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Abstract: This paper proposes an adaptive continuous higher order sliding mode control
scheme. The control law comprises a structure which provides smooth finite time stabilization
of the origin for a nominal disturbance-free system formed from a chain of integrators, together
with a super-twisting term to guarantee robustness to a class of twice differentiable uncertainty.
The super-twisting scheme is adaptive in nature and seeks to minimize the size of the gains
whilst still ensuring sliding. The adaptive scheme has a novel dual-layer structure based on
equivalent injection concepts, which necessitates that the first and second derivatives of the
uncertainty exist and are bounded, but knowledge of these bounds is not required. Simulation
examples are provided to show the effectiveness of the proposed scheme.

1. INTRODUCTION

Sliding mode control systems have two significant features:
the potential to create closed-loop systems with finite
time convergence properties, and the ability to provide
closed-loop insensitivity to a class of uncertainty (known
as matched uncertainty). Both these properties are highly
desirable but they come at a cost: invariably, the con-
trol laws include, possibly buried within the controller
dynamics, discontinuous injection terms, which lead to
the phenomenon of chattering [Shtessel et al., 2013]. The
advent of so-called higher order sliding modes [Fridman
and Levant, 2002] was heralded as ushering-in an era of
chattering-free sliding mode controllers. Families of higher-
order sliding schemes have been identified of arbitrary
order, and these schemes have specific ‘templates’ and
have a recursive or nested structure [Levant, 2003, 2006].
Many of the proofs of the results in this area rely on the
concept of homogeneity [Kawski, 1995]. Whilst certainly
such methods have lead to continuous sliding mode con-
trollers – such as the very popular super-twisting controller
– it has been subsequently shown that it is better to
claim these controllers significantly mitigate chattering (if
designed properly) rather than totally eliminating chatter-
ing. Extensive research has focussed on frequency based
approaches to design such schemes to minimize chattering
through the selection of the design freedom [Boiko, 2009].
Related to these advances in higher-order sliding mode
schemes has been the discovery of classes of Lyapunov
functions – particularly for 2-order sliding mode schemes
(2SM) [Moreno and Osorio, 2006]. This in turn has revived
interest in the development of adaptive schemes for the
twisting and super-twisting control structures; see [Plestan
et al., 2010].

Finite time controllers have also been extensively explored
outside of the sliding mode literature. In optimal con-
trol theory for example there are several examples of
closed-loop systems which converge to the origin in finite

time [Ryan, 1983]. (For example a double integrator with
time-optimal bang-bang feedback control.) Often these
controllers have discontinuities – although they do not
necessarily induce sliding modes. Finite-time closed-loop
systems with continuous dynamics are considered in [Bhat
and Bernstein, 1998] and the references therein. In [Bhat
and Bernstein, 2005] finite-time stability of homogeneous
systems is considered. This paper is the source of the
celebrated result that a homogeneous system is finite-time
stable if and only if it is asymptotically stable and has
a negative homogeneity degree. In [Bhat and Bernstein,
2005] this result is used to demonstrate the existence
of a continuous finite-time stabilizing feedback controller
for a chain of integrators, and provides an explicit rep-
resentation for such a controller involving a small scalar
parameter. The theory is elegant and the controller is very
appealing, but it can be easily shown that in the presence
of unknown and uncompensated disturbances, finite time
convergence to the origin is lost: i.e. it lacks robustness.

This paper aims to create a continuous state feedback
higher order sliding mode control law which robustly pro-
vides finite time convergence of the states to the origin de-
spite the presence of unknown disturbances/uncertainties.
It employs the continuous control law from [Bhat and
Bernstein, 2005] in conjunction with an adaptive super-
twisting structure to create a robust finite time scheme.
In its most generic form the adaptive structure requires
only the knowledge that the second derivative of the dis-
turbance is bounded – although an explicit value for this
bound is not required by the controller.

2. A CONTINUOUS HOSMC SCHEME

Consider the sliding variable dynamics σ ∈ R satisfying

σ(r)(t) = a(t) + u(t) (1)
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where u(t) ∈ R is the manipulated variable and the
disturbance a(t) ∈ R is unknown but satisfies |ȧ(t)| ≤ a1,
a1 > 0.

