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Abstract: The purpose of this paper is to provide a novel model to characterize the nonlinear
restoring force of a marine vertical riser by using position-and-velocity-dependent polynomials.
This model permits the obtaining of a specific state space representation—via the Liénard
transformation—for the design of state observers that identify the structural parameters of
vertical risers. The main results presented here are: (i) an approximation of the nonlinear
restoring force by means of polynomials and its incorporation into a distributed parameter (DP)
model, (ii) the transformation of the DP model into a Liénard system and (iii) an analysis of
its observability and identifiability properties.

Keywords: Marine systems, pipelines, structural parameters, parameter identification, state
observers

1. INTRODUCTION

The marine risers are underwater pipelines that perform
large displacements and vibrations because of external
forces. Risers adopt an important role in the extraction
of petroleum from the sea (Lee (2009)) as the connection
between a platform and an oil wellhead placed on the
seabed. Their main use is the transportation of the crude
oil or sludge when a well is drilled; additionally, they can be
used to safeguard the drilling column. Dynamic behavior
of a riser can be modeled numerically as a harmonic
oscillator with distributed parameters (masses, springs and
dampers) along its structure, which is in contact with
several outward forces (ocean currents, waves, platform
motion) that determine its behavior over time (Niedzwecki
and Liagre (2003), Furnes (2000)).

If a structure is excited by external forces with frequen-
cies near its natural frequency, the structure vibration is
amplified rendering the entire system at risk of becoming
unstable. This phenomenon is known as resonance. In me-
chanical structures, vibrations cause wear and can produce
anomalies with undesirable outcomes. Therefore, vibration
and resonance are widely studied phenomena, particularly
in the reliability and assessment of building constructions
Doebling (1996).

Vibration is present during the exploration and exploita-
tion processes of petroleum in deep waters. This is caused
by the force exerted by ocean currents, vortexes, the waves
moving the platform and the wind on the oil extraction
structures. Riser vibration induces mechanical stress, pro-
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blems of fatigue and crack propagation, which require ex-
pensive inspections and repairs. Furthermore, the majority
of the crude oil fields is localized in zones prone to extreme
weather such as hurricanes, cyclones, polar storms, etc.
Thus, the installations are always susceptible to structural
damages.

To avoid economic losses and environmental damage,
considering automatic on-line monitoring systems is ne-
cessary in order to estimate structural changes in the
risers, i.e., structural health monitoring systems (SHMs).
Several methodologies have been developed to monitor the
structural conditions of the risers; one of these is the use
of dynamic data—obtained by acceleration and vibration
measurement techniques—which continuously update the
parameters of a structural model. Among these works
one finds Ghanem and Shinozuka (1995), Shinozuka and
Ghanem (1995) and Doebling (1996), which are widely
used—mainly in the case of land structures—to treat the
parameter identification in a linear dynamical context. In
the case of marine risers, however, the parameter identifi-
cation problem must be tackled with nonlinear techniques,
because these systems have a strong nonlinear behavior be-
cause of large displacements of the floating system caused
by the environmental loads. In general, there are several
factors that determine the nonlinear behavior of a riser
modeled by a nonlinear restoring force: (i) the oil flowing
inside the riser and its interaction with the inner walls
which have a constitution that is variant according to
the building materials, (ii) the interaction of the outer
walls with the sea and (iii) the vibration induced vortexes
(VIV).
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In this regard, many identification techniques have been
developed for the identification of nonlinear systems,
which can be classified according to seven categories:
linearization-based methods, time-domain and frequency
domain methods, modal methods, time-frequency analysis,
black-box modeling and structural model updating. The
reader may consult Kerschen et al. (2006) for an over-
view of their application on structural system identifica-
tion. Another option to identify parameters of nonlinear
systems (in the time domain) is the use of state obser-
vers (Busvelle and Gauthier (2002); Jiang et al. (2004);
Besançon and Ţiclea (2007)), which have already been
employed in structural parameter identification, e.g., Lin
and Betti (2004), Garrido et al. (2004), Angeles and
Alvarez-Icaza (2005) and Jiménez-Fabián and Alvarez-
Icaza (2010).

