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Abstract: This paper proposes and analyzes a new strategy to accelerate the process of reaching
consensus in leader-follower networks. By removing or weakening specific directed couplings
pointing to the first followers from the other followers, we prove that all the followers’ states
converge faster to that of the leader. This result is in sharp contrast to the well known fact
that when the followers are coupled together through undirected links, removing or weakening
links always decelerate the converging process. Simulation results are provided to illustrate this
subtle, yet somewhat surprising, provably correct result.
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1. INTRODUCTION

Although variations of consensus algorithms as a typi-
cal class of distributed coordination algorithms for multi-
agent networks have been studied extensively in the past
years {Jadbabaie et al. (2003); Olfati-Saber et al. (2007);
Cao et al. (2008a); Ren and Cao (2011)}, one central
issue that remains open and demands more in-depth in-
vestigation is how to accelerate the convergence speed
for such algorithms when the scales of the networks are
large {Blondel et al. (2009); Olshevsky and Tsitsiklis
(2009); Cao et al. (2008b); Nedic and Ozdaglar (2010); Ol-
shevsky and Tsitsiklis (2011)}. In {Xiao and Boyd (2004)},
centralized semidefinite programming is utilized to find
the optimal combinations of the weights for distributed
weighted averaging; modified gossiping algorithms have
been discussed when shift-registers are installed to store
each agent’s past values {Cao et al. (2006); Oreshkin
et al. (2010); Liu et al. (2013)}. Various heuristics, e.g.
using prediction mechanisms, have been discussed as well
{Zhang et al. (2009)}.
Researchers have been especially interested in the process
of aligning followers with the leaders in multi-agent net-
works when some agents are taking the role of leaders that
guide the followers to reach consensus {Jadbabaie et al.
(2003); Cao et al. (2008b); Scardovi and Sepulchre (2009);
Ni and Cheng (2010)}. Since in leader-follower networks,
the consensus, if reached in the end, will be the state of
the leader, it is relatively easier to characterize how fast
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a follower’s state approaches its asymptotic value. As a
result, deeper insight can be obtained into what affects the
convergence speed of the consensus algorithms and how
one might come up with new strategies to accelerate the
converging processes.

In this paper, we study the problem of accelerating the
process of reaching consensus in leader-follower networks.
We propose a new strategy based on an intuitive idea
rooted in understanding the hierarchical differences for
the followers in terms of their topological distances to the
leaders in the network. We pay special attention to those
followers who can sense or acquire directly the leaders’ in-
formation and call such followers first followers. Although
in undirected multi-agent networks, stronger or more links
between followers always accelerate convergence {Xiao and
Boyd (2004)}, in directed networks, the convergence speed
changes in more complicated fashions {Cao et al. (2008b)}.
For the first followers, their information about the leader’s
state is the most critical for them to reach consensus while
their information about the other followers may very likely
differ or even contradict that of the leaders. Based on this
observation, we claim that if the first followers are more
focused on the leaders and cut or weaken their links to the
other followers, the convergence process of all the followers
may get accelerated. Although this claim is plausible at
least intuitively, to prove it rigourously requires quite
some involved arguments. It is the main contribution of
this paper to prove mathematically how the new simple
strategy accelerates reaching network consensus.

The rest of the paper is organized as follows. In Section
2, we introduce the leader-follower network model and
formulate the convergence speed problem. In Section 3,
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we give rigorous proof to show that the convergence
is accelerated when directed links pointing to the first
followers and starting from the other followers are removed
or weakened. In Section 4, we give a simulation example
to illustrate the theoretical results.

2. PROBLEM FORMULATION

Consider a network ofN+1 agents that consists of a leader,
labeled by 0, and N followers, labeled by 1, . . . , N . The
couplings between the followers are equally weighted (we
will relax this later) but not necessarily symmetric, and
thus need to be described by a directed graph G = (V, E),
whose vertex set is V = {1, 2, . . . , N}. There are no self-
couplings for the agents and correspondingly no self-loops
in G. So an element aij of the nonnegative adjacency
matrix A = (aij)N×N of G is one if and only if i ̸= j
and (j, i) ∈ E . In the rest of the paper, we assume that
G is strongly connected and that the leader can influence

at least one follower directly. Let di =
∑N

j=1,j ̸=i aij be
the in-degree of vertex i and the diagonal matrix D =
diag(d1, . . . , dN ) be the in-degree matrix. The Laplacian
matrix L of G is given by L = D −A.