It is well known that a continuous control law that drives
σ, σ̇, ..., σ(r) → 0 in finite time for the unperturbed system
in (1) can be designed using the results from the work
of [Bhat and Bernstein, 2005]. The relevant result can be
summarized in the following theorem:

Theorem 1 [Bhat and Bernstein, 2005] Let the scalar
coefficients γ1, γ2, ..., γr be such that the r-th order poly-
nomial pr+γrp

r−1+ ...+γ2p+γ1 is Hurwitz, and consider
the system in (1) with a(t) ≡ 0. Then there exists an
ϵ ∈ (0, 1) such that for every α ∈ (1− ϵ, 1) the origin
σ, σ̇, ..., σ(r) = 0 is a finite time stable equilibrium under
the feedback

u(t) = −γ1 |σ|α1 sgn (σ) . . .− γr|σ(r−1)|αrsgn(σ(r−1)) (2)

where the scalars α1, α2, ..., αr satisfy

αi−1 =
αiαi+1

2αi+1 − αi
, i = 2, ..., r (3)

with αr+1 = 1 and αr = α.

Remark 1 It can be easily demonstrated that if a(t) ̸= 0,
the system in (1)-(3) may not even converge to the origin.

Assuming that the smooth disturbance a(t) is not identi-
cally equal to zero and its derivative is bounded |ȧ(t)| ≤ a1,
the objective is to design a sliding mode disturbance ob-
server to exactly reconstruct a(t) in finite time, and then
compensate for it by means of control. The results are
formulated in the following lemma and theorems.

Lemma 1: Define an auxiliary sliding variable s given by

s(t) = σ(r−1)(t)− z(t) (4)

ż(t) = u(t) + v(t) (5)

then s and its derivative ṡ are driven to zero in finite time
and remain at zero for all subsequent time by the feedback
(super-twisting) control law

v(t) = λ |s(t)|1/2 sgn(s(t)) + v1(t) (6)

v̇1(t) = βsgn(s(t)) (7)

where the design scalars λ = 1.5a
1/2
1 , β = 1.1a1 and the

σ−dynamics are defined by (1).

Proof: Taking into account equations (1) and (4)-(5), the
s-dynamics are described by

ṡ(t) = a(t)− v(t) (8)

It is well know that choosing λ = 1.5a
1/2
1 and β = 1.1a1

induces a 2SM in finite time, (see for example [Shtessel
et al., 2013]) and the Lemma is proven. �
Remark 2 Another possible choice of gains for the super-
twisting structure in (6)-(7) is

β > a1 (9)

λ>

√
2

β − a1

(β + a1) (1 + q)

1− q
(10)

where |a(t)| < qΩm, 0 < q < 1, |v(t)| ≤ Ωm.

In order to enforce the condition |v(t)| ≤ Ωm the term v̇1
in (7) can be modified to be

v̇1(t) =

{
−v1(t) if |v(t)| > Ωm

β sgn(s(t)) otherwise
(11)

Lemma 2: The sliding mode disturbance observer in (4)-
(7) exactly reconstructs a(t) in finite time as

a(t) = v(t) (12)

Proof: The control (injection) signal v in (6)-(7) induces
and maintains a 2SM. Consequently s = ṡ = 0 in finite
time. Therefore, during the 2-SM, the left hand side of (8)
equals zero in finite time, and equation (12) holds for all
subsequent time. �
Theorem 2: Consider the system in (1) with a(t) not
identically equal to zero but with bounded derivative
|ȧ(t)| ≤ a1. Let γ1, γ2, ..., γr be such that the polynomial
pr + γrp

r−1 + ...+ γ2p+ γ1 is Hurwitz. Then there exists
an ϵ ∈ (0, 1) such that for every α ∈ (1− ϵ, 1) the origin
σ, σ̇, ..., σ(r) = 0 is a finite time stable equilibrium under
the feedback

u(t) = −γ1 |σ|α1 sgn (σ) . . .− γr|σ(r−1)|αrsgn(σ(r−1))− v
(13)

where v is defined by (6)-(7) and the scalars α1, α2, ..., αr

satisfy (3) with αr+1 = 1 and αr = α.

Proof: This follows from Lemmas 1 & 2 �
Remark 3 The continuous controller (13) can be claimed
to be a continuous HOSM controller for the system in
(1), since it drives σ, σ̇, ..., σ(r) → 0 in finite time in the
presence of the smooth disturbance a(t) with bounded
derivative |ȧ(t)| ≤ a1, a1 > 0.