Various works have proposed models for the nonlinear res-
toring force of marine risers, e.g., force-decomposition mo-
dels (Sarpkaya, 2004), single-degree-of-freedom (SDOF)
models (Basu and Vickery, 1983), and wake-body coupled
models. In Panneer-Selvam and Bhattacharyya (2001), the
authors developed an iterative scheme for the identifica-
tion of the hydrodynamic coefficients in a Morison type
model and included in their analysis a nonlinear stiffness
parameter (Duffing coefficient). In Bishop and Hassan
(1964), the authors suggested the use of a Van der Pol
oscillator to describe the time-varying forces. In Violette
et al. (2007), a weak-oscillator model was developed, which
is attached to each node (of the discrete solution) to
simulate the hydrodynamic force in cross-flow direction.

The objective of this paper is to obtain a generalized model
of the nonlinear restoring force of a marine riser using
a pair of polynomials that depend on the velocity and
position variables; the model then provides the following
advantages: (i) the resulting model of the riser, a non-
linear polynomial oscillator, can be put into a Liénard
representation to design state observers, and (ii) choo-
sing high order polynomials to approximate nonlinearities
with non-polynomial nature is possible. Finally, another
contribution in this article is the analysis of observabi-
lity/identifiability of the finite version of the structural
DP model presented in Niedzwecki and Liagre (2003) and
modified here with the inclusion of the nonlinear polyno-
mial restoring force. The finite version in space is achieved
by employing the finite difference method (FDM) and the
Liénard transformation.

The paper is organized as follows. Section 2 presents the
model used to simulate the behavior of a marine riser, its
spatial discretization and its transformation into a Liénard
system. Additionally, several expressions are shown for the
modeling of the restoring force, waves and the hydrody-
namic force. In Section 3, the observability/identifiability
issue is discussed. Finally, results of simulation are pre-
sented in Section 4, and concluding remarks are drawn in
Section 5.

2. RISER PHYSICAL MODEL

In Niedzwecki and Liagre (2003), to estimate the para-
meters of a marine riser, the authors proposed the follo-
wing fourth order quasi-linear partial differential equation

(PDE) describing the riser displacements for an external
excitation u(z, t):

EI
∂4ν(z, t)

∂z4
−T

∂2ν(z, t)

∂z2
+m

∂2ν(z, t)

∂t2
+ c

∂ν(z, t)

∂t
+p(z, t) = u(z, t)

(1)

where (z, t) ∈ (0, L) × (0,∞) are the time and space
coordinates respectively, ν(z, t) is the horizontal displa-
cement of the marine riser, m is the mass per unit, c
is the linear viscous drag coefficient, T is tension, EI is
the bending stiffness, and the term p(z, t) represents a
nonlinear restoring-damping force related to the nonlinear
drag force which depends of time and space. Notice that in
model (1), in order to have a simplified and useful model to
develop identification approaches, the physical properties
as well as the tension are assumed to be uniform along the
length of the riser and time invariant. Indeed, this model
was used in Niedzwecki and Liagre (2003) to elaborate a
frequency domain identification algorithm.
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Fig. 1. Schematic of a marine riser.

2.1 Hydrodynamic force

Hydrodynamic force acting on the risers can be calcula-
ted using a modified Morison’s equation for a cylinder
in motion (Morison et al., 1950). Thus, the horizontal
hydrodynamic force can be expressed as

u(z, t) = ρwCM

πD2

4

∂d(z, t)

∂t
(2)

+
1

2
ρwCDD (V (z, t) − d(z, t)) |V (z, t) − d(z, t)| .

Coefficients intervening in this equation are CM , the iner-
tia coefficient and CD, the drag coefficient. Furthermore,
ρM is the water density, D is the outer marine riser dia-
meter and V (z, t) is the current velocity, whereas d(z, t)
and ∂d(z, t)/∂t are the velocity and acceleration of the
waves, which can be calculated by the following expres-
sions (Wheeler (1970)):

d(z, t) =

∞∑

j=1

Ajωj

cosh(kjz)

sinh(kj l)
cos(ωjt + φj)
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∂d(z, t)

∂t
=

∞∑

j=1

Ajωj

cosh(kjz)

sinh(kj l)
sin(ωjt + φj)

whereAj is the wave component amplitude obtained based
upon a particular random, ωj is the corresponding wave
frequency and φj is the random phase angle assumed to
be uniformly distributed over the interval [0, 2π], and kj is
the wave number and is related to ωj through the linear
dispersion relation for a specified water depth l:

ω2
j = gkj tanh(kj l).

