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Abstract: The problem of controller synthesis in a fixed time interval for discrete-time switching Markov 
jump systems is dealt with in this paper. Compared with the existing results, the new proposed 
stabilization conditions are obtained by permitting the stochastic Lyapunov energy function to rise at each 
switching instant, but the switching signal is constraint by an average dwell time. Finally, the validity of 
the obtained results is demonstrated with an example. 

 

1. INTRODUCTION 

As an important institution of hybrid systems, Markov jump 
linear systems (MJLSs) have been widely investigated in the 
past few decades because they are very appropriate to model 
the physical systems with variable structures, which are 
caused by the stochastic abrupt changes such as component 
failure and parameters shifting, etc. Due to the existence of 
randomness, undesirable performance of MJLS can’t be 
avoid. In order to make the dynamic of the system more 
controllable and optimize the system performance, a 
deterministic switching signal can be imposed on MJLSs. 
That is to say, the system has a hierarchical configuration, the 
MJLSs are to be controlled within it, the switching happens 
when the supervisor choose an appropriate controller among 
a finite number of alternatives. This hierarchical system is 
dubbed as switching MJLSs, and was firstly presented in 
(Bolzern, Colaneri & Nicolao, 2010). Some basic issues 
about MJLSs or switched systems have achieved lots of 
results (Feng, Loparo, Ji & Chizeck, 1992; Zhai, Hu, Yasuda 
& Michel,2001; Costa, Fragoso & Marques, 2005; Geromel 
&Colaneri, 2006; Shi, Xia, Liu & Ree, 2006; Zhang, Boukas 
& Lam, 2008; Luan, Liu & Shi, 2010; Luan, Zhao & Liu, 
2013)respectively, but systems with both  deterministic 
switching and stochastic jumps haven’t gained much 
attention. The mean square stability and almost sure stability 
of continuous-time switching MJLSs have been analized in 
(Bolzern, Colaneri & Nicolao, 2010; Bolzern, Colaneri & 
Nicolao, 2013). Reference (Hou, Zong & Zheng, 2013) dealt 
with the exponential l2-l∞ stochastic stability problem and an 
l2-l∞ controller was designed for discrete-time switching 
MJLSs. 

Up to now, most of the works about switching MJLSs relate 
to stability are defined over an infinite time interval, where 
the states of the systems converge to zero when time towards 
infinity. However, in many practical applications, such as 
aerospace control system, robot control system (see Weiss & 
Infante, 1967 and references there in), more attention should 
be paid on their behaviors over a fixed finite-time interval. 
Therefore, the definition of finite-time stability (FTS) was 

proposed by (Dorato, 1961) and the concept of FTS has been 
further extended to finite-time boundedness (FTB) (Amato, 
Ariola & Dorato, 2001; Amato & Ariola, 2005) when system 
possesses bounded exogneous disturbance. Then, a lot of 
results have been obtained for finite-time control problems 
particularly in recent years owning to the convenience of 
solving the linear matrix inequalities. The finite-time stability 
and control problems for switched systems and MJLS can be 
seen in (Moulay, Dambrine, Yeganefar & Perruquetti, 2008; 
Amato, Ambrosino & Ariola, 2009; Luan, Shi & Liu, 2010; 
Luan, Shi & Liu, 2013; Lin, Du & Li, 2011; Liu & Shen, 
2011; Zhang, Feng & Sun, 2012). As far as we know, there 
has no result available yet on analysis control problems for 
switching MJLSs in the view of finite time, which motives 
our research.  

The objective of this paper is to discuss the finite-time 
boundedness and stabilization problems for a class of hybrid 
systems subject to both stochastic jumps and deterministic 
switches. Some sufficient conditions in the form of liner 
matrix inequality for FTB and finite-time stabilization are 
established under an average dwell-time constraint on the 
switching signal. 

