.
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2. FILTERED INVERSE APPROACH

Consider a first-order SISO system described by

ẏ = k(t)u , (1)

where u∈R is the scalar input of the plant (assumed to be
bounded) or the control variable of the system, y∈R is the
plant output and k(t) is a scalar function. Considering that
the control goal is to track a desired reference trajectory
r(t), a control law u(t) which linearizes the system (1) and
guarantees the asymptotic stability of the tracking error
e :=r − y is given by

u(t) = k−1(t) [ ṙ + λ e ] , λ > 0 . (2)

Now, consider that the control law u(t) uses a scalar
function θ(t) dynamically updated, instead of the inverse
computed instantaneously as 1/k(t), such that kθ→1. To
derive a suitable dynamics for θ(t), we introduce the error
signal

S = kθ − 1 , (3)

and consider the positive function 2V (S) = S2 which has

time-derivative given by V̇ (S) = SṠ = S
[
k̇θ + kθ̇

]
. In

view of the last equation, we select the update law

θ̇ = −βSk , (4)

where β>0 is the update gain. As a result, we get

V̇ (S) = Sk̇θ − βS2k2 . (5)

Notice that the update law (4) assures that the second
term in (5) is non-positive. The first term, however,

remains with undefined sign and depends on the k̇. Here,
we begin analyzing the simplest case where k̇≡0 and, thus,
V̇ (S)≤0. The equation (4) can be rewritten as

θ̇ = −β(kθ − 1)k = −βk2θ + βk . (6)

Using the differential operator s, we can explicit θ as

θ =
βk

s+ βk2
=

1

τs+ 1

[
1/k

]
, (7)

where τ = 1/βk2. Thus, θ can be interpreted as the output
of a linear filter where the input is the true inverse 1/k,
that is, θ converges exponentially to 1/k. Observe that the
smaller is k, the larger is τ and consequently the slower is
the filter. The same is observed for the gain β: the smaller
is the update gain, the larger is the time constant of the
filter. Motivated by (7), we refer to the signal θ(t) as the
filtered inverse of function k(t).

2.1 Properties of the filtered inverse

An important property of the algorithm (4) is that for

k ≡ 0 it gives θ̇ ≡ 0 and, as a consequence, θ(t) ≡ θ(0).
Fig. 1 shows the θ × k plane with the locus of S = 0 and
some trajectories for different initial conditions θ(0). In
view of this figure, we can state that for any constant k
the output θ(t) is bounded.

Consider now the case of a time-varying function k(t). It is
clear from Fig. 1 that the only possibility of θ(t) to grow
without bound is in the region delimited by −1 < S < 0
(see the hatched region in the first quadrant). The closer
k is to zero, the larger may be θ. However, it can be easily
verified that in this region 0< |k|<1 and 0< |θ̇|<β. This
means that θ cannot escape in finite time.
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θ̇<0

S<0

k>0

θ̇>0
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θ̇<0

Fig. 1. Trajectories for some initial conditions in θ×k plane.

Notice that for k̇ 6= 0, we have that

∂θ

∂k
=

dθ

dt

dt

dk
= −

βkS

k̇
. (8)

If k is a signal exponentially converging to zero with
k̇=−αk , α > 0, we can rewrite (8) as

∂θ

∂k
=

β

α
S . (9)

Therefore, in the hatched region, we have that −β/α <
∂θ/∂k<0 and consequently, the function θ(t) is bounded.
This shows that, in fact, the filtered inverse θ(t) can even-
tually grow unbounded. However, the signal k(t) should
be converging to zero slower than any exponential. Conse-
quently, the rate of increase of θ(t) should also be slower
than any exponential. The main properties of the algo-
rithm (4) can be summarized as follows:

(P1) k≡ 0 ⇒ θ(t)≡θ(0).
(P2) k constant ⇒ θ∈L∞.

(P3) k∈L∞ ⇒ θ̇∈L∞.
(P4) θ(t) has no finite escape time.

2.2 Filtered inverse of matrices

The algorithm (4) can be easily generalized to deal with
matrices. Consider the following first-order MIMO system
described by

ẏ = K(t)u , (10)

where u∈R
n is the plant input or the control variable of

the system, y ∈ R
m is the plant output and K ∈ R

m×n

denotes a nonlinear matrix function. Notice that, in the
context of differential kinematics, the matrix K is known
as the Jacobian matrix.