3. A DUAL LAYER ADAPTIVE DISTURBANCE
OBSERVER

As argued in the previous section, the continuous HOSM
in (13) contains the term v that represents a reconstruction
of the unknown disturbance term a(t). The super-twisting
injection term in (6) contains a component v1, whose
derivative is a discontinuous high frequency switching
function with gain β > a1. In order to reduce chattering,
it is desirable to make β as close to a1 as possible whilst
ensuring β > a1. Therefore, assuming that the gain λ
can be selected large enough so that the second equation
in (9) holds, the aim is to adapt β(t) in equation (7)
so that β(t) is close to a1 whilst satisfying condition in
(9). This reduces the amplitude of the high frequency
part of the super-twisting term in equation (7), which
mitigates chattering. In this paper a scheme building on
the ‘equivalent control’ approach of [Utkin and Poznyak,
2013] will be employed.

Remark 4 Since the gain λ is selected large enough and
Ωm is not a control parameter, the original notation of the
super-twisting control in (6)-(7) has been retained.

3.1 Equivalent control in super-twisting control adaptation

Consider the super-twisting structure arising from equa-
tions (6), (7) and (8) written out in familiar form as
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ṡ(t) =−λ |s(t)|1/2 sgn(s(t)) + v2(t) (14)

v̇2(t) = φ(t)− w(t) (15)

where φ(t) := ȧ(t) and

w(t) = k(t)sgn(s(t)) (16)

The objective is to devise an adaptive scheme for the
(now) time-varying gain k(t) so that a 2SM is achieved
and maintained, but which also attempts to ensure k(t)
is as small as possible. It will be further assumed that
|φ̇(t)| ≤ a2, a2 > 0 (which implies that the original
disturbance term a(t) must be twice differentiable). During
a 2-SM, s = v2 = 0 (which is exactly equivalent to
the condition s = ṡ = 0), and the ‘equivalent control’
weq(t) = φ(t). Although the notion of ‘equivalent control’
was conceived as an abstraction to facilitate the under-
standing and analysis of the dynamics during the sliding
mode, an arbitrary close approximation can be created
by appropriate filtering of the switching signal. For the
purposes of the developments which follow, it is assumed
that an approximation w̄eq(t) is available for use in the
adaption schemes.

In the remainder of the paper, whilst the bound a1 for
the absolute values of the derivative of a(t) is assumed to
exist, its precise value is not known. Two situations will
now be considered: firstly the case when a2 is known; and
secondly the case when a2 is unknown.

3.2 An adaptive super-twisting observer with known a2

Here it is assumed that weq(t) in (16) is available (for
instance, by filtering w(t) in (16)). Define

δ(t) = k(t)− 1

ϵ1
|weq(t)| − ϵ0 (17)

where 0 < ϵ1 < 1 and ϵ0 > 0 is a small real number. Define
the first layer of the dual-layer adaptation algorithm,
associated with the gain k(t) in (16) according to

k̇(t) = − (ρ0 + ρ(t)) sgn(δ(t)) (18)

where ρ0 > 0 is a small scalar. The adaptive gain ρ(t) as-
sociated with the second layer of the adaptation algorithm
is chosen to satisfy

ρ̇(t) = γ |δ(t)|+ ρ0
√
γsgn(e(t)) (19)

where γ is a positive scalar (to be selected by the designer)
and the term

e(t) =
a2
ϵ1

− ρ(t) (20)

where a2 is the upper bound on the absolute value of the
derivative of φ(t) (which is assumed to be known).

Theorem 3: Consider the system in (1) with a twice
differentiable disturbance a(t) subject to |ȧ(t)| ≤ a1 and
|ä(t)| ≤ a2, where a2 is known. Then the sliding mode
observer in equations (4)-(5), (14) and (16), with the dual
layer gain-adaptation in equations (18)-(20) reconstructs
the disturbance a(t) in finite time as

â(t) = v(t) = −λ |s(t)|1/2 sgn(s(t))−
∫

k(t)sgn(s(t))dt

(21)
Furthermore the variables δ(t) and e(t) converge to zero
in finite time and the gains k(t) and ρ(t) remain bounded.

