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Abstract: The introduction of the Tesla in 2008 has demonstrated to the public of the
potential of electric vehicles in terms of reducing fuel consumption and green-house gas from
the transport sector. It has brought electric vehicles back into the spotlight worldwide at a
moment when fossil fuel prices were reaching unexpected high due to increased demand and
strong economic growth. The energy storage capabilities from of fleets of electric vehicles as
well as the potentially random discharging and charging offers challenges to the grid in terms
of operation and control. Optimal scheduling strategies are key to integrating large numbers
of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods
are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper
starts with a concise introduction to analytical charging strategies, followed by a review of a
number of classical numerical optimization methods, including linear programming, non-linear
programming, dynamic programming as well as some other means such as queuing theory. Meta-
heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-
objective scheduling problem associated with stochastic charging and discharging of electric
vehicles. Finally, future research directions are suggested.

Keywords: Plug-in electric vehicle; scheduling; optimization; integration; power system;
heuristic methods

1. INTRODUCTION

It has been widely argued that the increase in green-
house gas (GHG) emissions associated with anthropogenic
activities has significant impact on the global warming.
The magnitude and frequency of natural disasters every
year due to the extreme weather conditions partially
caused by the global warming show the imperative need to
reduce the GHG emissions. Furthermore, the limited fossil
fuel reserves such as coal, oil and gas impose significant
constraints on global economic development, in addition
to the environment concerns from burning these fossil
fuels. All these challenges call for the development of new
technologies to utilize renewable and emission-free energy
resources as well as the need to improve energy efficiency.

Transport is one of the major contributors to GHG and
pollutant emissions and one of the biggest fossil fuel users
in the world (Ipakchi and Albuyeh (2009)). However, the
successful commercialization of electrical vehicles (EVs)
may change this. First invented in early nineteenth, EVs
have a long development history. In recent years, the Tesla
has achieved a technological breakthrough for technical
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integration with the Roadster and Model S. The high
performance and environment-friendly characteristics of
these models have attracted broad attention for EVs. A
number of articles have detailed EV powertrains, battery
types, and popular styles of EVs (Koyanagi and Uriu
(1998); Chan and Wong (2004); Chan (2007)). From a
grid perspective, EVs can be categorized into pure battery
electric vehicles (BEV) and plug-in hybrid electric vehicles
(PHEV). A BEV uses a rechargeable battery as the
primary source of power, whereas a PHEV uses a battery
and an internal combustion engine to extend the driving
range of the vehicle. The driving range of BEVs and
PHEVs normally depends on the battery, but in the case
of PHEVs, it also depends on both the internal combustion
engine. Typical battery energy capacities may range from
less than 10kWh to over 80kWh. Both are referred to as
plug-in electric vehicles (PEVs) for the purpose of this
research.

The popularity of the Tesla and other EVs such as the
Nissan Leaf, Toyota Prius and the recent introduction of
the BMW i3 indicates that the automobile industry is
investing heavily in transport electrification and believes
that there is a market and future in EVs. There are some
technical issues predominantly associated with EV range
because of battery capabilities. However, this is now the
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focus of intensive collaborative research and development
by battery and automobile manufacturers and already
battery performances have improved. Then, there are
potential grid issues due to the stochastic charging (and
discharging) of PEVs, which may lead to sharp unexpected
spikes in power consumption resulting in a deterioration
in power quality and in particularly congested grids-
voltage deviation, power loss (Bradley and Frank (2009);
Richardson (2013)) and even blackout.

Fleets of PEVs also have the potential to provide distribut-
ed energy storage and ancillary services to the grid in the
form of vehicle to grid services (V2G). Thus, the grid and
PEVs are complementary to manage energy storage and
power dispatch (Kempton and Tomić (2005a,b)). With
optimal scheduling, PEVs could function as distributed
generation and energy storage, for demand response as well
as smoothing the intermittency and unpredictability of re-
newable generation such as wind and wave. Thus V2G has
the potential to support grid operation and management
(Leemput et al. (2011); Su et al. (2012); Andreotti et al.
(2012a,b); Bessa and Matos (2012); Foley et al. (2012)).
However, to achieve V2G apart from the smart grid infras-
tructure and electric vehicle service infrastructure (EVSE)
robust intelligent scheduling methods are necessary.