Here, we consider that the control goal is to track a desired
reference trajectory r(t). A control law u(t) which lin-
earizes the system and guarantees the asymptotic stability
of the tracking error e :=r − y is given by:

u(t) = K†(t) [ ṙ + Λ e ] , Λ=ΛT>0 , (11)

where K†(t) ∈ R
n×m is the pseudo-inverse of the matrix

K(t). Again, consider that the control law u(t) uses a
dynamically updated matrix Θ(t) rather than the pseudo-
inverse matrix K†(t). To establish a suitable dynamics for
Θ(t), we introduce an error signal Sr ∈ R

m×m based on
the right inverse

Sr = KΘ− Im , (12)
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and an error signal Sℓ∈R
n×n based on the left inverse

Sℓ = ΘK − In . (13)

Consider initially the error (12) and the positive function
2Vr = tr(ST

r Sr), where tr(·) is the trace function. The

time-derivative of Vr is given by 2 V̇r = 2tr(ST

r K̇ Θ) +

2tr(ST

r K Θ̇). In view of the above equation, we choose the
following update law

Θ̇ = −ΓKTSr , (14)

where Γ = ΓT > 0 is the update gain matrix. As a result,
we have that

V̇r = tr(ST

r K̇ Θ)−tr(ST

r K ΓKT Sr)
︸ ︷︷ ︸

≤0

. (15)

Similarly, for the error (13) we consider the positive func-
tion 2Vℓ = tr(ST

ℓ Sℓ), which has time-derivative along the

trajectories of the system given by: 2 V̇ℓ = 2tr(ST

ℓ Θ K̇) +

2tr(ST

ℓ Θ̇K). Now, the update law is selected as

Θ̇ = −ΓSℓK
T , (16)

where Γ=ΓT>0. As as result, we have

V̇ℓ = tr(ST

ℓ Θ K̇)−tr(K ST

ℓ ΓSℓ K
T)

︸ ︷︷ ︸

≤0

. (17)

Remark 1. In the case where the Jacobian matrix K ∈
R

m×n is square (m=n) and non-singular both update laws
(14) and (16) can be used to solve the inverse kinematics
problem, since the left and right inverse matrices are equal.
However, for the case of a non-square Jacobian matrix
K (m 6= n), the error matrices Sr and Sℓ have different
dimensions. For a Jacobian matrix with full rank by rows,
that is, rank(K) =m, there are infinitely many solutions
X such that KX = I, while there is no solution Y such
that YK = I. A preliminary interpretation in terms of
the kinematic control approach is that the right inverse
obtained from (14) − driven by the error matrix Sr −
allows the trajectory tracking in the operational space but,
because of the plethora of solutions, the control variable u
has components in the null space of K. By the other hand,
it can be shown that the left inverse (16) − driven by the
error matrix Sℓ − minimizes the projection of u in the
null space of K, resulting in an optimal control variable
(Vargas et al., 2013).

Thus, in view of the above remarks, we propose an update
law based on both error matrices, Sr and Sℓ, simultane-
ously as

Θ̇ = −Γ(KTSr + SℓK
T) , (18)

where Γ=ΓT>0 is the update gain matrix. We can show
that the composite update law (18) is easily obtained from
the positive function Vc = Vr+Vℓ. As a result, the time-
derivative of Vc is given by

V̇c = f(K̇)−tr
(
(ST

r K +K ST

ℓ ) Γ (Sℓ K
T +KT Sr)

)

︸ ︷︷ ︸

≤0

.

For K̇≡0, we have that V̇c≤0. In this case, one has that
Θ̇=0 and V̇c=0 when SℓK

T +KTSr = 0 , that is,

ΘKKT +KTKΘ = 2KT. (19)

Notice that (19) is a Sylvester equation and it has a
unique solution Θ if and only if K has full rank. The
solution converges to the pseudo-inverse of K. If K has
reduced rank, the solution is not unique and the output

of the algorithm depends on the initial condition Θ(0).
It is easily shown that both conditions KTSr = 0 and
SℓK

T = 0 are verified if (19) holds true. It is noteworthy
that the only assumption required to employ this method
to solve the IK problem is that the desired trajectory
r(t) is not converging (slower than exponentially) to a
singularity. The convergence property of the FI algorithm
for the update law (18) is analyzed employing the singular
value decomposition (SVD) approach and can be found in
(Vargas et al., 2013).