Proof: It is easy to verify that the δ-dynamics from (17)
satisfy

δ̇(t) = k̇(t)− 1

ϵ1

d

dt
|weq(t)| = k̇(t)− 1

ϵ1

d

dt
|φ(t)| (22)

and therefore

δδ̇ ≤ −δ(ρ0 + ρ(t))sgn(δ(t)) + |δ| a2
ϵ1

= (−ρ0 + e) |δ| (23)

Since a2 is a constant, from the definition of e(t) in (20),

ė(t) = −γ |δ| − ρ0
√
γsgn(e(t)) (24)

and
eė = −γe |δ| − ρ0

√
γ|e| (25)

Consider a Lyapunov function candidate for the dynamics
in (22) and (24) of the form

V =
1

2
δ2 +

1

2γ
e2 (26)

Taking the derivative of V along the trajectories of (22)
and (24), and using the expressions in (23) and (25), it
follows that

V̇ ≤ (−ρ0 + e) |δ| − e |δ| − ρ0
1
√
γ
|e|

=−ρ0
√
2

(
1√
2
|δ|+ ρ0

1√
2γ

|e|
)

≤−ρ0
√
2V 1/2 (27)

Inequality (27) guarantees finite time convergence V → 0,
which means the finite time convergence of δ, e → 0. As a
consequence both δ and e remain bounded. Furthermore
since k(t) = δ(t)+ 1

ϵ1
|weq(t)|+ ϵ0 and ρ(t) = a2

ϵ1
+ e(t), the

variables k(t) and r(t) also remain bounded as claimed.
Since δ = e = 0 in finite time, and from the definition of
δ(t) in (17) the following equality holds (in finite time)

k(t) = |weq(t)|+
1− ϵ1
ϵ1

|weq(t)|+ ϵ0 (28)

and therefore

k(t) = |ȧ(t)|+ 1− ϵ1
ϵ1

|ȧ(t)|+ ϵ0 > |ȧ(t)| (29)

This means that equation (9) holds, and therefore selecting
λ sufficiently large, guarantees the finite time convergence
to zero of the dynamics in (14), (16). During the 2-
SM, equation (12) holds, and therefore â(t) perfectly
reconstructs a(t) in finite time. �

3.3 An adaptive super-twisting observer with unknown a2

The formulation in the previous section relied on the fact
that a2 is known because the adaptive scheme employed
the variable e(t) = a2

ϵ1
−ρ(t). If a2 is not available a different

scheme is required. Consider instead, as the second layer
of the adaptive law,

ρ̇(t) = γ |δ(t)| (30)

where γ is a positive scalar. Clearly using (30) in conjunc-
tion with the first adaptive layer (17) means the overall
adaptive scheme is now independent of knowledge of both
a1 and a2. From the definition of e(t) in (20), and using
the new adaptive term in (30), it follows

eė = −γe |δ| (31)

Theorem 4: Consider the system in (1) with a twice
differentiable disturbance a(t) subject to |ȧ(t)| ≤ a1,
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|ä(t)| ≤ a2. Suppose that both a1 and a2 are unknown.
Then the sliding mode observer in equations (4)-(5), (14),
(16) with the dual layer gain-adaptation in equations
(18),(30) reconstructs the disturbance a(t) in finite time
in accordance with (21). Furthermore the error variable
δ(t) converges to zero asymptotically and the gains k(t)
and ρ(t) remain bounded.

Proof: As in the proof of Theorem 3 consider a Lyapunov
function candidate for the dynamics in (17) and (20) of
the form

V =
1

2
δ2 +

1

2γ
e2 (32)

Taking the derivative along the trajectories of e(t) and
δ(t), it follows from (23) and (31) that

V̇ ≤ (−ρ0 + e) |δ| − e |δ| = − ρ0|δ(t)| (33)

Since V̇ ≤ 0, it follows immediately that the variables e(t)
and δ(t) are bound for all time. Using arguments similar
to those in the proof of Theorem 3, the variables k(t)
and ρ(t) also remain bounded as claimed. Furthermore
using LaSalle’s invariance principle [Khalil, 1992], the
error variable δ(t) → 0 (asymptotically) as claimed. Since
δ → 0 asymptotically, consequently, in finite time t0 (say),
|δ(t)| < ϵ0/2, and this inequality holds for all time t > t0.
Since by definition

|δ(t)| =
∣∣∣∣k(t)− 1

ϵ1
|weq(t)| − ϵ0

∣∣∣∣
it follows that

k(t)− 1

ϵ1
|weq(t)| − ϵ0| > −ϵ0/2

for all t > t0. Therefore

k(t) = |weq(t)|+
1− ϵ1
ϵ1

|weq(t)|+ ϵ0/2

= |ȧ(t)|+ 1− ϵ1
ϵ1

|ȧ(t)|+ ϵ0/2

> |ȧ(t)| (34)

