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Abstract: Spiking Neural Networks (SNN) are a popular field of study. For a proper
development of SNN algorithms and applications, special encoding methods are required.
Signal encoding is the first step since signals need to be converted into spike trains as the
primary input to an SNN. We present an efficient frequency encoding system using receptive
fields. The proposed encoding is versatile and it can provide simple image transforms like edge
detection, spot detection or removal, or Gabor-like filtering. The proposed encoding can be
used in many application areas as image processing and signal processing for detection and
classification.

1. INTRODUCTION

Spiking neural networks are called as the third generation
of neural networks. They operate on spikes and are able
to provide different information as well as new algorithms,
which are based on spikes and thus, the processing requires
less computational resources than other techniques. For
this reason, SNN are becoming a widespread topic in
last years. SNN are modelled on the same principles as
the biological neurons, they are versatile and powerful
tools, capable of solving a wide range of tasks and used
for controlling manipulators and robots (Bouganis and
Shanahan, 2010; Alnajjar and Murase, 2008), recognition
and detection tasks (Perez-Carrasco et al., 2010; Botzheim
et al., 2012), tactile sensing (Ratnasingam and McGinnity,
2011), or neuromedical data analysis (Fang et al., 2009).

For SNN to operate optimally, signals must be encoded
into spikes according to optimal methods since data rep-
resentation has a key role in network functionality (Ger-
stner and Kistler, 2002). For visual data representation,
frequency orientation-dependent spike encoding is used,
as this encoding is similar to the animal visual cortex data
representation. In this work we are analysing visual en-
coding methods and proposing a Gabor-like spike encoding
improving the results in further SNN processing, being low
computationally intensive. This paper is organized as fol-
lows. Section 2 describes general spiking neuronal model.
Section 3 describes the usage of receptive fields for feature
extraction. Section 4 introduces the Address-Encoding
Representation of spiking data, the encoding widespread
used in neuromorphic hardware systems. Sections 5 and 6
describe the experimental set-up and results. And Section
7 contains conclusions from the obtained results.

2. SPIKING NEURON MODEL AND NETWORK
TOPOLOGY

In general, SNN are composed by a set of input neurons,
internal neurons (in several layers) and output neurons.

Each neuron is connected to all the neurons in the next
layer by a delayed and weighted connection, which means
that the output signal of a neuron arrives at a different
delay time to the neurons in the next layer and it will
have a different weighted potential contribution. Delay
is a specific characteristic not present in other neural
network proposals, implying more flexible and powerful
structures, but more difficult to train and configure due to
the different possibilities of weight and delay adjustment.
The possibility of learning by delay plasticity is studied in
(Pham et al., 2007).

It is common that electrical input signals do not corre-
spond to spikes since they are not generated by biological
systems. Thus, such input signals must be encoded into
spikes or spike trains to further feed the SNN as if biologi-
cal spikes were received. Typically, the coding information
method is the integrate and fire coding (Gerstner and
Kistler, 2002) where the input neuron is firing a spike
regularly every time interval while the input stimulus is
active.

An approximation to the functionality of a neuron is given
by electrical models which reproduce the functionality of
nervous cells. One of the most common models is the Spike
Response Model (SRM) due to the close approximation to
a real biological neuron (Paugam-Moisy and Bohte, 2009;
Booij, 2004). The main characteristic of a spiking neuron is
the membrane potential. The transmission of a single spike
from one neuron to another is mediated by synapses at
the point where the two neurons interact. In neuroscience,
a transmitting neuron is defined as a presynaptic neuron
and a receiving neuron as a postsynaptic neuron. Neurons
have a small negative electrical charge of -70 mV, which
is called resting potential. When a single spike arrives
into a postsynaptic neuron, it generates a Post Synaptic
Potential — PSP (excitatory when increasing potential
and inhibitory when decreasing). The membrane potential
at an instant is calculated as the sum of all present PSP.
When the membrane potential is reaching a critical value
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called threshold, a postsynaptic spike is generated. The
PSP function is given by (1), where τm and τs are time
constants to control the steepness of rise and decay.

fPSP (t) = e(
−t
τm

) − e(
−t
τs

) (1)

Figure 1 shows different PSP as a function of time (ms)
and weight value. Excitatory potential arises in case of red
and blue lines, and inhibitory potential in case of green
line.