In this paper the state-of-the-art optimization methods are
reviewed for scheduling the energy power flow, economic
load dispatch as well as for electric vehicles grid integra-
tion. Some analytical charging strategies to charge the
PEV during valley time are discussed in Section 2. Then,
some traditional numerical optimization methods are re-
viewed in Section 3. Meta-heuristic algorithms approaches
are then examined in detail and compared in Section 4.
Finally, Section 5 concludes the paper and future work is
suggested.

2. ANALYTICAL CHARGING STRATEGIES FOR
INTEGRATING PEVS WITH POWER SYSTEMS

Optimal PEV charging strategies are key prerequisite for
seamless integration with the power system. Researchers
have analysed various profiles and proposed elementary
methods to schedule PEV charging.

A PEV can require up to 85 kWh to charge a battery to
full capacity to support a range of 300 miles. If a number
of PEVs are charged simultaneously in a specific time, the
load, composed by the original load and the additional
PEV load will increase by up to 20 kWh (Teslamotors
(2013)). However, if the original load decreases proactively
while a number of PEVs are charging, the total load may
not deviate significantly. Shao et al. (2009) proposed a
method to manage the load profile by controlling the
household load. In this method, the real-time load profile is
kept monitored and the PEV charging load can be sensed
once plug-in. Some non-critical but high consumer loads,
like water heaters or clothes dryers, can be turned off by a
center controller for a short time to reduce the base load,
so as to support the PHV charge.

However, it is not easy to control a domestic load con-
sidering existing infrastructure and the behaviour of the
user. It is helpful to differentiate the sharp load rise by
separating the total power need into a longer charging

period. For example, Vandael et al. (2011) proposed two
methods, namely the reactive strategy and the proactive
strategy. The reactive strategy first postpones the peak by
turning off some chargers and accumulating the necessary
charging capacity to assure the balance of load profile as
long as possible, and then turn on all chargers before the
deadline comes to ensure the battery being fully charged.
The proactive strategy calculates the future capacity from
the day-ahead load profile and averages charging scenario
to avoid overloading. The previous method sees a shorter
charging period but may cause a sharp rise during quick
charging stage, while latter method averages the deviation
risk but may cost more time.

The approaches by Shao et al. (2009) and Vandael et al.
(2011) adopt fixed charging scenarios, which keeps con-
stant power in the charging process. If the value of charg-
ing power can be controlled, the charging rate can be
calculated as dividing the actual charging power by the
maximum charging power. Strategist may also allocate
variable charging rate for each of the PEVs to balance the
aggregate load. Amoroso and Cappuccino (2011) proposed
two methods to calculate charging rates. One is the max-
imum energy with priority, which sets the charging power
as the maximum from all energy requests, and the other
is called spread energy with priority, which calculates the
rate by dividing the total required energy with the entire
available time period.

It should be noted that analytical charging strategies
still stay at the elementary stages. The results are quite
coarse and cannot ensure the optimal scheduling results.
Moreover, most analytical strategies are based on broad
assumptions, for example that all PEVs could start charg-
ing simultaneously during a specific period of time, leading
the strategy to be divorced from the reality. Finally, but
not least, the above charging strategies mainly consider
approaches in terms of avoiding overload, while key issues
like energy efficiency, GHG emission, energy dispatching
cost and other elements are not considered and optimized.
To tackle these problems and to develop more intelligent
strategies, mathematical optimization approaches are pro-
posed (Hajimiragha et al. (2011); Acha et al. (2010); Zhao
et al. (2012)).