2. PRELIMINARIES AND PROBLEM FORMULATION 

Consider the system structure of discrete-time switching 
MJLS is as follows: 

( 1) ( , ) ( ) ( , ) (k k k k )x k = A r x k B r u kσ σ+ +  

                             k k( , ) ( )wB r w kσ+                                 (1)                 

where ( ) nx k R∈  is the state variable, is the 

control input, 

( ) pu k R∈

[ )2( ) 0qw k l∈ +∞ is the exogenous 
disturbances satisfying  

2 2
2

0

N

k k
k

w w wΤ

=

⎡ ⎤ h= <⎢ ⎥
⎣ ⎦
∑                                  (2) 

     

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 11123



 
 

 

kr  is the deterministic switching signal belonging to a fixed 

set {1,2, , }M=M , kσ  is stochastic jumps belonging to 

, and the transition probabilities (TP) 
satisfying   

{1,2, }S= ⋅⋅⋅,S

1Pr{ , }k k k ijj i r ασ σ α π+ = = = =        (3) 

where ij
απ is the transition probabilities from mode to 

mode

i
j under switching signal kr α=  that satisfies 

1
0, 1,  ,

j

S

ij ij i jα απ π
=

≥ = ∀∑ S∈ . 

To simplify the denotation, when at times of k, kr α= , 

α ∈M , k iσ = , i , the system matrices can be denoted 
by  

∈S

,( , )=k k iA r Aασ , ,(r , )=k k iB Bασ , ,( , )w k k w iB r B ασ =  

For system (1), the state-feedback controller can be 
constructed as: 

( ) ( , ) ( )k ku k K r x kσ=                           (4) 

When kr α= and k iσ = , we have . Then 
the resulting closed-loop switching MJLS becomes 

,( ) ( )iu k K x kα=

, ,( 1) ( ) (i w i )x k + = A x k + B w kα α                 (5) 

Where 

, , ,i i i ,iA A + B Kα α α α=  

Before deducing our main results, the following definitions 
and lemmas will be introduced, which are needed for the 
derivation of the theorems. 

Definition 1 (Amato, Ariola & Dorato, 2001). The switching 
MJLS (1) with is said to be stochastic FTB with 

respect to , where , , 

 if 

( ) 0u k =

1 2( )c c N R h 1 20 c c< < 0N >
0R >

{ }2 2
1 2(0) (0 ( ) ( ,x Rx c Ε x k Rx k cΤ Τ) ≤ ⇒ ) <

N
 

                                                     (6) {1,2 }.k ∈ ⋅⋅⋅
Definition 2 (Amato, Ariola & Dorato, 2001). The switching 
MJLS (1) is said to be stochastic finite-time stabilization with 
respect to , where , , 

if system (5) is stochastic FTB with the controller like 
(4).  

1 2( )c c N R h 1 20 c c< < N > 0
0R >

Definition 3. For a switching signal and any , 

let be the switching numbers of from to . If 

for any given and

kr 0k k>

0( , )aN k k kr 0k k

0 0N > 0aτ > satisfied 

0 0 0( , ) ( ) /a aN k k N k k τ≤ + − , then aτ and are called 

average dwell time and chatter bound, respectively. As used 
usually in the references, here we choose . 

0N

0 0N =

Lemma 1 (Zong, Hou & Wu, 2011). For the positive define 
matrix and the matrix with compatible dimensions, 
the following inequality is established: 

0M > N

1NM N M N N− Τ Τ− ≤ − −     (7) 

3. MAIN RESULTS 

The stochastic FTB criterion for switching MJLS (1) is 
developed firstly, then we designed a state feedback 
controller such that system (1) is stochastic finite-time 
stabilization based on linear matrix inequalities. 