2.2 Nonlinear restoring force

In Niedzwecki and Liagre (2003), the authors suggested
that the nonlinear drag force p(z, t) has polynomial types
of non-linearities. In particular, they proposed a general
non-linear damping-restoring term based upon the combi-
nation of classic Duffing and Van der Pol nonlinearities as
follows:

p(z, t) = k3ν
3(z, t) +

c3

3
ν̇3(z, t) (3)

where k3 is the Duffing coefficient, c3 is the Van der
Pol coefficient and notation ν̇ stands here for partial
derivative with respect to time. This model will also be
considered in the present paper as a reference in order to
assess the performance of the further proposed nonlinear
identification algorithm.

For this identification, a nonlinear restoring force model
composed of two polynomials is presented, which depend
on the position and velocity variables, with orders η and
n respectively:

p(z, t) = a1ν(z, t)ν̇(z, t) + a2ν
2(z, t)ν̇(z, t) + ... (4)

+ aηνη(z, t)ν̇(z, t) + b1ν(z, t) + b2ν
2(z, t) + ...

+ bnνn(z, t).

Thus, the complete model (1) with the force (4), i.e.,

EI
∂4ν(z, t)

∂z4
− T

∂2ν(z, t)

∂z2
+ mν̈(z, t) (5)

+
(
c + a1ν(z, t) + a2ν

2(z, t) + ... + aηνη(z, t)
)

︸ ︷︷ ︸

F0(ν)

ν̇(z, t)

+
(
b1ν(z, t) + b2ν

2(z, t) + ... + bnνn(z, t)
)

︸ ︷︷ ︸

G0(ν)

= u(z, t)

has the form of the equation

mν̈(z, t) + F0(ν)ν̇(z, t) (6)

+

[

G0(ν) + EI
∂4ν(z, t)

∂z4
− T

∂2ν(z, t)

∂z2

]

= u(z, t)

which can be seen as the generalized dynamics that govern
the behavior of a second order mechanical system, with

friction F0(ν) and forces
[

G0(ν) + EI ∂4ν(z,t)
∂z4 − T ∂2ν(z,t)

∂z2

]

of potential functions, called Liénard system (Liénard
(1928)).

2.3 State space representation

System (6) can be rewritten in the classical structure of a
second order system in state space form, namely

ν̇1 = ν2 (7)

ν̇2 =
1

m

[

−EI
∂4ν1

∂z4
+ T

∂2ν1

∂z2
− F0(ν)ν2 − G0(ν) + u(z, t)

]

where ν1 = ν(z, t), ν2 = ν̇(z, t) and ν̇2 = ν̈(z, t).

Now since F0 and G0 are linear with respect to their
parameters as F0(ν) = FT

1 (ν)θ and G0(ν) = GT
1 (ν)θ,

with θ denoting the vector of parameters, the Liénard
transformation can be applied as:

x1 = ν(z, t); x2 = ν̇(z, t) +
1

m

∫ ν

0

FT
1 (σ)θdσ,

obtaining as a result

ẋ1 = x2 −
1

m

∫ x1

0

FT
1 (σ)dσθ

ẋ2 = −
1

m

[

GT
1 (x1)θ + EI

∂4x1

∂z4
− T

∂2x1

∂z2
− u(z, t)

]

(8)

that is:

ẋ1 = x2 −
1

m

[

cx1 +
a1x

2
1

2
+

a2x
3
1

3
+ ... +

aηxη+1
1

η + 1

]

ẋ2 = −
1

m

[

EI
∂4x1

∂z4
− T

∂2x1

∂z2
+ b1x1 + b2x

2
1 (9)

+... + bnxn
1 − u(z, t)]

The PDE system (9) does not have an explicit solution.
Hence, using the FDM is proposed to obtain an approxi-
mation for it, yielding for each discretization section a
representation

ẋ1i = x2i −
1

m

(

cx1i +
a1x

2
1i

2
+

a2x
3
1i

3
+ ... +

aηxη+1
1i

η + 1

)

ẋ2i = −
1

m

(
EIΛi − TΥi + b1x1i + b2x

2
1i (10)

+... + bnxn
1i − ui)

where i = 1, ..., N is the index of a discretization section,
and N is the number of sections,

Λi =

(
x1(i+2) − 4x1(i+1) + 6x1(i) − 4x1(i−1) + x1(i−2)

(∆z)4

)

,

Υi =

(
x1(i+1) − 2x1(i) + x1(i−1)

(∆z)2

)

and ui is the discretized hydrodynamic force at section i.

