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Abstract: A novel distributed Command Governor (CG) supervision strategy relying on
cooperative game theoretical concepts is presented for multi-agent networked systems subject
to pointwise-in-time coordination constraints. Unlike non-cooperative distributed CG schemes,
here all agents contribute individually to the minimization of a global performance index. As
a result, these methods are able to achieve Pareto-optimal solutions, not only in steady-state
conditions as the non-cooperative ones, but also during transients and are not hampered by
the presence of undesirable non-Pareto Nash-equilibria or deadlock situations. Other noticeable
difference with respect to non-cooperative methods is that all agents need to exchange data
among them several times within a decision step in order to coordinate their local optimization
procedures and arrive to the optimal solution. The properties of the algorithm are fully
investigated. A final example is presented where the proposed distributed solution is contrasted
with both centralized CG solutions and distributed CG methods based on non-cooperative game
theoretical concepts.

Keywords: Nonlinear Control, Distributed Predictive Control, Cooperative Game Theory,
Command Governor.

1. INTRODUCTION
The problem of interest here is the design of distributed
supervision strategies for large-scale multi-agent systems
in situations where the use of centralized solutions might
result impracticable. The distributed context under con-
sideration is depicted in Figure 1, where the supervisory
task is distributed amongst many agents which are as-
sumed to be able to communicate each other through a
communication network. There, each agent is in charge
of supervising and coordinating one specific subsystem.
In particular, ri, gi, xi, yi and ci represent respectively:
the nominal reference, the applied reference, the state,
performance and the coordination related output vectors
of the i−th subsystem.

In such a context, the supervision task can be expressed as
the requirement of satisfying some tracking performance,
viz. yi ≈ ri, whereas the coordination task consists of en-
forcing some pointwise-in-time constraints ci ∈ Ci and/or
f(c1, c2, ...., cN ) ∈ C on each subsystem and/or on the
overall network evolutions. To this end, each i−th super-
visor is in charge of modifying its nominal local reference
ri into the feasible one gi, when the joint application of
all nominal references would produce constraint violations
and hence loss of coordination.

1 This work has been partially supported by the European Com-
mission, the European Social Fund and the Calabria Region. The
authors are solely responsible for the content of this paper and the
European Commission and Calabria Region disclaim any responsi-
bility for the use that may be made of the information contained
therein.

Fig. 1. Multi-agent architectures

Because of its natural capability to handle in a systematic
manner hard constraints on inputs and state-related vari-
ables, the Command Governor (CG) approach seems to be
very suitable in this distributed context.

Earlier works on distributed CG strategies relied on a non-
cooperative game theoretical approach and several strate-
gies have been proposed, both sequential (Casavola et al..
[2011-A]),(Tedesco et al..A [2012]) where, according to
a prefixed order, only one agent at each sampling time
is allowed to update its control action while all others
keep applying their previous applied commands, and par-
allel (Tedesco et al..B [2012]), (Casavola et al. [2014]),
(Tedesco et al..C [2012]) where, on the contrary, all agents
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update their control actions simultaneously at each sam-
pling time.

One peculiarity of all above schemes is that each agent
computes its control action by solving a local optimization
problem and the needs of agents coordination is limited,
accomplished by a few data exchange occurring only one
time per decision step. For this reason their have been
referred to as non-Iterative in (Scattolini [2009]). Also
note that mixed sequential-parallel approaches are possible
(Tedesco et al..C [2012]).

In this paper we move towards the class of cooperative
methods, which differ for the fact that all agents contribute
individually to the minimization of a global performance
index. In fact, the performance index that each agent lo-
cally minimizes, besides local self-fish objectives, contains
also terms related to the collective goal to achieve and,
unlike non-cooperative methods, lead to the achievement
of Pareto-optimal coordination performance. Notice that,
in order to achieve this global utility, all agents need
to exchange data many times during solving their local
optimization problems for coordinating the solutions. For
this reason such schemes have been referred to as Iterative
in (Scattolini [2009]). Cooperative games theory con-
cepts have been also preliminary considered in (Chinchu-
luun et al. [2008]).