Theorem 1. For given scalars δ ≥ 1and 1μ > , the discrete-
time switching MJLS (1) is stochastic FTB with respect to 

, if there exist a set of positive-definite 

matrices 
1 2(c c N R h)

, ,0 0, ,,i iP G iα α α> > ∈M ∈S  such that the 
following inequalities hold: 

   
T T

, , , , , , ,
T

, , , ,

0i i i i i i w i

w i i w i i

A P A P A P B
B P B G

α α α α α α α

α α α α

μ⎡ ⎤−
<⎢ ⎥∗ −⎣ ⎦

  (8) 

                                             ,iP δP ,iα β≤                             (9) 

2Δ < Δ1                            (10) 

with average dwell time satisfying 

1 2

ln
ln lna a

N δτ τ ∗>
Δ − Δ

=              (11) 

Where 

, ,
1

i ij j
j

S
P Pα

απ
=

= ∑ ,α
1 2 1 2

, ,i iP R P Rα α
− −=

2 2
2 , 1 ,,i ,imax maxmax ) max ( )(N

i iP c G hα αα α
μ

∈ ∈ ∈ ∈

 

2
1 2 ,,i min=c min ( )iPαα∈ ∈

Δ λ
M S

 

⎡ ⎤Δ = λ + λ⎢ ⎥⎦M S M S

,iα

 
⎣

Proof. Choose the stochastic Lyapunov function as follows: 
T

, ( ) ( ) ( )iV k x k P x kα =                (12) 

From conditions (8), one has 

{ } T
, , , ,( 1) ( ) ( ) ( ) (j i i iE V k V k V k w k G w kα α α αμ+ ⎪ < + )  

T
, ,,i max( ) max ( ) ( ) ( )i iV k G w k w kα αα

μ
∈ ∈

≤ + λ
M S

    (13) 

Assuming that are the switching instants, 

and is the latest switching instant, then for the same 
switching mode, formula (13) gives  

1 2, , ,l l lk k k− −

lk
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{ } 1

T
,,i

1 T
,,i

max

1

max

( , , ) ( , , 1)

max ( ) ( 1) ( 1)

( , , )

max ( ) ( ) ( )

l l

l

l l

l

k k k k

i

k k
k k l

k
i

k

k

E V k V k

G w k w k

V k

G w

r r

r

αα

θ
αα θ

σ μ σ

μ σ

wμ θ θ

−

∈ ∈

−

− −

∈ ∈

−

=

< −

+ λ − −

<

+ λ ∑

M S

M S

(14) 
Similar as (14), one has 

{ }1

1

1

1 1

1

1

T
,,i

1

T
,,i

max

1
1

max

( , , )

( , , 1)

max ( ) ( 1) ( 1)

( , , )

max ( ) ( ) ( )

l l

l l

l l

l l

l
l

l

k k l

k k l

i l l

k k
k k l

i

k
k

k

E V r k

V k

G w k w k

V r k

G w

r

αα

αα

θ

θ

σ

μ σ

μ σ

wμ θ θ

−

−

−

− −

−

−

∈ ∈

−
−

∈ ∈

−
− −

=

< −

+ λ − −

<

+ λ ∑

M S

M S

  

From the above two formulas and condition (9), it yields 

{ }
1 T

,,i

1

max

( , , ) ( , , )

max ( ) ( ) ( )

l

l l l

l

k k
k k k k l

k
i

k

k

E V k V k

G w

r r

θ
αα θ

σ μ σ

wμ θ θ

−

− −

∈ ∈

−

=

<

+ λ ∑M S

 

1

1 1

1

1

1 T
,,i

1 T
,,i

1

max

1

max

( , , )

max ( ) ( ) ( )

max ( ) ( ) ( )

l

l l

l

l

l

k k
k k l

k
i

k
i

k

k

k

k

V r k

G w

G w w

θ
αα

θ
αα

θ

θ

δμ σ

wδ μ θ

μ θ θ

−

− −

−

−
−

− −

∈ ∈

− −

∈ ∈

−

=

−

=

<

+ λ

+ λ

∑

∑

M S

M S

θ

,λ

+ ⋅⋅⋅

 

0

0 0

1

0

0 ,i

1 T

max

1

( , , ) max ( )

( ) ( )

a

a

N k k
k k i

N k
k

k

V r k G

w w

αα

θ

θ

δ μ σ

δ μ θ θ

−

∈ ∈

− −
−

=

< +

⎡
⎢
⎢⎣

∑

M S

 