Considering that displacement measurements are available
over various sections, an output equation of the form:

yi = x1i (11)

can be appended to (10), and terms Λi, Υi can be assumed
to be functions of measurements y.

Similarly to the work presented in Fortaleza (2009), in
this work the boundary conditions are ν(L, t) = q(t)
(riser top), ν(0, t) = 0 (riser bottom-end fixed) and
(∂ν/∂z)(L, t) = (∂ν/∂z)(0, t) = 0) (rigidity condition
at the fixation point)—where q(t) is the function of the
platform movement—for a riser with both extremities
connected to fixed supports.

3. OBSERVABILITY AND IDENTIFIABILITY

On the one hand, the identification problem is closely rela-
ted to an appropriate excitation condition with the choice
of an identification algorithm. There are many difficulties
in generalizing these conditions for nonlinear systems; ho-
wever, these have been studied in the literature obtaining
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conditions for some classes of nonlinear systems (Sastry
and Bodson, 1989; Hammouri and Morales, 1990; Be-
sançon et al., 1996). On the other hand, the identification
problem represents the generalization of the observation
problem. Occasionally physical behaviors are unknown but
can be determined by employing measurements and identi-
fication techniques. A clear example is the nonlinear force
identification of a marine riser; although there are models
for it (e.g. Niedzwecki and Liagre (2003)), this force is
generally unknown. Therefore, there is a real necessity for
using nonlinear identification techniques to approximate
it.

The identification problem of an unknown function can be
formulated by considering the following general form of a
nonlinear system:

ẋ = f(x, u, ϕ(θ, x, u)) (12)

y = h(x, u, ϕ(θ, x, u))

where x is the state vector, ϕ(x, u, θ) is the unknown func-
tion, θ represents an unknown state vector that characte-
rizes the unknown function and y is the measurements’
vector.

Thus, the identification problem can be reduced to re-
construct the function ϕ(·). This can be expanded, howe-
ver, when the observation problem is associated for two
reasons: (i) Suppose that the vector x(0) is unknown.
Then, the identification problem includes a problem of
observation: one must estimate both x and ϕ(·). (ii) The
identification topic requires an identifiability study, which
is closely connected to the observability analysis, particu-
larity when the identification techniques are based on state
observers.

In Besançon et al. (2010) a state observer has been
proposed for a Liénard system, because this kind of system
can be put into a state-affine representation. Therefore,
in the present work we propose the restoring force (4)
that permits the transformation of system (5) into the
Liénard system (10) through the transformation (8). In
turn, the system (10) can be converted into a state-affine
representation; see Besançon and Voda (2010).

Note that acceleration variables are not included in (4),
because their inclusion would not allow the Liénard trans-
formation.

Now, in order to analyze the properties of observabi-
lity/identifiability of model (10)-(11) to design an observer
that gives estimates of the states and the parameters, let
us rewrite it as (where the section index is omitted):

ẋ = Aox + Φ(y)θ + Φo(y)

y = Cox (13)

with

Ao =

(
0 1
0 0

)

, Co = ( 1 0 ) , y = x1, x = [x1, x2]
T ,

Φ(y) = −
1

m





y2

2
. . .

yη+1

η + 1
0 . . . 0

0 . . . 0 y . . . yn



 (14)

θ = [a1, ..., aη|b1, ..., bn]T

and

Φo(y) = −
1

m

[
cy

EIΛ − TΥ

]

.

Note that matrix Φ(y) can not be constructed from the
system (7), i.e. without the Liénard transformation, be-
cause the polynomial a1x1 + a2x

2
1 + ... + aηxη

1 and the
coefficient c are affine to the velocity x2, which is not a
measurable state for estimation. Obviously if the velocity
is measurable, there is not an observation problem, only
an identification problem.

Now, let us consider the following persistent excitation
condition in function of y(t):

∃T, β′ > 0, α′ > 0 :

β′ ≥

∫ t+T

t

ΨT
y (τ, t)CT CΨy(τ, t)dτ ≥ α′I, ∀t ≥ t0,

(15)
where Ψy denotes the transition matrix (as in Besançon
(2007)).

Proposition 1. Assume that for any initialization of sys-
tem (13), the condition (15) is satisfied; the parameter
vector θ of system (13) can be then asymptotically esti-
mated.

This result follows from a convergence condition for Kal-
man observers designed for state-affine systems (Ham-
mouri and Morales (1990) and Besançon et al. (1996)).