3. MODIFIED CONTROL LAW

Resorting to Section 2, we consider the scalar gain k and
its inverse function k−1. The inverse is an odd function
and has the same sign of k. However, the same property
is not verified for the function k and its filtered inverse θ.
In order to recover the equality of sign, we propose a new
way to apply the parameter θ in the control law u in (2)
defining

θM = θ2 k , (20)

so that sign(θM ) = sign(k). For the multivariable case a
similar modification is also proposed and, thus, the matrix
ΘM is given by

ΘM = ΘΘTKT . (21)

It is worth mentioning that ΘΘT is a symmetric positive
semi-definite matrix.

Now, consider the tracking control problem for a reference
trajectory r(t) such that error dynamics is governed by
ė = ṙ(t) − K u , where u is the control law and K is
the Jacobian matrix. Choosing the Lyapunov function
candidate as 2Ve = eTΛ e , its time-derivative along the
trajectories of the system is given by V̇e = eT Λ(ṙ−K u).
Then, for u=u

M
and taking u

M
=ΘΘTKTv , we obtain

V̇e=eTΛ(I −N NT) ṙ − eTΛT N NTΛ e
︸ ︷︷ ︸

Φ

, (22)

where N = KΘ. Notice that the term Φ corresponds to
a negative semi-definite term, regardless of the quality of
the estimate given by the FI algorithm (18).

In the case where K has reduced rank, the use of u
M
(v)=

ΘMv cancels the components of v in the null space of
KT, that is, for v = vc + vn, where vc ∈ Col(K) and
vn ∈Nul(KT), we have that u

M
(v) = uM (vc). It is worth

mentioning that Ve is also defined in terms of the weighted
error variable ew = Λe. Thus, for the case where the
reference trajectory r(t) is out of reach, the gain matrix
Λ affects the obtained solution by weighting the different
control objectives.

4. AUGMENTED JACOBIAN MATRIX

The FI algorithm provides a solution for the inverse kine-
matics problem even when unfeasible or unreachable ref-
erence trajectories are considered. As we show, the pro-
posed algorithm allows for prioritizing one of the primary
control objectives simply by adjusting the gain matrix. In
addition, we can include an objective function f in the
solution to satisfy an additional constraint to the tracking
control problem as
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[
ẏ

ḟ

]

=

[
K
Kf

]

︸ ︷︷ ︸

K+

u , (23)

where Kf ∈ R
1×n is the constraint Jacobian matrix and

K+ ∈ R
me×n is the augmented Jacobian matrix, with

me=m+1. Notice that, considering the secondary control
objective, it is possible that me>n which justifies the use
of the error signal based on the right inverse (12). Similarly
to u

M
(v) = ΘM v with ΘM = ΘΘT KT, the control law

u
M
(t) to the augmented inverse kinematics problem is

u
M
(t) = Θ+Θ

T

+ KT

+ v+ , (24)

where the matrix Θ+ is the filtered inverse of the matrix
K+ and v+ is the augmented Cartesian control signal

v+ =

[
v
vf

]

=

[
ṙ + Λ e
−f

]

. (25)

The natural choice for vf would be vf =−λf f where λf ≥0
is the proportional gain of the objective function. However,
we choose to include the weighting given by λf directly
in the computation of function f . The advantage of this
choice is that for the case where there is no constraint
or the constraint has low priority, the elements of Kf are
equal to zero or have small magnitude, respectively.

5. APPLICATION TO ROBOT CONTROL

To illustrate the applicability of the proposed algorithm,
we consider the tracking control problem for a MIMO
nonlinear system represented by a robot manipulator.

5.1 Robot kinematics

First, we consider the kinematic modeling of a robot
manipulator. The joint spaces variables are related to
the operational space variables by means of the following
forward and differential mappings

p = h(q) , ṗ = Jp(q) q̇ , (26)

where h(q) is a m-dimensional vector function, nonlinear
in general, and Jp(q) = (∂h/∂q) ∈ R

m×n is the analytical
Jacobian. Notice that p, ṗ ∈ R

m denote the position and
the linear velocity of the robot end-effector, and q, q̇∈R

n

are the position and velocity of the manipulator joints.