The state of the leader x0 ∈ IR is fixed at a constant
value c, which in real networks may correspond to a
preferred migration direction of a flock of birds, a strong
opinion of a leading figure of an online community, or a
prescribed rendezvousing location of a team of robots. All
the followers have to interact with the other peer agents
so that the values of their states xi ∈ IR, 1 ≤ i ≤ N ,
converge to x0 = c as the networked system evolves. To
be more specific, the updating rules of the followers are
described by

ẋi =
N∑

j=0,j ̸=i

aij(xj − xi), i = 1, . . . , N, (1)

where ai0 = ϵ > 0 if the leader influences agent i directly
and zero otherwise, and aij = 1 if j ̸= i, 0 and (j, i) ∈ E
and zero otherwise. While it has been well established
that when G is connected, the values of all the agents
will converge exponentially fast to x0 {Jadbabaie et al.
(2003); Cao et al. (2008b)}, the convergence can slow down
significantly as the scale of the network grows. So it is of
great interest to explore how to speed up the convergence
using as little global information as possible, which rules
out the approaches optimizing the topologies of G globally
in order to maximize the smallest nonzero eigenvalues of
the Laplacian matrices of the leader-follower networks.

In this paper, we focus on the potential role of the first
followers, those who have direct access to the information
about the leader, in accelerating the convergence speed. It
is the goal to prove rigourously that when the first followers
focus more on the leader and pay less attention to the other
followers, the values of all the followers will converge faster
to that of the leader. Note that this underscores the subtle
fact that stronger or more couplings between the followers
do not necessarily lead to faster convergence.

Towards this end, we rearrange the labels of the followers
such that the first followers are labeled by 1, . . . , l, where
l ≥ 1 is the number of the first followers, and the other
followers are labeled by l + 1, . . . , N . Note that we have

used ϵ > 0 to denote the gain that the first followers can
choose reflecting their attention to the leader; and the ϵ’s
are the same for all the first followers. Hence, the dynamics
of the followers can be written into

ẋi =

N∑
j=1,j ̸=i

aij(xj − xi) + ϵ(x0 − xi), i = 1, . . . , l;

ẋi =

N∑
j=1,j ̸=i

aij(xj − xi), i = l + 1, . . . , N.

(2)

Let yi = xi −x0 be the difference between the state of the
follower i and that of the leader, then the dynamics of the
yi-system are

ẏi =

N∑
j=1,j ̸=i

aij(yj − yi)− ϵyi, i = 1, . . . , l,

ẏi =

N∑
j=1,j ̸=i

aij(yj − yi), i = l + 1, . . . , N,

(3)

or in a compact form

ẏ = −(L+ E)y, (4)

where y = [y1 · · · yN ]T and E is the N -dimensional
diagonal matrix whose first l elements are ϵ and the rest
are zero.

Since G is strongly connected, −(L + E) is Hurwitz and
thus y converges to zero as time goes to infinity. So the
states of all the followers converge to that of the leader and
the convergence speed is determined by that eigenvalue
of −(L + E) that has the largest real part. In the next
section, we explain and prove our idea that by making
the first followers more focused on the influence from the
leader and less distracted by the influence from the other
followers, one may accelerate the convergence of the states
of all the followers.

3. MAIN RESULT

We start with the case when there is only one first follower
and then look into the more general case when there are
multiple first followers.

3.1 The case with one first-follower

Now the dynamics of the y-systems (3) and (4) become
ẏ1 =

N∑
j=2

a1j(yj − y1)− ϵy1,

ẏi =
N∑

j=1,j ̸=i

aij(yj − yi), i = 2, . . . , N,

(5)

and
ẏ = −(L+ E)y, (6)

where E = diag(ϵ, 0, . . . , 0). The idea of accelerating
the convergence is illustrated by a four-follower example
shown in Fig. 1. The first-follower, agent 1, was originally
influenced by both the leader and the followers 3 and 4; by
deleting the edges (3, 1) and (4, 1) in the graph, we make
agent 1 get more focused on using the information from
the leader.
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leader

3

42

1

0 leader

3

42

1

0

Fig. 1. An illustrative example showing that the first-
follower neglects the information received from the
other followers.