Fig. 1. Postsynaptic potential function (PSP) with weight
dependency. Red line is for ω = 1, green for ω = 0.5
and blue is for ω = −1.

Each input spike arriving to a neuron generates a PSP
contributing to the membrane potential and is cumula-
tive to other PSPs generated by other inputs. When the
membrane potential reaches the threshold, the potential
rises up rapidly and the neuron fires an output spike. After
firing a spike, neuron potential goes into a short refractory
period. During refractory time, the neuron cannot propa-
gate a new action potential and voltage of soma membrane
stays below the resting value. After the refractory period is
finished, the neuron potential returns to its resting value
and is ready to fire a new spike if membrane potential
is above the threshold, i.e. when new spikes arrive. Let
us consider an example shown in Fig. 2 where spikes
from two presynaptic neurons trigger excitatory PSP in
a postsynaptic neuron. The spike train generated by the
presynaptic neurons change the membrane potential calcu-
lated as the sum of individual PSP generated by incoming
spikes. When membrane potential reaches threshold, the
neuron fires a spike at the time instant ts.

If we denote the threshold value as υ, the refractory period
is defined according to (2) (Booij, 2004).

Fig. 2. Spike generation by a threshold process.

η(t) = −υe( t20 ) (2)

being t
(g)
i the time when a spike is fired by a presynaptic

neuron. This spike changes the potential of a postsynaptic
neuron j at time t and the time difference between these

two events is t − t
(g)
i . The travelling time between two

neurons for a spike is defined by (3) where dji is the delay
value of a synapse.

∆tji = t− t(g)i − dji (3)

When a sequence of spikes Fi = {t(g)i , ..., tKi } arrives to a
neuron j, the membrane potential changes according to the
PSP function and refractory period, and thus, an output

spike train is propagated by neuron j as Fj = {t(f)j , ..., tNj }.
The equation for the j−th neuron potential uj is obtained
in (4), where the refractory period is also considered.

uj(t) =

K∑
i

∑
t
(g)
i
∈Fi

wijPSP (∆tji) +
∑

t
(f)
j
∈Fj

η(t− t(f)j ) (4)

3. NEURONAL RECEPTIVE FIELDS AND
GABOR-LIKE FILTERS

3.1 Receptive Field

Visual neural cortex is one of the best studied parts of the
brain. The Receptive Field (RF) of a visual neuron is the
specified part of the image affecting the neural input. The
size and shape of receptive fields vary heavily depending on
neuron position and purpose. By modifying the receptive
field a neuron can be more sensitive to an object position,
orientation or shape. In each subsequent layer of visual
cortex, receptive fields of the neurons cover bigger and
bigger regions, convoluting the outputs of previous layer.

Mammalian retinal ganglion cells located at the center
of vision in the fovea, have the smallest receptive fields
and those located in the visual periphery have the largest
receptive fields (Martinez and Alonso, 2003). The large re-
ceptive field size of neurons in the visual periphery explains
the poor spatial resolution of our vision outside the point
of fixation (other factors are photoreceptor density and
optical aberrations). Only a few cortical receptive fields
resemble the structure of thalamic receptive fields, while
others have elongated subregions that respond to either
dark or light spots, others respond similarly to light and
dark spots through the entire receptive field and others do
not respond to spots at all.

3.2 Receptive field neuron response

The neurons in the receptive or sensory layer generate
responses defined by the(5).