Note that as demonstrated in Besançon et al. (2006) this
condition is satisfied as soon as separate conditions for
estimation of the state, on the one hand, and estimation
of parameters, on the other hand, hold true. Similarly
to the analysis of Besançon et al. (2010) and Besançon
and Voda (2010), the condition for the estimation of the
state is here obviously satisfied as well (A0, Co observable),
and consequently satisfying (15) reduces to satisfying a
condition for the parameter estimation.

Following Besançon et al. (2006) and Zhang (2002) such a
condition can be expressed as

Υ solution of Υ̇ = (Ao − KCo)Υ + Φ(y) for any K such
that Ao − KCo is stable, if satisfies

βI ≥

∫ t+T

t

ΥT (τ)CT
o CoΥ(τ)dτ ≥ αI. (16)

In that case, one can design an observer for estimation of
both θ and x for instance as proposed in Zhang (2002) as

˙̂x = Ax̂ + Φ(y, u)θ̂ + (K + ΛΓΛT CT )(y − Cx̂)

Λ̇ = (A − KC)Λ + Φ(y, u) (17)

θ̇ = ΓΛT CT (y − Cx̂).

Owing to the existence of periodic solutions in Liénard
systems (see e.g. Abd-Elrady et al. (2004)), one can expect
that (16) will indeed be satisfied for system (13).

4. SIMULATION RESULTS

In order to program the simulator—the dynamic behavior
of the riser—based on model (1), the physical parameters
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listed in Table 1 are considered. The order of the spatial
discretization is n = 50 sections, and the initial conditions
are assumed to be [ν(i), ν̇(i)]T = [0, 0]T . In Fig. 2, the

Table 1. Physical parameters of the riser simu-
lator

Parameters Units Values

Diameter [m] 1.4

Riser Length [m] 873

Mass per unit length [kg/m] 912

Linear viscous drag coefficient [Ns/m] 120

Duffing coefficient [N/m3] 8000

Van der Pol coefficient [N/m3] 5000

Tension [N ] 7 × 106

Bending stiffness [Nm2] 107

Inertia coefficient - 1.05

Drag coefficient - 1.2

Water Density [Kg/m3] 1,025

Current velocity [m/s] 1.2

response of the riser when the platform oscillates periodi-
cally can be appreciated. In this case, the movement of the
platform is given by the function q(t) = 2 sin 0.05t×sin0.1t
[m] In order to evaluate the proposition of some restoring

Fig. 2. Response of the riser with periodic movements of
the platform.

force (4) to approximate a real unknown force, an observer
with structure (17) was designed considering the following
factors: (i) the unknown ’real force’ was modeled by (3),
(ii) the orders in the polynomials of the restoring force
were chosen η = n = 2, and (iii) given the order of the
polynomials, the coefficients to be estimated are a1, a2, b1

y b2. In Fig. 3, the parameter estimation is exposed. Note
that estimations converge to oscillating values since the
estimated coefficients are not the coefficients employed to
simulate the ’real force’ in this test, i.e., model (5) with
(3). Nevertheless, a mean ( ¯ ) of the sustained oscillations
can be computed once these have converged. Each mean
can be employed to parameterize the unknown restoring
force. In Fig. (4), both the estimated and ’real’ simulated
restoring force at some section i are shown. To obtain a
better approximation, the order of the polynomial should
be modified. For most structural mechanic systems, odd
polynomials are a suitable choice (e.g. third order models
without second order terms). In general, not all the terms

are significant; and a selection can be made by simply che-
cking the relative influence of each term by a preliminary
identification and by retaining the most important ones
(Ceravolo et al. (2013)).
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Fig. 3. Estimation of a1, a2, b1 and b2.
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Fig. 4. Estimation of the restoring force.

5. CONCLUSION

This paper introduced a nonlinear restoring model for
vertical risers based on polynomial functions. Such a resto-
ring model permits the transformation of the riser model
into a Liénard representation, which is suitable for the
conception of observers that identify structural parameters
or the riser restoring force when its physical model is not
available. Although the identification technique presented
here has been employed in a specific application, it can be
extended for being applied in other mechanical systems;
but with the caveat that a polynomial model should be
used for small nonlinearities or as a ”first trial” when a
pertinent parametric model is unknown. Finally, in future
works, the use of the presented approach would be interes-
ting in developing schemes for the detection of structural
damages.
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