3. CONVENTIONAL MATHEMATICS
OPTIMIZATION METHODS

Optimization is an important technique and has been ap-
plied in most scientific field. There are numerous tradition-
al numerical optimization methods available to solve the
scheduling problems relating to the integration of PEVs.
Some of them have already been implemented to inves-
tigate PEV charging including linear programming (LP)
(Sundstrom and Binding (2010)), non-linear programming
(NP) (Bazaraa et al. (2013)), dynamic programming (DP)
(Han et al. (2010)) as well as some other approaches such
as queuing theory.

3.1 Optimal objectives and constraints

Numerical optimization algorithms solve a problem by
modelling the system subject to an objective function and
constraints, then utilize mathematical means to search for
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Fig. 1. Objective functions

Fig. 2. Constraints

the best solution. Therefore, in order to develop optimal
PEV scheduling strategies, the objective function and
constraints should be formulated first.

Currently broad objective functions are proposed as those
identified in Fig.1, which are based on minimizing the total
tariff or price cost in order to save expenditure (Sundstrom
and Binding (2010); Clement-Nyns et al. (2011)). The
cost may include operation costs and fuel costs. From the
power efficiency aspect, total Electricity costs as well as
power losses are considered, aiming to schedule the power
dispatch in a more efficient way (Clement-Nyns et al.
(2010)). Environmental effects are also taken into account
to reduce GHG emissions as well as some other gaseous
pollutants such as nitrous oxied (NOx) (Hajimiragha et al.
(2010)). For specific distribution zones, charging profiles
may be presumed with an optimum and deviation variance
minimizations are utilized so as to keep charging behaviour
tracing the presumed optimal one (Sundstrom and Binding
(2012)). For individual users, V2G revenue is the major
incentive for them to join in the V2G service and thus the
revenue is maximized to provide policy strategies for policy
makers (Han et al. (2010, 2011)). Finally, other studies
set the objectives based on other considerations, such as
maximization of the average state of charge (SOC) (Su
and Chow (2011)).

Constraints are introduced to bound the solutions within
the physical and user-specified limitations. In Fig.2, in-
frastructure and facility constraints are proposed. Charger
power, voltage and current are usually limited by PEV
chargers and battery capacity. Generation and transmis-
sion constraints within the operating parameters of the
grid operators ’grid code’ are often considered for opti-
mizing the whole distribution power system. Note that the
solutions heavily rely on the mathematical methods, thus a
number of numerical approaches have been used to tackle
with the problems.

3.2 Linear programming

Linear programming, forming the problem with a first
order polynomial and some equality/inequality linear con-
straints, offers a simple and effective optimization ap-

proach to model and solve problems with a low compu-
tation cost (Dantzig (1998)).

Basic LP formulates the objective functions as multiplying
a known vector to an unknown variable. Sundstrom and
Binding (2010) introduced basic LP to minimize price cost
as

min f = tsc
Tpb (1)

subject to

Aspb ≥ bs (2)

Agpb ≤ bg (3)

Abpb ≤ bb (4)

bl ≤ pb ≤ bu (5)

In the cost objective function, the charging power variable
vector pb was multiplied by a known cost vector c in
(1). The linear constraints include inequality formulation
with transmission constraint (As,bs) in (2), generation
constraint (Ag,bg) in (3), battery constraint (Ab,bb) in
(4) and the upper and lower bound (bl,bu) in (5). Simi-
larly, Clement-Nyns et al. (2011) formulated the objective
function by basic LP with the tariff cost multiplied by
the charging power, but the cost was simplified with two
constant values for day-time and night-time instead of a
cost vector.

For LP, the optimal solution is calculated with determin-
istic inputs. If some inputs have deviations or numerical
errors, the results may not be accurate. Robust optimiza-
tion is then introduced to utilize a certainty interval to
indicate a value range of some uncertain input, thus may
help to improve the robustness of the optimization process.
Robust optimization can be combined with LP to deal with
charge scheduling problems for PEV integration. Battistel-
li et al. (2012) integrated wind power and V2G service. The
uncertainty of charging profiles of car parks (i.e. garages)
was considered and was examined by uncertainty sets
associated by a LP form. The robust optimization based
LP (Bertsimas and Sim (2003)) was implemented to solve
this problem.