RRF =
∑

Iij ∗Wij (5)

The matrix Wij defines a receptive field of the neuron,
where i is X axis resolution and j is Y axis resolution.
The field can be off-centered or on-centered as it is shown
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Fig. 3. Off-centered and on-centered neural receptive field
and corresponding spike trains. Source: Millodot: Dic-
tionary of Optometry and Visual Science, 7th edition.
2009 Butterworth-Heinemann

in Fig. 3, or, alternatively, it can describe a Gabor-like
filter as shown in Fig. 4. These RFs can be used as
line detectors, small circle detectors, performing feature
extraction for higher layers. Simple classification tasks (i.e.
the inclination of the line, circle or non-circle object) can
be performed by single-layer receptive field neurons. Hav-
ing normalized input and weights, the maximum excitation
will be achieved when the input exactly matches the weight
matrix.

Sensory layer neurons generate spikes at a frequency
proportional to their excitation. As the neuron firing
frequency can not be infinite, the maximum firing rate is
limited, and thus, the membrane potential is normalized.
The spiking response firing rate (FRn) is described by (6),
where RPmax is the defined minimum refractory period
and max(R) is the maximum possible value of membrane
potential.

FRn =
1

RPmax ∗ Rn
max(R)

(6)

3.3 Gabor filters

Gabor filter took the name after Dennis Gabor defined
a band-pass filter widely used in digital signal processing
in its time domain form, and image analysis in its space
domain form. A family of two-dimensional Gabor functions
was proposed by Daugman (Daugman, 1985) as the math-
ematical models of simple cells receptive fields in visual
cortex. These functions are described by (7).

gλ,θ,φ,σ,γ(x, y) = exp(−x
′2 + γ2y′2

2σ2
)cos(2π

x′

λ
+ φ)

x′ = xcosθ + ysinθ

y′ = −xsinθ + ycosθ

(7)

The shape and orientation of such receptive field can be
selected by modifying the parameters of (7). Standard
deviation σ determines the linear size of the receptive field.
The value of γ determines the spatial aspect ratio, i.e. the
ellipticity of the RF. Value λ is the wavelength and thus,
by modifying the σ/λ ratio, the number of inhibitory and
excitatory zones in the RF can be modified. The φ value
responds to the symmetry of the RF and θ specifies the
orientation of the RF.

Fig. 4. Different types of Gabor RF.

Gabor fields have a good orientation selection properties,
and are widely used for image decomposition. For example,
the image of a car in Fig. 5 is converted with four Gabor
fields with orientations of 45◦, 135◦, 0◦, and 90◦. It is
clearly seen in Fig. 6 that the lines in the direction
corresponding to the receptive field are promoted, while
other lines are depressed.

Fig. 5. Sample image used for testing Gabor fields.

Fig. 6. Sample image converted with different receptive
fields according to four orientation values.

4. ADDRESS-EVENT REPRESENTATION

The encoded data should be represented in format conve-
nient to use in spiking neural networks. The format should
have maximum data density, be easily encoded, decoded
and routed in real time. Data representation inside the
network should be more or less uniform to allow scalability
and modularity of the network. A special protocol and in-
terface, called Address-Event Representation (Mahowald,
1992) become widespread for this task. Massive parallel
designs, like spiking neural networks suffer from so-called
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’connectionist problem’: the amount of connections is sev-
eral times in magnitude greater than the number of pro-
cessing elements, but the number of simultaneously active
inputs is relatively low. In such situation, a significant
part of the design can be serialized for a small decrease
of network throughput. Actually, in real designs, due to
technology restrictions, serial processing can be even faster
than parallel.

In the Address-Event representation (AER), wide and
sparse spike trains are serialized: each spike becomes
replaced with a serial number of synapse firing. Then, these
numbers are put into a one-dimensional vector ordered by
time of spike occurrence. In case of two spikes (also called
events) with the same time the order is either random
or by number of synapse generating the spike. Thus,
zero values in the spike train are not transmitted, only
spikes are encoded. Additional signals in the protocol are
request-acknowledge signals for flow control. Such protocol
is very simple and can be implemented in very limited
hardware, including mixed-signal specific neuromorphic
chips (Moradi and Indiveri, 2013). On the receiver side
the stream of event coordinates is routed to the synapses
according to the received data.