The orientation of the robot end-effector can be described
by the unit-quaternion representation given by a four-
dimensional vector φ = {η, ǫ} ∈ H

1 , where η ∈ R is the
scalar part and ǫ ∈ R

3 is the vector part, subject to the
unit norm constraint η2+ǫTǫ=1. The so-called quaternion
propagation rule relates the time-derivative of the unit
quaternion φ̇ ∈ H with the angular velocity of the robot
end-effector ω∈R

3 as

φ̇ =
1

2
E(φ)ω , E(φ) =

[

−ǫT

ηI −Q(ǫ)

]

, (27)

where Q(·) :R3 7→so(3) denotes the skew-symmetric matrix
operator and Jr(φ) = 2ET(φ) ∈ R

3×4 is the well-known
representation Jacobian.

1 The symbol H denotes the unit quaternion group satisfying the
algebra of quaternion (Siciliano et al., 2009).

The differential kinematics equation provides the relation-
ship between the joint velocities vector and the corre-
sponding linear and angular velocity of the robot end-
effector as

[
ṗ
ω

]

=

[
Jp(q)
Jo(q)

]

q̇ = J(q) q̇ , (28)

where J(q)∈R
m′×n is the geometric Jacobian of the robot

manipulator. Notice that, the orientation of the robot
end-effector can be given in terms of the manipulator
joint angles as φ = g(q), where g(·) is a vector function,
nonlinear in general. Thus, taking into account (27) we
have Jo(q) = Jr(φ) (∂g(q)/∂q) . It is worth mentioning
that the kinematic model has the following property very
useful for the stability analysis of robot manipulators with
revolute joints.

Property 1 (Dixon, 2007): J(q) is bounded for all possible
values of q(t), that is, it depends on q(t) as arguments of
limited trigonometric functions and ||J(q)||∞ ≤ c1, where
c1∈R is a known positive constant.

5.2 Kinematic control

Consider the kinematic control problem for a n-DoF robot
manipulator. In this framework, the robot motion can be
simply described by

q̇i = ui , (i = 1, · · · , n) , (29)

where qi and q̇i are the angular position and the angular
velocity of the i-th joint respectively, and ui is the velocity
control signal applied to the i-th joint motor drive. This
approach can be applied to most commercial robots with
high gear ratios or when the task speed is slow. Then, from
(28) and considering the kinematic control approach (29),
we obtain the following control system

[
ṗ
ω

]

= J(q)u . (30)

For the case where the Jacobian matrix is non-square
(m<n), the velocity control signal u∈R

n is given by

u(t) = J†(q) v , (31)

where J† = JT (J JT)−1 is the right pseudo-inverse of J
and v∈R

m is a Cartesian control signal to be designed.

The control signal (31) locally minimizes the norm of
the velocities of the joints, provided that (A1) the robot
kinematics is known and (A2) v(t) does not lead the robot
to singular configurations. The failure of this last condition
is a fairly open-problem in robotics area, and will be
discussed in what follows. Notice that, in the case where
the Jacobian matrix is square (m= n) and non-singular,
the velocity control signal is given by u(t)=J−1(q) v.

Remark 2. Due to the presence of n−m redundant degrees
of freedom, the solution (31) can be modified by introduc-
ing a term belonging to the null space of J , i.e.

u(t) = J† v +
(
I − J† J

)
q̇0 , (32)

where q̇0 is a vector of arbitrary joints velocities that can
be specified to satisfy an additional constraint with a sec-
ondary priority. The solution obtained locally minimizes
the norm of the joints velocities and allows the genera-
tion of internal movements to reconfigure the manipulator
structure without changing the pose of the robot end-
effector (Siciliano et al., 2009).
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5.3 Position and orientation control

Consider the position and orientation control problem for
a n-DoF robot manipulator. The control goal is to track a
time-varying desired pose xd(t)=[ pd(t) φd(t) ]

T, assumed
to be bounded, from the current pose of the robot end-
effector x=[ p φ ]T, that is

lim
t→∞

[
p
φ

]

=

[
pd(t)
φd(t)

]

. (33)

The position error is simply defined as ep = pd(t)− p,
but the orientation error should be defined in terms
of the algebra of rotation groups, instead of the vector
algebra. Considering the unit-quaternion representation, it
is common to choose the orientation error eo as the vector
part of the error quaternion

eo := ∆ǫ = η(q) ǫd − ηd ǫ(q)−Q(ǫd) ǫ(q) , (34)

where the pair {ηd , ǫd} denotes respectively the scalar
and the vector parts of the desired quaternion. The error
quaternion is defined as ∆φ={∆η,∆ǫ}=φd ∗ φ

−1 , where
the symbol “ ∗ ” denotes the quaternion product operator.
Notice that ∆φ = {1, 0T} if and only if φ and φd are
coincident.