This means that equation (9) holds, and therefore selecting
λ sufficiently large, guarantees the finite time convergence
to zero of the dynamics in (14)-(16). During the 2-SM,
equation (12) holds and reconstructs a(t) in finite time. �

4. ADAPTIVE CONTINUOUS HOSMC

Again, consider the sliding variable dynamics in (1). In
Theorem 2 a continuous HOSM control driven by the
super-twisting-based disturbance observer, which drives
s, ṡ → 0 in the presence of the smooth bounded dis-
turbance a(t), was formulated. Theorems 3 and 4 give
formulations of adaptive super-twisting equivalent control-
based disturbance observers that reconstruct the distur-
bance a(t) in (1) depending on whether or not the bound
a2 on the second derivative of this disturbance is known.

The main results are formulated in the following theorems.

Theorem 5: Consider the system (1) with a twice differ-
entiable disturbance a(t) satisfying |ȧ(t)| ≤ a1, |ä(t)| ≤ a2
and suppose whilst a1 is unknown, a2 is known. Let the
coefficients γ1, γ2, ..., γr be such that the polynomial pr +
γrp

r−1 + ... + γ2p + γ1 is Hurwitz. Then there exists an

ϵ ∈ (0, 1) such that for every α ∈ (1− ϵ, 1) the origin
σ, σ̇, ..., σ(r) = 0 is a finite time stable equilibrium under
the feedback control in (13), where α1, α2, ..., αr satisfy (3)
with αr+1 = 1 and αr = α; v is defined in (21) and the
adaptive scheme is given by equations (17)-(20).

Theorem 6: Consider the system in (1) and suppose the
disturbance a(t) has first and second derivatives satisfying
|ȧ(t)| ≤ a1, |ä(t)| ≤ a2 where both a1 and a2 are
unknown. Let the coefficients γ1, γ2, ..., γr be such that the
polynomial pr + γrp

r−1 + ... + γ2p + γ1 is Hurwitz. Then
there exists an ϵ ∈ (0, 1) such that for every α ∈ (1− ϵ, 1)
the control (13) drives σ, σ̇, ..., σ(r) → 0 in finite time where
α1, α2, ..., αr satisfy (3) with αr+1 = 1 and αr = α; v is
defined by equation (21) and the adaptive scheme is given
by (17), (18), (20) and (30).

The proof of the Theorems 5 and 6 follows straightfor-
wardly from Theorems 3 and 4.

Remark 5 The adaptive equivalent control-based control
formulated in Theorems 5 and 6 can be interpreted as
continuous HOSM control since after being applied to
the perturbed system (1) of relative degree r it drives
σ, σ̇, ..., σ(r) → 0 in the presence of a non-vanishing
disturbance a(t) with bounded first and second derivatives.

5. SIMULATIONS

The system in (1) is simulated with relative degree (r = 3)
plant. The coefficients of the underlying Hurwitz polyno-
mial p3 + γ3p

2 + γ2p + γ1 associated with the controller
are selected as γ1 = 8, γ2 = 12, γ3 = 6. The exponents
α1, α2, α3 in equation (3) are calculated based on the
seed α = 0.8. Explicitly they are given by α1 = 0.56,
α2 = 0.66 and α3 = 0.8. In the simulations which follow
the initial conditions are selected as σ(0) = 1, σ̇(0) = 0.5,
σ̈(0) = 0. The disturbance in (1) is taken as a(t) = 2 sin(t).
The parameter λ in the injection term (7) is supposed to
be sufficiently large and is taken as λ = 4.75. The other
parameters of the observer (18), (19) that are used in
simulations are ρ0 = 1, γ = 10 and ϵ1 = 0.99.

First the system in (1) is simulated using the control law
u(t) in (2) with and without the disturbance a(t).