Besides uncertainty, some inputs may be piecewise linear
that the specific selected piece is decided by nominated
integers. Hajimiragha et al. (2010) adopted mixed integer
linear programming (MILP) to tackle a LP problem with a
piecewise linearisation constraint. Its optimizing objectives
include generation cost, environment credit along with
emission cost for generation infrastructures and population
areas. Hajimiragha et al. (2011) used both MILP and
robust optimization. The piecewise linear generation emis-
sion inputs of three types of power plants were described
by three sets of binary and auxiliary variables, forming
a MILP problem, while the uncertainty of imports and
export price input were modelled and solved by a robust
optimization approach.

Though LP along with its variants is able to solve some
elementary problems, the difficulty is that the simple
framework cannot deal with complex non-linear systems
with non-linear objectives goals such as deviation variance,
thus it appear to be not robust to solve PEV charging
optimization and other programming methods have to be
used.
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3.3 Non-linear programming

Non-linear programming can be used to deal with the
objective function or constraints consisting of non-linear
terms (Bazaraa et al. (2013)). Higher-order, non-negative
functions, discontinuous objectives and some other forms
of problems allow different approaches to model and solve
respectively. Among them, quadratic programming (QP)
has been used in developing PEV charging scheduling
strategies. QP broadens the ranges of the objectives and
enables some quadratic-form objectives to be formulated
easily such as physical laws of power consumption and
the deviation variance between the dispatching power
variables and expected values.

Clement et.al formulated the power loss objective in a
quadratic form in (6) and (7) based on the physical
law (Clement et al. (2009); Clement-Nyns et al. (2010))
denoted as

min f =

tmax∑
t=1

lines∑
l=1

Rl · Il,t2 (6)

s.t.


∀t,∀n ∈ {nodes} : 0 ≤ Pn,t ≤ Pmax

∀n ∈ {nodes} :

tmax∑
t=1

Pn,t · 4t · xn = Cmax

xn ∈ {0, 1}·

(7)

The charging process is based on a 4 kW power charger.
Il,t denotes the current variable in the objective function
where Rl is the equivalent resistor value of a transmission
line. Battery capacity Cmax and charging power limit Pmax
were formulated as constraints and xn is the binary vector
for deciding the existence of PEVs in a specific node.

Sometimes it is necessary to minimize the variance of
certain objectives in strategy optimization, and the vari-
ance is the square of the deviation which is naturally
in quadratic form. Some studies have implemented QP
methods to solve this problem (Mets et al. (2010, 2011,
2012)). The key idea of designing the objective function in
these studies is to minimize the variance of the deviation
between the control power variable and the desired power
value derived from the global profile. In Mets et al. (2010),
the problem is formulated as

min f =

βi−1∑
t=αi

(Lio,l − L1(t))2 (8)

s.t.


Li1(t) ≤ Limax

Cic +

β−1∑
t=α

Lic(t) ·∆ = Cib
(9)

The minimization of variance is denoted by (8,9) in which
the load variable is L1(t), and optimal load variables is
Lo,l. The objective function is associated by the con-
straints of battery capacity Cib as well as load boundary
Limax. Similarly, the minimization of variance has also
been implemented in Zhang et al. (2012); Sortomme et al.
(2011); Jian et al. (2013) to develop optimal strategy.

These forms only include one variable, but QP has also
been used to optimize multi-variable quadratic functions.
In Han et al. (2011), it defined the objective function
to maximize the revenue gained by the aggregator based

on the state of charge of PEV batteries. Two vectors,
including the weights determining the ratio of charg-
ing/discharging as well as the delivered power are both
taken as variables in forming the quadratic terms. Apart
from QP, some other non-linear programming approaches
have been proposed. For example, in Acha et al. (2009,
2010), the objective function is merged as an absolute
value to minimize the power loss.