At this point, we can calculate the velocity control signal
u based on a Jacobian pseudo-inverse solution

u = J†(q)

[
vp
vo

]

= J†(q)

[
ṗd + Λp ep
ωd + Λo eo

]

, (35)

where Λp = ΛT

p > 0 and Λo = ΛT

o > 0 are the position

and orientation gain matrices respectively, and ωd ∈ R
3

is the desired angular velocity for the robot end-effector.
The stability and convergence analysis of the kinematic
control approach (35) applied to a non-redundant robot
manipulator can be found in (Leite et al., 2009). Fig. 2
shows the block diagram of the inverse kinematics algo-
rithm applied to the tracking control problem considering
only the position of the robot end-effector. The complete
block diagram including the orientation control problem is
intuitive and will be omitted here.

+
+

+
_

x

p

pd

ṗd

vp

Θ̇=−γ(JT

p JpΘ+ΘJpJ
T

p −2JT

p )

Jp(·)

h(·)

∫

∫ ∫ qu
M

ΘΘTJT

p

Θ
M

ep

Θ

Θ̇

Fig. 2. Block diagram of the kinematic control algorithm.

6. SIMULATION RESULTS

In this section, we present simulation results obtained
for some cases of interest. In case studies I and II, the
performance of the proposed algorithm is measured from
the tracking of trajectories that have internal/boundary
singularities and compared with the DLS algorithm using
a damping factor δ=300 and a singularity neighborhood

defined by the minimum manipulability measure ω0=103

(Vargas et al., 2013). In case study III, the orientation
control problem is also considered and the performance
is analyzed for points where the desired position and
orientation cannot be achieved simultaneously, that is, the
desired posture is unreachable. Lastly, in case study IV, we
consider the presence of an obstacle in the workspace of a
redundant robot manipulator.

6.1 Case Study I - Internal singularities

Here, we consider only the position tracking problem
for a 6-DoF Zebra Zero manipulator (IM Inc.) without
actuation in the last 3 joints, configuring a 3-DoF non-
redundant case. The trajectory is in the vicinity of internal
singularities (or joint space singularities), that is, singular
configurations belonging to the robot workspace (Fig. 3).

Fig. 3. Reference trajectory with internal singularities.

The length of the robot links are ℓ1 = 27.94 cm and
ℓ2 = 39.36 cm. The initial conditions and the control
parameters are: q(0) = [ 0 π/2 − π ]T rad, Θ(0) = 03×3,
Λ = 2 I and Γ= I. The trajectory tracking for the FI and
DLS algorithms as well as the manipulability measure are
depicted in Fig. 4(a) and (b) respectively. The norm of the
tracking errors is shown in Fig. 4(c) and (d), where it can
be observed that the proposed algorithm allows for the
tracking of the reference trajectory with small error, even
in singular configurations.
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Fig. 4. Trajectory tracking in yz plane, manipulability
measure and norm of the position errors.
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6.2 Case Study II - Boundary singularities

Now, we consider an extreme case, in which part of the
reference trajectory does not belong to the workspace of
the manipulator. This type of singularity is known as
boundary singularity. The reference trajectory is depicted
in Fig. 5 and the trajectories tracking for two different
update gains Γ=γ I are shown in Fig. 6. The update gain
Γ is directly related to the performance of the proposed
algorithm and for high gains (γ = 25) the trajectory
deviations in the transition points are small, as shown in
Fig. 6(b) and (c).

Fig. 5. Reference trajectory with boundary singularities.
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Fig. 6. Trajectories in xy plane and the transition points.

6.3 Case Study III - Position and orientation

Now, we consider the 6-DoF Zebra-Zero manipulator with
full actuation. The control goal is to track the time-varying
desired position while keeping the orientation of the robot
end-effector constant, configuring a 6-DoF non-redundant
case. We also consider: Θ(0) = 06×6, Γ = 25 I, q(0) =
[ 0 π/2 − π 0 π/2 0]T rad, Λp = λp I, Λo = λo I and the
unit-quaternion formulation to describe the orientation of
the robot end-effector. The desired orientation φd is given
by the elementary rotation by an angle π rad about y-
axis. Fig. 7 shows the norms of the position and orientation
errors, ep and eo, for different combinations of proportional
gains λp and λo.