Thus, the goal here is to recast the CG supervision design
problems already introduced in (Bemporad et al. [1997])
into an iterative multi-objective optimization scheme and
solve them in a distributed way. Several methods for
solving such a kind of problems have been reported in the
literature (see Miettinen [1999]). Amongst many, we resort
here to the iterative distributed optimization procedure
presented in (Inalhan et al. [2002]).

The main benefit related to the proposed class of dis-
tributed cooperative iterative CG strategies is the ability
to achieve Pareto optimal coordination performance not
only in steady-state conditions but also during transients.
Moreover, deadlock situations and/or undesirable Nash-
equilibria are avoided from the outset without requiring
that the constraints fulfill any particular geometrical con-
ditions, as the liveness property required for the non-
cooperative CG strategies of (Casavola et al.. [2011-B]).
As a further advantage, agents don’t need to know the
entire model of the network but only the models of the
”neighboring” subsystems, that is the agents with which
they exchange data.

2. NOTATIONS AND DEFINITIONS
IR, IR+ and ZZ+ denote respectively the real, non-negative
real and non-negative integer numbers. The Euclidean
norm of a vector x ∈ IRn is denoted by ‖x‖ =
√

x2
1 + ...+ x2

n whereas ‖x‖2Ψ,Ψ = ΨT > 0, denotes the

quadratic form xTΨx. Let A be a matrix in IRm×n, then

aTi ∈ IRn denotes the i-th line of A and a
(j)
i its j-th

element.

3. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Consider a set of N subsystems A = {1, . . . , N}, each one
being a LTI closed-loop dynamical system regulated by
a local controller which ensures stability and good closed-

loop properties when the constraints are not active (small-
signal regimes when the coordination is effective). Let the
i-th closed-loop subsystem be described by the following
discrete-time model















xi(t+1) = Φiixi(t)+Gigi(t)+
∑

j∈A−{i}

Φijxj(t)

yi(t) = Hy
i xi(t)

ci(t) = Hc
i x(t) + Lig(t)

(1)

where: t ∈ ZZ+, xi ∈ IRni is the state vector (which includes
the controller states under dynamic regulation), gi ∈ IRmi

the manipulable reference vector which, if no constraints
(and no CG) were present, would coincide with the desired
reference ri ∈ IRm and yi ∈ IRmi is the output vector

which is required to track ri. Finally, ci ∈ IRnc
i represents

the local constrained vector which has to fulfill the set-
membership constraint

ci(t) ∈ Ci, ∀t ∈ ZZ+, (2)

Ci being a convex and compact polytopic set. It is worth
pointing out that, in order to possibly characterize global
(coupling) constraints amongst states of different sub-
systems, the vector ci in (1) is allowed to depend on
the aggregate state and manipulable reference vectors

x = [xT
1 , . . . , x

T
N ]T ∈ IRn, with n =

∑N
i=1 ni, and g =

[gT1 , . . . , g
T
N ]T ∈ IRm, with m =

∑N
i=1 mi. Moreover, we

denote by r = [rT1 , . . . , r
T
N ]T ∈ IRm, y = [yT1 , . . . , y

T
N ]T ∈

IRm and c = [cT1 , . . . , c
T
N ]T ∈ IRnc

, with nc =
∑N

i=1 n
c
i ,

the other relevant aggregate vectors. The overall system
arising by the composition of the above N subsystems can
be described as

{

x(t+ 1) = Φx(t) +Gg(t)
y(t) = Hyx(t)
c(t) = Hcx(t) + Lg(t)

(3)

where Φ = [Φij ]i,j=1,...,N G = diag(G1, ..., GN ), Hy =
diag(Hy

1 , ..., H
y
N ), Hc = [(Hc

1)
T , ..., (Hc

N )T ]T and L =
[(L1)

T , ..., (LN)T ]T .