The objective functions and constraints in linear and non-
linear programming are supposed to remain static or time-
invariant. If the strategy has many steps or the process
involves time varying inputs, aforementioned modelling
and programming methods may fail to perform.

3.4 Dynamic programming

Dynamic programming was first proposed in 1952 by
Richard Bellman (Bellman (1986)). It splits the whole
optimization process into a series of timeslots and seeks the
solutions in each time step, thus being practical and useful
to model time-varying scenarios. It has also been used in
optimizing the charging schedule of PEVs in order to solve
problems in dynamic processes or with time-varying input
parameters.

If PEV provides V2G service and gains profit from power
feedback, individual users may be sensitive to the electric-
ity changing price in order to maximize revenue. Han et al.
(2010) proposed an optimal aggregator scheduling method
to provide frequency regulation services for charging each
vehicle. A DP approach was then introduced to form an
integer optimal model to determine charging consequence
step by step in hourly periods. Though the solution simply
solves the question about when to charge or regulate to
ensure a single PEV to be charged adequately and obtain
the maximal revenue, without considering the whole grid
or distributed system scenarios, it lays a fundamental con-
cept on the dynamic process optimization of V2G service
for PEV integration. Rotering and Ilic (2011) present two
DP algorithms to reduce both energy and money costs
and improve profit considering battery degradation based
on the dynamic electricity market price for a single PEV.

Besides considering the dynamic price, other dynamic
input parameters are also concerned. In Xu and Wong
(2011), SOC was treated as the variable and the optimiza-
tion objective ot considering charging cost ct, power loss
lt as well as the departure penalty gt is formulated as

ot(st, rt) = ct(rt) + λ1lt(rt) + λ2gt(st) (10)

π∗ = argmin
π

Jπ1 (s1) = argmin
π

T∑
k=1

ok(sk, πk(sk))· (11)

Among the inputs, departure penalty gt is the function of
SOC variable sk and keeping changing in each step Jπt
during the whole dynamic process π∗. An approximate
DP method was introduced using the state aggregation
and sub-state to reduce the dimension of state and control
space denoted in (11).

Foster and Caramanis (2010) consider optimal strategies
from a load aggregator’s perspective rather than from
the user’s perspective. A stochastic dynamic programming
scenario was proposed to develop a dynamic biding strat-
egy to maximize the revenue. Time-varying parameters
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including the power demands and market price are de-
termined with stochastic probability coefficients in every
dynamic step. System dynamics of the PEV number in
every timeslot was also formulated as the time-variant
value in the constraints. An optimizing DP approach was
introduced in Foster and Caramanis (2013) and the opti-
mal dynamic biding strategy was studied in comparison
with the paradigm which bids the price based on the day-
ahead forecast.

Dynamic timeslots are basic computation units in DP
process and different periods of timeslots could be used for
corresponding optimizing purposes. Different from single
length interval DP a three-level internals structure was
proposed in Li et al. (2012). This hierarchical strategy con-
sists of three levels and periods of dynamic process, which
schedule the system based on three different intervals
with one hour, one minute and real-time respectively for
dispatching the wind energy and conventional generation,
charging PEV following the dispatching power as well as
regulating real-time frequency. The real-time performance
and internal length sensitivity of corresponding objectives
are considered by the three-level structure, based on which
multiple goals can be achieved.

By solving problems in time intervals, DP approaches
accept time-variant parameters and strategy periods, and
thus are more flexible for power system scheduling. How-
ever, primary programming methods such as LP are still
used in solving problem in each timeslot computation unit,
therefore it shares similar drawbacks with conventional LP
methods.

3.5 Other mathematical methods

Besides LP, DP, MILP, and QP optimization methods,
game theory and queuing theory has also been used to
optimal schedule PEV charging.