Before looking into the property of the solution to system
(5), we first introduce some lemmas and notions that will
be used often in the rest of the paper.

Let M = (mij)N×N be a real matrix. We write M ≥ 0 if
mij ≥ 0, i, j = 1, . . . , N , and such a matrix M is called a
nonnegative matrix.

Lemma 1. (Horn and Johnson (1985)) If M ≥ 0 is a
nonnegative matrix, then the spectral radius ρ(M) of M
is an eigenvalue of M and there is a nonnegative vector
x ≥ 0, x ̸= 0, such that Mx = ρ(M)x. If M is nonnegative
and irreducible, then ρ(M) is a simple eigenvalue ofM and
there is a positive vector x > 0 such that Mx = ρ(M)x.

Lemma 2. (Horn and Johnson (1985)) Let M1 be an
irreducible nonnegative matrix. If M2 ≥ 0 and M2 ̸= 0
then ρ(M1 +M2) > ρ(M1).

Lemma 3. (Horn and Johnson (1985)) Suppose M ∈
IRN×N and M ≥ 0. Then

min
1≤i≤N

N∑
j=1

mij ≤ ρ(M) ≤ max
1≤i≤N

N∑
j=1

mij . (7)

Lemma 4. If M ≥ 0 and M is irreducible, and min1≤i≤N∑N
j=1 mij < max1≤i≤N

∑N
j=1 mij , then

min
1≤i≤N

N∑
j=1

mij < ρ(M) < max
1≤i≤N

N∑
j=1

mij . (8)

Proof. Let max1≤i≤N

∑N
j=1 mij = α and construct a new

matrix B with bij = α
mij∑N

j=1
mij

. Then B ≥ M , and∑N
j=1 bij = α for all i = 1, . . . , N , implying ρ(B) = α.

Since B −M ≥ 0, B −M ̸= 0, and M is irreducible, from
Lemma 2, one knows ρ(M) < ρ(B) = α. The lower bound
can be established in a similar manner. �
Lemma 5. (Horn and Johnson (1985)) If M ∈ IRN×N and
M ≥ 0, then

ρ(M) = max
x≥0
x ̸=0

min
xi ̸=0

(Mx)i
xi

= max
x≥0

xT x=1

min
xi ̸=0

(Mx)i
xi

, (9)

where (Mx)i is the ith element of the vector Mx.

Lemma 6. Let M ∈ IRN×N be an irreducible nonnegative
matrix. Then there is a unique vector x∗ ∈ {x|x ≥
0, xTx = 1} such that x∗ > 0 and

ρ(M) = min
i

(Mx∗)i
x∗
i

=
(Mx∗)i

x∗
i

, i = 1, . . . , N, (10)

and for any y ∈ {x|x ≥ 0, xTx = 1}, y ̸= x∗,

ρ(M) > min
yi ̸=0

(My)i
yi

. (11)

The proof is omitted here due to the length limit.

An N × N real matrix M with nonnegative off-diagonal
elements mij , i ̸= j, is called essentially nonnegative
{Cohen (1981)}. Such anM has an eigenvalue r(M), called
the dominant eigenvalue, which is real and greater than
or equal to the real part of any other eigenvalue of M .
This can be seen by adding a positive scalar multiple
of the identity matrix αI to M such that M + αI is
nonnegative. From Lemma 1, one knows that M +αI has
an eigenvalue ρ(M+αI), which is real and greater than or
equal to the real part of any other eigenvalue of M + αI.
Letting r(M) = ρ(M +αI)−α, one obtains the dominant
eigenvalue of M .

It is obvious that both −L and −(L + E) are essentially
nonnegative. Let dmax = max1≤i≤N di, α = dmax + ϵ + 1,
and P = −(L + E) + αI. P is nonnegative and has an
eigenvalue ρ(P ). Since the graph G is strongly connected,
the matrices L and P are irreducible. Since E ≥ 0, E ̸= 0,
in view of Lemma 2, we know

ρ(P ) < ρ(P + E) = ρ(−L+ αI) = α.

Thus
r(−(L+ E)) = ρ(P )− α < 0,

which implies that the eigenvalues of −(L + E) all have
negative real parts. The solution y to system (6) converges
to 0 as t → ∞. Thus r(−(L + E)) is one of the indices
characterizing the convergence speed.