Hereafter, it is assumed that: (A1) Φ is a Schur matrix.

The CG design problem consists of locally determining,
at each time step t and for each agent i ∈ A, a suitable
reference signal gi(t) which is the best approximation of
ri(t) such that its application never produces constraints
violation, i.e. ci(t) ∈ Ci, ∀t ∈ ZZ+, i ∈ A, under the
application of a suitably computed sequence of feasible
{gi(t)}∞t=0.

A centralized solution of the above stated CG design
problem have been proposed in (Bemporad et al. [1997]),
whose architecture is depicted in Figure 2. There, at each
time instant t, the CG action g(t) is determined as a
function of the current reference r(t) and measured state
x(t) so that g(t) results the best feasible approximation of
r(t) under

c(t) ∈ C (4)

where C is the constrained region.

In particular, the centralized CG action is chosen as the
solution of the following constrained optimization problem

ĝ(t)=arg min
g∈V(x(t))

‖g − r(t)‖2Ψ (5)

where Ψ=ΨT > 0m and V(x) is defined as

V(x) = Wδ ∩ G(x) (6)
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Fig. 2. Command Governor Control Scheme

with Wδ representing the set of all constant commands
whose corresponding steady-state c-vectors

cg := Hc(In − Φ)−1Gg + Lg (7)

satisfy the constraints with margin δ > 0, i.e.

Wδ := {g ∈ IRm : cg ∈ C ∼ Bδ} (8)

with Bq
δ denoting hereafter the ball of radius δ centered

at q (in this case Bδ is centered at the origin). Moreover,
G(x) describes the set of all constant commands g ∈ IRm

whose corresponding virtual c-evolutions

c(k, x, g) := HcΦ
kx(t) +

k−1
∑

i=0

Φk−i−1Gg + Lg (9)

starting at time k = 0 from the current state x satisfy the
constraints for all k ∈ ZZ+, i.e.

G(x) = {g ∈ IRm : c(k, x, g) ∈ Ck, ∀k ∈ ZZ+} . (10)

In particular, because V(x) is finitely determined and
assuming Ci being polytopes, V(x) can be character-
ized by a finite number z of inequalities in IRm (Kol-
manovsky and Gilbert [1995])

V(x) := {g ∈ IRm : Ag + Ãx− b ≤ 0} (11)

By denoting h(g, x) := Ag + Ãx − b, h being an affine
function h : IRm → IRz, an equivalent form for (5) is

min
g∈IRm

‖g − r(t)‖2Ψ

s.t. h(g, x(t)) ≤ 0
(12)

The solution for the above problem (12) represents the best
feasible approximation of r(t) which, if constantly applied
from t onwards, never produces constraints violation. It
is worth noticing that, if r(t) /∈ V(x), the solution of (12)
strongly depends on the shape of weighting matrix Ψ that,
according to the designer preferences, selects a suitable
solution from the set of all Pareto-optimal solutions related
to the more general multi-objective optimization program

min
g∈IRm

[f1(g1, r1), ..., fi(gi, ri), ..., fN (gN , rN )]

s.t. h(g, x) ≤ 0
(13)

with fi(gi, ri) =‖ gi − ri ‖2Ψi
, ∀i ∈ A. In this respect

Problem (12) represents a scalarized version of (13). A
particular scalarization case, of interest here, envisages the
use of a block-diagonal matrix Ψ in (12), that is

Ψ := diag(α1Ψ1, ..., αNΨN ), Ψi=ΨT
i >0mi

, αi > 0, ∀i ∈ A
(14)

Then a PO solution g∗ for (13) is the optimal solution
for (12) iff it satisfies the following Karush-Khun-Tucker
(KKT) conditions (Miettinen [1999])

N
∑

i=1

αi

∂

∂g
fi(gi, ri)

∣

∣

∣

∣

gi=g∗

i

+

z
∑

j=1

µj

∂

∂g
hj(g, x)

∣

∣

∣

∣

g=g∗

µTh(g∗, x) = 0
µj ≥ 0, j = 1, ..., z

(15)

with µ = [µ1, ..., µz] ∈ IRz and hj representing the j-th
rows of h.