Game theory can analyse conflicts and help to make
interactive decisions (Myerson (2013)). A formulation of
Nash Equilibrium in game theory was introduced in Ma
et al. (2010) to describe and balance the problem of
decentralized charging control for a large population of
PEVs. The negotiation principle may consider the benefit
of both individual PEV populations and the goal of ’valley-
filling’ strategy.

In queueing theory, a model is constructed to predict the
queue lengths and waiting times (Kleinrock (1975)), thus it
is also useful to model the charging sequence in scheduling
PEV charging. In Li and Zhang (2012), the whole scenario
is simulated based on two aspects, namely the residential
community and the charging stations respectively. Con-
sidering the limit of the possible PEV number, the model
is utilised based on Monte Carlo simulation. A similar
method is proposed in Turitsyn et al. (2010) to avoid the
synchronization of EV charging start time.

Some other approaches have also been used. For example,
in He et al. (2013), two modelling methods, namely a
non-linear complementary system as well as a convex
mathematical programming method, which considering
equilibrium state of coupled networks and electricity price
are first analysed. Both methods were then combined to
formulate a public charging station allocation problem

with complementarity constraints. The objective of the
problem is to provide a solution to policy makers for
better allocation. The problem was solved by an active-
set algorithm proposed in Zhang et al. (2009) which used
zero pre-assumption values to divide the problem into
a normal non-linear programming as well as a binary
knapsack problem.

3.6 Drawbacks of conventional optimization methods

Though numerous optimization methods have been used
to solve the scheduling problem and most of them can
be implemented with some powerful commercial software
solvers such as CPLEX (Battistelli et al. (2012)) and
GAMS (Sousa et al. (2012)), there are also some draw-
backs.

Firstly, all these methods deal with single objective, while
multi-objective problems widely exist. For instance, many
papers discuss the strategies to achieve profit and high
energy efficiency as well as to reduce GHG emissions
or generation and transmission cost from the operator’s
or aggregator’s side. Some other studies set goals for
individual PEV owners to achieve the low price cost of
electricity used and gain economical benefit from the
V2G repaid scheme. Obviously, a dilemma lies between
the interest of the aggregator and customer as both aim
to maximize profit. Moreover, the profit and other price
related objectives may also contradict with the battery
degradation and environment impact. Therefore, multi-
objectives modelling methods should be introduced into
the scenario to balance the situation and find a trade-off
for optimal scheduling. However, multi-objective problems
can not be solved by current single objective mathematical
solvers.

Secondly, it should not be ignored that some practical ob-
jectives are modelled with a set of intractable terms, which
might be highly non-linear and non-convex, being hardly
tackled by conventional programming methods. The for-
mulations have to be simplified to meet the constraints and
necessities of the programming methods. This may lead to
the loss of accuracy and the failure of generalization of the
models.

Finally, when dealing with complicated optimization prob-
lems, the computational complexity is a concern. It is
often very sensitive for conventional approaches when the
number of solution dimensions increase with the result
that the model complexity increase (Sousa et al. (2012)).
Even DP sees a ’dimension curse’ referred to as the curse
of dimensionality (Bellman (1961)). In order to find the
optimum solution, the computational cost of the approach
is dependent on the specific solving process and some
methods need many computational hours to solve a com-
plicated problem.

In summary, though a number of conventional optimiza-
tion methods are available for solving the integration of
PEVs with the grid, more comprehensive and complicated
scenarios are still challenging the development of schedul-
ing strategies. Algorithms which may, regardless of variant
formulations of the objective function, tackle profiles with
practical and complexity models efficiently are on demand.
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4. META-HEURISTIC ALGORITHM APPROACHES