When agent 1 only uses the information about the leader
and neglects the information about the other followers,
system (5) becomes

ẏ1 = −ϵy1,

ẏi =

N∑
j=1,j ̸=i

aij(yj − yi), i = 2, . . . , N,
(12)

or in a compact form

ẏ = −(L̄+ E)y, (13)

where L̄ is the same as L except that the first row of L̄ is
equal to 0. Let the Laplacian matrix L be partitioned into

L =

[
l11 L12

L21 L22

]
,

where l11 = d1, L21, LT
12 ∈ IRN−1 and L22 ∈

IR(N−1)×(N−1). We then have

L̄ =

[
0 0

L21 L22

]
, −(L+ E) =

[
−l11 − ϵ −L12

−L21 −L22

]
,

−(L̄+ E) =

[
−ϵ 0

−L21 −L22

]
.

The following theorem discloses the relationship between
the dominant eigenvalue of −(L̄ + E) and −(L + E),
which guarantees a faster convergence speed for system
(13) compared with system (6).
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Theorem 1. If the graph G is strongly connected, then

max{−ϵ,−1} ≤ r(−(L̄+ E)) < r(−(L+ E)) < 0. (14)

Proof. Let dmax = max1≤i≤N di, α = dmax + ϵ + 1,
P = −(L + E) + αI and P̄ = −(L̄ + E) + αI. Therefore,
P and P̄ are nonnegative matrices. In view of Lemma 1,
ρ(P ) and ρ(P̄ ) are eigenvalues of P and P̄ , respectively.
To prove (14), it suffices to prove

max{α− ϵ, α− 1} ≤ ρ(P̄ ) < ρ(P ) < α. (15)

Since P is irreducible and

α− ϵ = min
1≤i≤N

N∑
j=1

pij < max
1≤i≤N

N∑
j=1

pij = α,

from Lemma 4, we know that α− ϵ < ρ(P ) < α. It is easy
to see from the structure of P̄ that the spectrum of P̄ is
σ(P̄ ) = {α − ϵ, σ(P̄22 = −L22 + αI)}. Suppose the graph
Ḡ, obtained by deleting vertex 1 and the edges starting
or ending at this vertex in G, is still connected (otherwise
apply the arguments to each connected component of Ḡ
respectively). It follows that ρ(P̄ ) = max{α − ϵ, ρ(P̄22)}
and there is a positive vector y > 0, yT y = 1 such that

P̄22y = ρ(P̄22)y and ρ(P̄22) = minyi ̸=0
(P̄22y)i

yi
.

Let x∗ be the unique positive vector satisfying x∗ ≥ 0,
x∗Tx∗ = 1 such that (10) is satisfied for P . Let z =
[0, yT ]T . Since P22 = −L22 + αI = P̄22 and z ̸= x∗, from
(11) in Lemma 6, one has

ρ(P ) = min
x∗
i
̸=0

(Px∗)i
x∗
i

= max
x≥0

xT x=1

min
xi ̸=0

(Px)i
xi

> min
zi ̸=0

(Pz)i
zi

= min
yi ̸=0

(P̄22y)i
yi

= ρ(P̄22).

Combining with the fact that ρ(P ) > α − ϵ, we arrive at
the conclusion that ρ(P̄ ) < ρ(P ).

From

α− 1 = min
1≤i≤N−1

N−1∑
j=1

(P̄22)ij ≤ ρ(P̄22)

≤ max
1≤i≤N−1

N−1∑
j=1

(P̄22)ij ≤ α,

we conclude that the inequality (15) holds. �
In Fig. 1, we have removed all the edges pointing to vertex
1 in G, which gives rise to the special structure of the
matrix −(L̄ + E) which has only one nonzero element in
the first row. Now we show that if we only remove some
of the edges pointing to vertex 1, but not all of them,
i.e., agent 1 only neglects some of the information received
from the other followers, the convergence process will still
be accelerated. For example, in Fig. 2, we illustrate the
situation when only the edge (3, 1) is removed from the
graph.