4. DISTRIBUTED ITERATIVE CG (DI-CG)
As already seen in the previous section, a centralized
implementation of the multi-objective optimization prob-
lem (13) requires a central computational facility with
access to all system information. On the contrary, here we
are interested in the implementation of N computational
nodes, each one with restricted information about the
whole system. Their main goal is the determination of a
PO solution for the problem (13) at each time instant.
Furthermore, it can be shown that such a solution, under
certain conditions, is also the optimal solution for the
scalarized centralized problem (12). For such comparisons,
it is hereafter assumed that matrices Ψ of the form (14) are
used in both problems (12) and (13), with each αi being
known to the related agent i, ∀i ∈ A.

In order to consider a limited information scope for all
agents, the notion of neighborhood of a given agent i is
required:

Definition 4.1. (Neighborhood of the i-th agent:)
The neighborhood of the i-th agent is defined as the
set of all other agents j whose decision variables gj are
involved with gi in some constraints and have a direct
communication link with node i, that is Ni = {j ∈ A :

in (6) ∃ at least a line ap in A or a line ax in Ã such

that (a
(i)
p 6= 0 and a

(j)
p 6= 0), (a

(i)
x 6= 0 and a

(j)
x 6= 0)

respectively}

As an immediate consequence of Definition 4.1, the sets
of all commands gj and state xj respectively associated to
the i-th agent can be characterized in the following way

[g]i = {All subvectors gj of g such that j ∈ Ni} (16)

[x]i = {All subvectors xj of x such that j ∈ Ni} (17)

Then, the problem of interest can be defined as a dis-
tributed optimization problem for each agent i having the
following form

min
gi∈IRni

fi(gi)

s.t. hi(gi, xi|[g]i, [x]i) ≤ 0
(18)

where the notation hi(·|[g]i, [x]j) is used to represent sets
of rows of h(g, x) in (12) as functions of gi, given that the
local state xi, the neighborhood decision variables [g]i and
the state [x]i are fixed.

4.1 Distributed Optimization Based on Penalty Methods

In this section the distributed optimization method pre-
sented in (Inalhan et al. [2002]) is recalled and it will
be used to solve in a distributed way problem (18) and,
in turn, problem (13). To this end, consider for each i-th
agent the following augmented cost function, related to
problem (18), reinforced by the penalty function Pi

Fi(gi, βi|[g]i) := βifi(gi) + Pi(gi|[g]i, [x]j)

= βi[fi(gi) +
1

βi

Pi(gi|[g]i, [x]j ]), βi 6= 0

(19)
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where βi ≥ 0 is a local penalty parameter. It is also
assumed that:

(A2) Fi(g
l+1
i , βl+1

i |[g]i) embeds all constraints hi(gi, [g]i)
≤ 0 associated to gi. ✷

The local penalty functions, Pi, are chosen as

Pi(gi|[g]i) :=
zi
∑

j=1

max(0, hj
i (gi, xi|[g]i, [x]i))

γ , γ ≥ 2 (20)

With this choice, the local penalty function penalizes
violations of the constraints given in (18) (i.e. Pi(gi|[g]i) =
0 ⇐⇒ hi(gi, xi|[g]i, [x]i) ≤ 0). It is finally assumed that :

(A3) Common global constraints (i.e. interconnection
of agent constraints) and their penalty functions en-
ter each associated agent optimization problem identi-
cally: hj

i (gi, xi|gk, ...) = hl
k(gk|gi, ...) and P

h
j

i

(gi|gk, ...) =

Phl
k
(gk|gi, ...) where hj

i represents a constraint denoted as

the j-th constraint of the i-th agent. ✷

By using the above approach, local optimization problems
for each agent can then be defined as follows:

min
gi∈IRni

Fi(gi, βi|[g]i, [x]j) (21)

with the optimal solution denoted by

[g∗i |βi, [g]i] = arg min
gi∈IRni

Fi(gi, βi|[g]i, [x]j) (22)

It is simple to show (Inalhan et al. [2002]) that, for a local
optimization, the values of Fi e Pi decrease as βi decreases.
As a consequence, each agent can use the local βi as a
selection tool to achieve possibly less constraints violation
(and indirectly, more cooperation) without resulting in an
increase in Fi(gi, βi|[g]i).