 

Fig. 1a Finite-time output stabilization in unperturbed system 

Fig. 1. Finite-time stabilization in unperturbed system

In Fig. 1, finite time convergence to the origin can be seen
after 4.5 secs. Fig 2 shows that finite time stability of the
origin is not achieved in the presence of the disturbance.
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Fig. 2a Output stabilization in perturbed system 

Fig. 2. Output stabilization in perturbed system

5.1 A case with known a2

In this subsection the perturbed system in (1) is simulated
using the control in equations (13)-(20). In this case the
upper bound a2 on the disturbance’s second derivative is
assumed to be known. During the simulation it is assumed
that |ä| ≤ a2 with a2 = 2.

 

Finite-time output stabilization in perturbed system via HOSM control with gain adaptation

( ) ( )a t a t

Fig. 3. Finite-time output stabilization of perturbed sys-
tem when a2 is known

 

 

Fig. 4 The second layer of adaptation:  !"# and w(t) in eq. (14) (a is known) 

( ) ( )a t a t

Fig. 4. The second layer of adaptation: ρ(t) and w(t) when
a2 is known

Fig. 3 shows that the nominal disturbance-free perfor-
mance is recovered, and finite time convergence is achieved
with the disturbance estimation scheme included. Fig. 4
shows the high frequency switching component w(t) and
also the adaptive term ρ(t) which is shown to converge to
the upper-bound on the 2nd derivative of the disturbance
term (in this case a2 = 2). Fig. 5 shows the modulation

 

 

Fig. 5 The first layer of adaptation: k(t) and ( ) ( )a t a t in eqs. (13), (14) (a is known)

Fig. 5. The first layer of adaptation: k(t) and |a(t)| when
a2 is known

 

Fig. 6 The continuous HOSM control function (a is known) 

Fig. 6. The continuous HOSMC when a2 is known
 

 

Fig. 8 The disturbance estimation (a is known) 
Fig. 7. The disturbance estimation when a2 is known

term k(t) tracking |a(t)| very accurately (since in this case
ϵ1 = 0.99 ≈ 1). Fig. 6 shows the control signal u(t), which
is clearly smooth and chatter-free, and yet compensates
for the disturbance a(t). Fig. 7 shows that â(t) accurately
tracks/re-creates the unknown disturbance a(t).

5.2 A case with unknown a2

In this subsection the perturbed system (1) is simulated
while controlled by u(t) in equations (17), (18), (20) and
(30). In this case the bound a2 on the second derivative of
the disturbance is assumed to be unknown.

Fig. 8 shows that, as in the previous subsection, the nomi-
nal disturbance-free closed-loop performance is recovered,
and finite time convergence is achieved. Fig. 9 shows
the high frequency switching component w(t) and also
the adaptive term ρ(t). It can be seen that ρ(t) remains
bounded and asymptotically converges to a value close
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Finite-time output stabilization in perturbed system via HOSM control with gain adaptation

( ) ( )a t a t

Fig. 8. Finite-time output stabilization of the perturbed
system with gain adaptation (a2 is unknown)

 

Fig. 10  (a is unknown) 

( ) ( )a t a t

Fig. 9. The second layer of adaptation: ρ(t) and w(t) (a2
is unknown)

 

 

Fig. 11 The first layer of adaptation: k(t) and ( ) ( )a t a t in eqs. (13), (14) (a is unknown)

Fig. 10. The first layer of adaptation: k(t) and |a(t)| (a2 is
unknown)

 

 

Fig. 14 The disturbance estimation (a2 is unknown) 

Fig. 11. The disturbance estimation (a2 is unknown)

to 7.0 (which is greater than the true value of a2 = 2).
This is perfectly consistent with the theory, since the dual-

layer adaptive scheme in (17), (18), (20) and (30) cannot
guarantee that ρ(t) → a2. However Fig. 10 shows the
modulation term k(t) still tracks |a(t)| very accurately
(since in this case ϵ1 = 0.99 ≈ 1). Finally Fig. 11 shows
that â(t) accurately tracks the unknown disturbance a(t).

6. CONCLUSIONS

This paper has proposed an adaptive continuous higher
order sliding mode control scheme. The control law com-
prises a structure which provides smooth finite time stabi-
lization of the origin for a nominal disturbance-free system
formed from a chain of integrators, together with a super-
twisting term to ensure robustness to a class of twice
differentiable uncertainty. The super-twisting scheme is
adaptive in nature and seeks to minimize the size of the
gains whilst still ensuring sliding. The adaptive scheme
has a novel dual-layer structure based on knowledge of the
equivalent injection and necessitates that only the first and
second derivatives exist and are bounded, but knowledge
of these bounds is not required.
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