Assume that there are more than one edge pointing to
vertex 1 in G and only one of these edges is deleted,
say (k, 1). The resulted graph after deleting (k, 1) is
still strongly connected and the corresponding Laplacian
matrix is denoted by L̄. Let P = −(L + E) + αI and

leader

3

42

1

0 leader

3

42

1

0

Fig. 2. The edge (3, 1) is deleted to accelerate the conver-
gence.

P̄ = −(L̄+E)+αI. Since only the (1, 1) and (1, k) elements
of P and P̄ are different, one has

p̄11 = p11 + p1k, p̄1k = 0, p̄1j = p1j , for j ̸= 1, k,

and

p̄ij = pij , i = 2, . . . , N, j = 1, . . . , N.

We now show that r(−(L̄ + E)) < r(−(L + E)), which is
equivalent to ρ(P̄ ) < ρ(P ).

Theorem 2. Assume that the graph G is strongly con-
nected. Then

max{−ϵ,−1} ≤ r(−(L̄+ E)) < r(−(L+ E)) < 0. (16)

The proof of this theorem makes use of the following
lemma.

Lemma 7. Let M = (mij)N×N be a nonnegative irre-
ducible matrix. Assume that there exists some positive

number r such that for some k, 1 ≤ k ≤ N ,
∑N

j=1 mkj < r

and for all i ̸= k, 1 ≤ i ≤ N ,
∑N

j=1 mij = r. Assume

x is a positive vector such that Mx = ρ(M)x. Then
xk < min

i ̸=k
i=1,...,N

{xi}.

For a nonnegative irreducible matrix M that satisfies the
conditions specified in Lemma 7, we are able to write
equation (9) into

ρ(M) = max
x≥0

xT x=1

min
xi ̸=0

(Mx)i
xi

= max
x>0,xT x=1
xk<min

i ̸=k
{xi}

min
i

(Mx)i
xi

. (17)

In virtue of Lemma 7, x̄∗
1 < min

i=2,...,N
{x̄∗

i } if x̄∗ is a positive

eigenvector associated with the eigenvalue ρ(P̄ ) of P̄ . The
proof of Theorem 2 makes use of this fact and (17) and is
omitted here due to length limit.

Theorem 2 also shows that when more and more edges
from the other followers to the first follower are removed,
r(−(L + E)) becomes smaller and smaller and thus the
convergence is always accelerated. So we have proved the
following theorem.

Theorem 3. Consider the two leader-follower networks (6)
and (13) with one first follower, the latter is obtained
from the former by letting the first follower neglect the
information from one or more of its neighboring followers.
The convergence speed of (13) is faster than that of (6).
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In the next subsection, we study the more general case
when there are multiple first followers.

3.2 The case with multiple first followers

Now the number of the first followers l > 1. If we remove
in G some or all the edges starting from the other followers
to the first followers, then r(−(L+ E)) decreases and the
convergence is accelerated. The proof is similar to that of
Theorem 2 and relies on the following result, which is a
general form of Lemma 7.

Lemma 8. Let M = (mij)N×N be a nonnegative ir-
reducible matrix and let N be a nonempty subset of
{1, . . . , N}. Assume that there exists some positive number
r such that

N∑
j=1

mij < r, i ∈ N ,

N∑
j=1

mij = r, i ∈ {1, . . . , N}\N .

Let x be the positive vector such that Mx = ρ(M)x. Then
max
i∈N

{xi} < min
i∈{1,...,N}\N

{xi}.

Remark 1. The above discussions have assumed that the
weights of the edges are all 1 and shown that by removing
some of the edges starting from the other followers to
the first followers, the convergence of the leader-follower
network is accelerated. In fact, the weights of the edges
can be any positive numbers. When the weights of the
chosen edges starting from the other followers to the first
followers decrease, the convergence process is also acceler-
ated. We will develop a general result on accelerating the
convergence in the full-length version of the paper.

Remark 2. In addition, one can gain insight into how the
convergence process in the leader-follower network might
get slowed down. The reasons might be that new couplings
have been established from the other followers to the
first followers, or the weights of such couplings have been
increased.

Remark 3. If we remove one or some of the edges between
the first followers, the convergence is not guaranteed to be
accelerated, and actually can be decelerated. We give the
following example to illustrate.

leader

(a) (b)

2

3

1

0 leader

2

3

1

0

Fig. 3. The edge (2, 1) between two first-followers is
deleted.