In this work, a particular policy is used to select βi over the
iterations. At the beginning of the optimization process,
βi are initialized as

βi(0) = αi, ∀i ∈ A (23)

with αi the same as in (14). Therefore, at each iteration
they are all decreased by the same factor λ ∈ (0, 1)

βi(1) = λβi(0), ∀i ∈ A
...

βi(k + 1) = λβi(k) = λkβi(0), ∀i ∈ A

(24)

In this way, all βi decrease with the same speed and this
fact is instrumental to prove some properties of the method
(see in the next section).

Moving from these considerations, an algorithm that com-
bines local subsystem optimizations with a bargaining
scheme between subsystems can be implemented. Such
a scheme uses iterative optimizations locally, where each
agent i solves a sequence of local programs involving its
neighborhood Ni only. In particular, at each iterate it
optimizes the cost (21) by a local selection of βi which
is then made aware to all other agents j ∈ Ni.

During the evolution of the distributed optimization pro-
cess, the subsystems are actually negotiating: they propose
a solution (g+i |[g]i) and receive a counter offer ([g++

j ]i|g
+
i )

when the other agents in the neighborhood change their
individual moves. The selection of βi gives each subsystem
a way to ”bargain”: for large values of βi the resulting

solution provides minimal constraints satisfaction; as βi

decreases, the constraints satisfaction (and indirectly the
cooperation) increases.

Below, a pseudo-code implementing the algorithm for the
generic agent i with neighborhood Ni is reported

Algorithm 1 (Distributed Optimization)

INPUTS: xi, [x]i, [g]i, gi

OUTPUTS: g
(k)
i

initialization

[1.1] set k = 0, Ci = 0, g
(0)
i

= gi, [g(0)]i = [g]i, βi(0) = αi

main:

[1.1]if (Ci == 0)
[1.1.1] if k > 0

[1.1.1.1] receive g
(k)
j

from each j ∈ Ni

[1.1.1.2] set g
(k)
j

= g
(k−1)
j

for agents that

have notified convergence
[1.1.1.3] compose [g(k)]i

[1.1.2] select βi(k + 1) = λβi(k)

[1.1.3]g
(k+1)
i

=argminFi(g
(k)
i

, βi(k + 1)|[g]i(k), [x]i)

[1.1.4]∆Fi(k + 1) = Fi(g
(k)
i

, βi(k)|[g]i(k))

− Fi(g
(k+1)
i

, βi(k + 1)|[g]i(k))
[1.1.5] if ∆Fi(k) < ǫ

[1.1.5.1] set Ci = 1
[1.1.5.2] notify local convergence to Ni

[1.1.6] set k = k + 1

[1.1.7] transmit g
(k)
i

to Ni

[1.1.8] go to main

Remark 4.2. In the original algorithm of (Inalhan et al.
[2002]), at each iteration and within a certain polling time
Ti, agents generate a new optimizing thread whenever
new data arrive. In our implementation, thread generation
is avoided by assuming that at the beginning of each
iteration agents have all the needed information from their
neighbors. In this way the algorithm here presented keeps
the same properties as the original one. ✷

Further details on the above algorithm can be found in
(Inalhan et al. [2002]). Basically, under Assumptions
(A2) and (A3), it can be proved that Algorithm 1 will
terminate in a finite number of iterations and return
a Pareto Optimal solution for the centralized problem
(13) that is ǫ-close to satisfying each of the constraints
hj(g) ≤ 0, ∀j = 1, ..., z, ǫ > 0.