Address-Event Representation became a mainstream con-
cept of frameless vision systems (Perez-Carrasco et al.,
2013; Kasabov and K. Dhoblea, 2013). Recent neuromor-
phic hardware projects (CAVIAR (Serrano-Gotarredona
et al., 2009), SCANDLE) are using AER chips for pro-
cessing, existing sensors with AER output as in (Perez-
Carrasco et al., 2013) and (Chan et al., 2006). However,
data must be AER-encoded before use. With AER bus
the tasks of pooling or network pruning do not exist until
the neurons are not removed from the network and the
architecture always remains the same. High-level AER
protocol, with handshaking became a de-facto standard
for neuromorphic hardware in the last years. The described
encoding algorithm produce data output compartible with
the existing AER software and hardware, allowing the
software generated spike stream to be directly injected
into a hardware or software SNN. Data conversion to AER
in real time is one of the key points in the real-world
applications of spiking neural networks.

5. SOFTWARE EMULATION OF VISUAL NEURONS

The neuron-layer simulation is consuming lots of computa-
tional resources, thus, the encoding algorithm for AER was
modified. The encoding is done in four steps: input image
is normalized, then the selective receptive field is applied
pixel-wise to the image. The resulting matrix contains the
neuron firing frequencies (the higher is the image intensity,
the faster the neuron is firing), and based on this matrix,
a parallel spike train is generated. After the generation,
the spike train is converted to the AER stream. In case
of very large spike streams with thousands of neurons and
thousands of time units (TU), the spike train can be split
into smaller chunks and processed piecewise.

For the demonstration purposes and for clarity, a set of
10x10 black and white images representing the alphabet
was used. The output spike train has 100 neuron tracks.
The counting window is set to be 30 TU, limiting the
maximum spiking period. Each sample is presented during

100 TU. Orientation decomposition is presented in Fig. 7
and generated spike trains are shown in Fig. 8.

Fig. 7. Sample image set, converted with oriented Gabor
receptive fields.

Fig. 8. Spike train, generated from sample image set

The generated spike train is then converted into AER
stream, ready for use in the external device or AER-
processing software as jAER (jAER software, 2012). This
software supports a number of hardware AER devices and
can process synthetically generated AER data which are
split into 3-byte words, where first byte contains sensor or
receptive field identifier, second byte is X coordinate of the
event and third byte is Y coordinate. Such format allows
up to 256 sensors or different receptive fields encoding
of up to 256x256 pixels area. The data density is the
highest possible with each word encoding one event with
no empty events. Assigning one sensor ID to the timer, a
timestamped AER stream is obtained.

6. ENCODING PERFORMANCE

Tests were performed on Intel i7-2632 processor on Matlab
2012 software in 32-bit environment. Images are black and
white contours (letters, car2) or 8-bit grayscale (Car1,
Lenna). Letters were encoded using four 5x5 orientation-
selective fields, other samples were using 9x9 orientation-
selective fields. The resulting data are shown in Table
6. AER Data are encoded as 16-bit integer vector and
spike trains are stored as logic variables. As modern
processors can not perform memory operations on data
less than machine word (32 bit for 32-bit architectures),
the redundancy of operations on spike train data is very
large. Thus the AER representation is saving not only

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

704



memory occupation, but also processor time. In addition,
AER data do not require wide data bus for transmission,
which is also beneficial for reducing computations.

Table 1. AER encoding speed and size of data

Image Size Enc. time AER Size Train size

10 letters 10x10x10 0.105292 3632 400000
Car1 240x320 4.482844 252405 30720000
Lenna 512x512 15.095 826938 104857600
Car2 451x1051 24.74 1623478 184188400

7. CONCLUSIONS

In this paper we present an efficient frequency encoding
method of image data using receptive fields. The algorithm
can be easily paralellized and implemented in hardware,
making it suitable for usage in embedded neuromorphic
vision systems where computational burden is reduced. In
addition, the proposed encoding based on receptive field
image decomposition can work with spike data on input
as well as with other stimuli. Proposed decomposition of
visual data to simple forms and lines can serve as input
convolution stage for Deep Belief Networks or Restricted
Boltzmann Machines.
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