Meta-heuristic algorithms are powerful optimization tools.
They are naturally immune to non-linear, non-convex and
high-dimensional systems, and the computational cost can
also be limited. Generally speaking, meta-heuristic algo-
rithms could be categorized as trajectory-based methods
and population-based methods. Trajectory-based method-
s, such as the hill-climbing (Skalak (1994)) and simulated
annealing (SA) (Aarts and Korst (1988)), keep updating
solutions instructed by certain probability based trajecto-
ry, while population-based methods utilize a population
of solutions search for the optimum solution synergisti-
cally. Existing popular population-based methods include
genetic algorithm (GA) (Goldberg and Holland (1988)),
particle swarm optimization (PSO) (Kennedy (2010)), d-
ifferential evolutionary (DE) (Storn and Price (1997)),
harmony search (Geem et al. (2001)), ant colony optimiza-
tion (ACO) (Dorigo (2006)), covariance matrix adaptation
evolution strategy (CMA-ES) (Hansen and Ostermeier
(2001)) and biogeography-based optimization (BBO) (Si-
mon (2008)) etc.

4.1 Trajectory-based methods

A trajectory-based algorithm utilizes solutions to trace a
path as the iterations continue (Yang (2010)). Among this
category, the SA trial has been implemented and compared
with conventional methods. Sousa et al. (2012) proposed
a mixed-integer non-linear programming (MINLP) for-
mulation for EV charging scheduling. The complicated
formulation of objective functions considers the costs of
generation sources, supplier energy acquisition as well as
factors covering V2G discharge, the costs of non-supplied
energy, excess generated energy, and demand response.
GAMS N, GAMS and SA were implemented respectively
to compare the accuracy and efficiency of the results. The
conclusion reveals that the SA approach leads to 3% more
cost than the GAMS N approach, but its computation
time is less than one second comparing to the 5h calcu-
lation time spent by the latter method. Since the global
search ability and convergence speed of trajectory-based
algorithm rely highly on initialization of parameters such
as cooling factor in SA, more powerful methods of this
category could further be developed.

4.2 Population-based methods

Many meta-heuristic algorithms are based on a group
of solutions categorised as population-based methods. In
some early researches, GA was applied to the hybrid
electric vehicle (HEV) energy flow management in Piccolo
et al. (2001). Due to the higher efficiency and easier
implementation, PSO is adopted by more applications.

The PSO was proposed based on the behaviour of particles
in a swarm. It keeps updating the position of each particle
using changing velocity which is adjusted by receiving
information from the global and local best counterpart-
s. In Su and Chow (2011), the objective function is to
maximize the average SOC considering the energy cost,
battery capacity and remaining charging time which is
highly non-linear and hard to be solved by conventional
approaches. An adaptive weight PSO based algorithm was

proposed and compared with interior point method (IPM)
and the GA methods. In Saber and Venayagamoorthy
(2009a), binary PSO was utilized to optimize the gener-
ation emissions, while in (Hutson et al. (2008); Venayag-
amoorthy et al. (2009)), the same PSO variant was utilized
to determine buying and selling electricity times to gain
more profit. In Soares et al. (2012), three different PSO
algorithms, namely EPSO (Miranda and Fonseca (2002)),
NPSO (Selvakumar and Thanushkodi (2007)) and stan-
dard PSO were implemented and compared to optimize
the objective function which considers the generation cost
from the aggregator point of view.