Proofs of the above propositions can be found in (Inal-
han et al. [2002]).

4.2 Main Results

The above described formulation allows us to present the
main properties of the following DI-CG algorithm when
executed at each time instant by all agents.

Algorithm 2 (Distributed Iterative CG Algorithm (DI-
CG) - Agent i)

at each time t
1.1 receive gj(t− 1), xj(t) from each j ∈ Ni

1.2 build vectors [g]i(t− 1) and [x]i(t)
1.2 compute gi(t) by means of Algorithm 1 with

inputs x(t), [x(t− 1)]i, [g(t− 1)]i, gi(t− 1)
1.3 apply gi(t)
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1.4 transmit gi(t) and xi(t) to Ni

Finally, for the above stated DI-CG scheme its main
properties can be summarized in the following Theorem.

Theorem 1. Consider the distributed DI-CG Algorithm
(Algorithm 2) and let assumptions A1-A3 be fulfilled
and V(x(0)) be non empty at time t = 0. Then

1) At each time t ∈ ZZ+, the global action of all agents
in A solving Algorithm 2, and in turn Algorithm 1,
generates a feasible solution g∗ for problem (13).

2) At each time t ∈ ZZ+, the global action of all agents
in A solving Algorithm 2, and in turn Algorithm
1, leads to a PO solution g∗(t) for Problem (13) in a
finite time. In particular, if the termination criterium of
the algorithm are satisfied by all agents at the same
iteration step, the achieved solution is also optimal
for the associated problem (12) characterized by a
weighting matrix Ψ of the form (14).

3) Whenever r(t) ≡ [ rT1 ,. . . ,r
T
N ]T , ∀t, with ri a con-

stant set-point, the sequence of solutions g(t) =
[gT1 (t), . . . , g

T
N (t)]T computed by means of Algorithm

2 converges in finite time to a PO stationary (constant)
solution for the following problem
r̂ := argmin

g
[f1(g1, r1), . . . , f1(gi, ri), . . . , f1(gN , rN )]

s. t. g=[gT1 ,...,g
T
i ,...,g

T
N ]T∈Wδ

(25)
which is given by r̂ = r, whenever r ∈ Wδ, or by any
other PO solution r̂ ∈ Wδ otherwise.

For space reasons the proof is missing. However it will
be available in a journal version of the paper as soon as
possible. ✷

5. AN EIGHT-TANK WATER DISTRIBUTION
SYSTEM APPLICATION

Consider the water tank network depicted in Figure 3. The
system consists of the interconnection of four cascaded
two-tank models. Each cascaded subsystem is described
by the following non-linear equations







ρS1
i ḣ

1
i= −ρA1

i

√

2gh1
i
+ ui

ρS2
i ḣ

2
i= −αiρA

2
i

√

2gh2
i
+ ρA1

i

√

2gh1
i
+
∑

j∈Si

αjρA
1
j

√

2gh1
i

where ui is the water flow supplied by the pump whose
command is the voltage Vi, i ∈ A := {1, .., 4}. Moreover,
for each q = 1, 2, i = 1, ...4, Sq

i = 2500 [cm2] are
the tank cross sectional area, hq

i , the water levels in the
tanks, Ai

q = 8 [cm2] the sections of pipes connecting the

tanks, and g = 980[cm/sec2] and ρ = 10−3 [Kg/cm3]
the gravity constant and the water density respectively.
Finally, parameters α1 = 1, α2 = α3 = α4 = 1/2 model
the splitting water flows between upper and lower tanks.
With T i we denote the set of subsystems which provide
water to the downstream tank of the i-th subsystem; in
our case T 1 := {2}, T 2 = {3}, T 3 = {4} and T 4 = ∅.
Each cascaded two-tank subsystem has a related decision
maker or agent in charge of regulating the levels h2

i (t),
i ∈ A, by properly modifying their set-points and by
exchanging relevant data with the other agents by means
of a communication network.