For those points in which the time-varying desired pose
xd(t) cannot be fully achieved, the choice of gains allows
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Fig. 7. Norm of the position and orientation errors.

for the weighting of the position and orientation errors
in the operational space. In Fig. 7(a) the position gain
(λp=100) is higher than the orientation gain (λo=10) and,
therefore, the position control objective is prioritized. By
the other hand, in Fig. 7(c) the orientation gain (λo=100)
is higher than the position gain (λp=10), prioritizing the
orientation control objective. The choice λp = λo results
in similar errors in the workspace, as shown in Fig. 7(b).
Fig. 8(a) and (b) depict the sections of the trajectory track-
ing with position and orientation priorities, respectively.

Fig. 8. Trajectory tracking with different priorities.

6.4 Case Study IV - Obstacle avoidance

Here, we consider the position tracking control problem
for a 3-R planar robot manipulator (ℓ1=2 and ℓ2=ℓ3=1)
in the presence of a single obstacle. The objective function
f(·) for obstacle avoidance is inspired by the Gaussian
function and it is defined in terms of the distance ∆p
between the points pj ∈ R

3, (j = 1 · · ·n), fixed on the
robot joints to the centre of the obstacle µ∈R

m.

The level curves are ellipsoids defined by the matrix Mf =

Rf D
−1
f RT

f with Mf =MT

f > 0, where Rf ∈ SO(3) is the
rotation matrix which defines the axes of the ellipsoids
and Df ∈ R

3×3 is the stretching curve matrix which
has positive elements in its diagonal, whose roots are
proportional to the stretching of the level curve at these
axes. The objective function that we consider is given by:

f(p1, · · · , pn) :=

n∑

j=1

αje
−(pj−µ)T Mf (pj−µ) (36)

where αj > 0 is a scalar gain. Applying the coordinates
transformation given by the matrix Rf , we can rewrite
the objective function as:
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f(p1, · · · , pn) =

n∑

j=1

αje
−(∆pj)

′T D
−1

f
(∆pj)

′

(37)

where (∆pj)
′=RT

f ∆pj is the representation of the vector

∆pj=(pj − µ) in the original coordinate frame rotated by
the matrix Rf . The parameters of the objective function
are defined in the operational space by µ = (µx, µy) =
(2, 0.75), Rf = I and Df = (0.2)2 I evaluated at the robot
end-effector. The simulation results obtained with the FI
algorithm considering Θ(0)=03×2, Γ=5 I and Λ=5 I are
shown in Fig. 9(a)-(c) respectively.
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Fig. 9. Trajectory tracking with obstacle avoidance.

The use of positive values for αf allows the robot end-
effector to deviate from the obstacle defined by function f
as depicted in Fig. 9(a) and (c), where it can be observed
the trajectory tracking for different values of gain αf and
the level curves of the normalized function f over αf . As
expected, the higher is the gain αf , the greater is the
deviation. Besides, the function f shown in Fig. 9(b) can
be evaluated in intermediate points along the links of the
robot arm, allowing internal reconfiguration and avoiding
collision between links and obstacles.

7. CONCLUDING REMARKS

In this work, we present an alternative algorithm that uses
the filtered inverse of the Jacobian matrix to tackle the
inverse kinematics problem and deal with kinematics sin-
gularities simultaneously. A generalization of the filtered
inverse approach for non-square matrices is guaranteed by
means of a composite update law built up from left and
right error matrices.

The combination of the proposed solution with the proper
tuning of the gain matrices allows for weighting of one
of the primary control objectives (e.g., position or orienta-
tion) when the reference trajectory is out of reach. Besides,

an augmented Jacobian matrix can be defined to include
an additional constraint to the kinematic control problem
with secondary priority (e.g., obstacle avoidance).

Compared to other inversion algorithms described in the
literature, the main advantage of our proposal is related
to the number of design parameters to be tuned − only
the update gain − and the computational efficiency, since
it does not require matrix inversion, singular value decom-
position or computation of manipulability measures. Some
potential topics for future research comprise the applica-
tion of the proposed solution to closed-chain mechanisms
and relaxing the condition of the complete knowledge of
the robot kinematics.
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