Besides utilizing popular PSO variants, specially designed
PSO variants have been proposed as well. In Saber
and Venayagamoorthy (2009b), an integer PSO algorithm
was compared with several other optimization approach-
es including integer-coded GA (ICGA) (Damousis et al.
(2004)), Lagrangian relaxation and genetic algorithm (L-
RGA) (Cheng et al. (2000)), genetic algorithm (GA),
dynamic programming (DP), Lagrangian relaxation (LR)
(Kazarlis et al. (1996)), evolutionary programming (EP)
(Juste et al. (1999)), and hybrid particle swarm optimiza-
tion (HPSO) (Ting et al. (2006)) to tackle the unit com-
mitment problem combining EV load. The results show
that if proper parameters are set, the PSO is able to find
the optimal solution efficiently with least memory space
regardless the dimension limitation. In Saber and Venayag-
amoorthy (2011), a weighing factor was introduced to
adjust the weight accounting of cost and emission, thus im-
proved flexibility in formulating the objectives compared
with previously proposed methods. In Soares et al. (2011),
a novel PSO variant, which changes particle weights in
each iteration using a Gaussian mutation method, was
proposed and shown to outperform GAMS. Wang et al.
(2012) utilized two PSO variants to optimize non-linear
parameters, namely the ordered weighted averaging PSO
(WT-PSO) and the set point tuning PSO (SP-PSO) re-
spectively. In Zhao et al. (2012) wind power integration
was considered and a comprehensive objective function
including the probability distribution of wind power and
the behaviours of PEVs was proposed. An interior point
based particle swarm optimization (IPPSO) was employed
to solve the non-linear and non-convex problem.

Except for PSO, in Su and Chow (2012a,b), the estimation
of distribution algorithm (EDA) was used in optimizing
the PEV charging strategy in comparison with GA, PSO
and IPM.

Meta-heuristic approaches are not only able to search the
optimal solution for a single objective, but also can solve
multi-objective problems. From the individual PEV user’s
perspective, a dilemma exists between the energy cost and
battery degradation. In order to minimize the charging
cost, the SOC should remain high at the beginning of
the trip, while this may lead to a fast degradation of
the battery, thus a multi-objective problem which use
the ’pareto front method’ was proposed and solved by
the non-dominated sorting genetic algorithm II (NSGA-II)
(Bashash et al. (2011a,b)). Moradijoz et al. (2013) stud-
ied a multi-objective optimal framework for EV parking
lots allocation in the distribution network. The objective
function consists of distribution system reliability, power
losses as well as investment cost which are balanced using
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weighing coefficients. Two scenarios with different weigh-
ing coefficient values were studied and GA were used to
search the optimal solution of multi-objective functions.
The profit derived from the parking lot installation and
voltage profile are both improved through GA optimiza-
tion approach.

In summary, although a number of meta-heuristic algo-
rithms have been applied for EV charging scheduling, the
complex nature of the problem suggests that the appli-
cation of other powerful methods, such as the Quantum-
inspired PSO (Meng et al. (2010)), hybrid algorithms like
GA-API (Ciornei and Kyriakides (2012)) and recently
proposed algorithms such as the Biogeography-Based op-
timization (Bhattacharya and Chattopadhyay (2010)) and
Teaching-learning based optimization (TLBO) (Niknam
et al. (2012)) may be more effective.

5. CONCLUSION AND FUTURE WORK

It is clear that the integration of PEVs into power systems
is a challenging topic, it affects many aspects of the power
system, from the generation, transmission and distribu-
tion, to the economic dispatch and power flow optimiza-
tion. Once scheduled and utilized properly, PEVs with
distributed energy storage characteristics, may introduce
significant contributions to enhance the power system effi-
ciency and support renewable power integration. Further
benefits such as minimizing the environment impact and
maximizing the revenue of users may also be achieved
through an optimal scheduling process.

This paper has reviewed the current state-of-the-art of
PEV scheduling and optimization methods. Analytical
charging strategies are concisely introduced, and tradition-
al programming approaches are discussed. It was found
that conventional optimization methods although can be
quite efficient have some limitations for solving com-
plex objective functions with constraints. Furthermore to
solve multi-objective or high-dimension problems are even
more challenging for these conventional approaches. Meta-
heuristic algorithms are immune from these restrictions in
principle. Their characteristics of high flexibility and effi-
ciency offer distinctive merits in solving a complicated ob-
jective function combined with non-linear and non-convex
problems associated with the PEV charging. A number of
meta-heuristic approaches have been successfully applied
to PEV charging scheduling, especially considering a suite
of comprehensive and complex scheduling objectives re-
garding the integration of renewable energy.
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