Local decentralized tracking LQ output feedback con-
trollers (Zhu and Pagilla [2006]) are implemented, which

act properly on the incoming water flows ui(t) so that an
offset property is satisfied on the tracking error. A simple
static equation is used to model the relationship between
the input voltage Vi(t) and the incoming mass of water.

Fig. 3. A four cascaded two-tank water system.

ui(t) =
{

Vi(t) if Vi(t) ≥ 0
0 if V (t) < 0

The following local and global constraints are to be en-
forced at each time instant
1[cm]≤h1

i ≤80[cm], 1[cm]≤h2
i ≤70[cm], 0≤Vi≤4[V ], ∀i ∈ A,

|h1
1 − h1

2| <=5 [cm], |h1
2 − h1

3| <=5 [cm], |h1
3 − h2

4| <=5 [cm]

The system is linearized around the equilibrium V̄i =
ūeq
i = 2, i ∈ A h̄j

i = 32cm and discretized with sampling
time Tc = 0.8 sec. The reported simulations investigate
the behavior of the overall system when the desired set-
points to the water levels of the downstream tanks have
the profiles depicted in Figure 5 (red dashed line).
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Fig. 4. Applied Voltages

Three CG based supervision methods have been con-
sidered: the standard centralized CG (Bemporad et al.
[1997]) scheme, the parallel non-cooperative non-iterative
distributed CG (P-CG) scheme presented in Tedesco et
al..B [2012], Casavola et al. [2014], and the proposed DI-
CG scheme. The local functional costs considered by the
distributed strategies are Ji(t) = ‖gi − ri(t)‖2, ∀i ∈ A
while, the centralized CG scheme minimizes the global

performance index J(t) =
∑4

i Ji(t).

In Figure 4, some components of the constrained vector
response can be observed. It is important to note how
such a vector violates the constraints at several time
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instants when no CG unit is used. On the contrary, this
never happens when a CG unit is used. In particular,
the responses of the system governed by the classical
centralized CG (Bemporad et al. [1997]), the P-CG
(Casavola et al. [2014], Tedesco et al..B [2012]) and the
DI-CG schemes are all reported for comparisons.

In Figure 5 the various CG actions are reported. The stan-
dard CG centralized scheme has the better performance
and, as expected, P-CG exhibits the slowest response to
changed conditions. Nevertheless, the related performance,
especially during the equilibrium phases, are quite good
even if compared to the centralized algorithm. The pro-
posed DI-CG scheme outperforms P-CG and exhibits a
behavior very similar to that pertaining to the standard
centralized approach. In order to better appreciate this
aspect, in Figure 6 the above strategies have been com-
pared in terms of the performance index J(t). From that
Figure strongly arises the cooperative nature of the DI-CG
in contrast with the non-cooperative behavior of P-CG. In
fact, DI-CG is able to generate PO solutions also in the
transient phase. This can be observed in the time interval
[300− 450]s, where the prescribed references ri(t) is time-
varying, by noticing that the performance index related
to DI-CG is very close to that associated to CG. On the
contrary, P-CG approaches a PO solution only during the
equilibrium phases.

6. CONCLUSIONS
In this work a novel cooperative iterative distributed CG
scheme has been described for the supervision of dynami-
cally coupled interconnected linear systems subject to local
and global constraints and used for solving constrained co-
ordination problems arising in networked control systems.

The resulting distributed iterative coordination algorithm
has been outlined and its main properties concerning
optimality, stability and feasibility highlighted. Moreover,
in a final example the performance of the cooperative
scheme has been compared with those pertaining to both
centralized and a non-cooperative distributed schemes.

With respect to the latter approaches, the proposed
scheme achieves better performance than the non- coop-
erative distributed scheme and is even able, under certain
conditions, to achieve the same solution of the centralized
scheme with similar computational burdens.
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