Example. Consider a leader-follower network shown in Fig.
3(a). The corresponding Laplacian matrix L and L+E are

L =

[
2 −1 −1
−1 1 0
0 −1 1

]
, L+ E =

[
3 −1 −1
−1 2 0
0 −1 1

]
.

We have taken ϵ to be 1. The dominant eigenvalue r(−(L+
E)) of −(L+E) is −0.5858. After removing the edge (2, 1),
the corresponding Laplacian matrix L̄ and L̄+ E are

L̄ =

[
1 0 −1
−1 1 0
0 −1 1

]
, L̄+ E =

[
2 0 −1
−1 2 0
0 −1 1

]
.

We see that the dominant eigenvalue r(−(L̄+E)) of −(L̄+
E) is −0.5344, which is greater than that of −(L+E). The
convergence process is decelerated when we delete one edge
between two first followers.

Remark 4. A direct implication of Theorem 2 is that
if the graph that describes the communication topology
between agents is directed and weighted, then stronger
connectivity of the graph might actually slow down the
convergence. This is in sharp contrast with the case when
the graph is undirected and unweighted, for which more
edges between vertices or higher edge weights always
accelerate the convergence.

Theorem 2 has investigated the variation of the dominant
eigenvalue of −(L + E) in the process of removing the
edges from the other followers to the first followers in G.
For the other eigenvalues, they may not monotonically
decrease or increase. Since the trace of −(L+E) increases
and the dominant eigenvalue r(−(L+E)) decreases in the
process of removing these specific edges, the sum of the
other eigenvalues of −(L+E) excluding r(−(L+E)) will
increase. In addition, one can show that the magnitude of
the product of the other eigenvalues of −(L+E) excluding
r(−(L+E)) will decrease. In the next section, we look at
how the other eigenvalues change through a simulation
example.

4. SIMULATION EXAMPLE

In this section, we give a simulation example to validate
the theoretical results obtained in the previous section.
Consider a leader-follower network given by Fig. 4 and the
associated Laplacian matrix of G is

L = L0 =


3 −1 0 −1 −1
−1 3 −1 0 −1
0 −1 2 −1 0
0 0 −1 2 −1
0 −1 0 −1 2

 .

Let ϵ = 1 in Eq. (5) and thus E = diag(1, 0, 0, 0, 0).
Denote the Laplacian matrix of the follower network by
L1 after removing the edge (2, 1), denote the Laplacian
matrix by L2 after further removing the edge (4, 1) and the
Laplacian matrix by L3 if (5, 1) is furthermore removed.
From Theorem 2, we know that the dominant eigenvalue
r(−(Li + E)) decreases in this process, namely,

r(−(Li+1 + E)) < r(−(Li + E)), i = 0, 1, 2.

The real parts of the eigenvalues λ(−(Li + E)) of the
matrices −(Li + E), i = 0, . . . , 3, are shown in Fig. 5,
where Re(λ(−(Li + E))) denotes the real part of the
eigenvalue λ(−(Li + E)). From the figure, we can clearly
see that the dominant eigenvalue is decreasing and thus the
convergence is accelerated. But for the other eigenvalues,
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there seems to be no clear rule explaining how they change.
Though the sum of the other eigenvalues increases, the
real part of each individual eigenvalue does not necessarily
increase. For example, the real part of the eigenvalue with
the largest modulus does not increase all the time as can
be seen from Fig. 5.

leader

3 4

2

1

0

5

Fig. 4. A leader-follower network with three directed
edges pointing to the first-follower 1 from the other
followers.
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1
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+E)))

Fig. 5. The changes of the five eigenvalues when edges
pointing to the first follower are removed in sequence.

5. CONCLUSION

We have proposed a new strategy to accelerate the conver-
gence to consensus in leader-follower networks by making
the first followers more focused on their information about
the leader. Rigorous proof has been provided to show that
the dominant eigenvalue of the system matrix decreases
in the process of removing the links pointing to the first
followers from the other followers. A simulation example
has been used to validate the theoretical results.

We are looking into more complicated agent models to
check whether our proposed strategy still works. We are
also interested in investigating more comprehensively how
the hierarchical ranking of the followers in terms of their
topological relationships in the network affects the conver-
gence speed when all the followers’ states are converging
to that of the leader.
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