      
2

1

1 1 T
1

( ) ( )aN k
k

k
w wθ

θ
δ μ θ θ− − −

−

=
+ ∑  

0 1 T
1

( ) ( )
l

k
k

k
w wθ

θ
δ μ θ− −

−

=

⎤
+ ⎥

⎦
∑ θ  

0 0

0

0

0 0 0

1 T
,,i max

( , , )

max ( ) ( ) ( )

a

a

k k k k
k k

k k k
i

k

k

V r k

G w

τ

τ θ
αα θ

δ μ σ

wδ μ θ

− −

− − −

∈ ∈ =

<

+ λ ∑M S
θ

     

2
0 0 0 ,,i max( , , ) max ( )aN N

k k iV r k G hτ
αα

δ μ σ
∈ ∈

⎡ ⎤< + λ⎢ ⎥⎣ ⎦M S
(15) 

Note that 

0 0 0 0

T
0 0 0 0

T
, 0,i max

( , , ) ( ) ( , , ) ( )

max ) ( ) ( )(
k k k k

i

V k x k P k x k

P x k Rx k

r r

αα

σ σ

∈ ∈

=

< λ
M S 0

  

                                                 (16) 2
, 1,i maxmax )( iP cαα∈ ∈

< λ
M S

On the other hand 

{ } T
, ,,i min( ) min ) ( ) ( )(i iE V k P x k Rx kα αα∈ ∈

> λ
M S

   (17) 

Therefore 

{ }T

2 2
, 1 ,,i ,i

,,i

max max

min

( ) ( )

( max ) max ( ) )

min )

(

(

aN N
i i

i

E x k Rx k

P c G h

P

τ
α αα α

αα

δ μ
∈ ∈ ∈ ∈

∈ ∈

λ + λ
<

λ
M S M S

M S

(18) 
Define 

2
2 ,,i

2 2
, 1 ,,i ,i

min

max max

c min ( )

[ max ) max ( )(
i

N
i i

P

μ P c G h
α

α αα α

α∈ ∈

∈ ∈ ∈ ∈

λ
Ψ =

λ + λ
M S

M S M S
]

 

From the conditions (10) and (11), we can get 

1, aN τδΨ > < Ψ  

which means 

{ }T 2
2( ) ( )E x k Rx k c<  

Thus, the proof is completed. 

Remark 1. Concerning the existence of both stochastic 
jumps and deterministic switching, we first gained the impact 
of jumping and switching signals on Lyapunov function 
recurrence from instant to , then the fundamental 

Lyapunov function relation between time to 0 is derived, 
which forms the basis for guaranteeing FTB condition. 

lk 1lk −

k

Remark 2. With the proposed average dwell time approach, 
the Lyapunov function energy can be allowed to increase at 
each switching instant, which leads to less conservativeness 
compared with other methods. Nevertheless, the switching 
frequency should be moderate, which is constrained with 
condition (11), or the state trajectory of the system will 
exceed the given bound .  2c

Theorem 2. The system (1) is stochastic finite-time 
stabilizable through controller (4) with respect to given 

 and 1 2( )c c N R h δ ≥ 1, μ > 1  if there exist a set of 

matrices , , , 0iXα > , 0iGα > ,iYα  ( , iα ∈ ∈M S ) such 
that  
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,

, ,

, 0

0
i

i i

iX M

G L
X

α

α α

α

αμ Τ

Τ

⎡−
⎢ ⎥

∗ − <⎢ ⎥
⎢ ∗ ∗ −⎣ ⎦

⎤

⎥
               (19) 

, ,, 1
1

,1

,

2

0

s

ij i i is ij i
j

s

X X X X

X

X

β α
α αβ

α

α

δ π δ π π
=

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥∗ −
⎢ ⎥

∗ ∗⎢ ⎥
⎢ ⎥∗ ∗ ∗ −⎣ ⎦

∑ ,
α

α

      

         0, ,α β≤ ∈M andα β≠                  (20) 
2 2
2 2 1

1

0
Nc h cμ λ

λ

−⎡ ⎤− +
<⎢ ⎥∗ −⎣ ⎦

                    (21) 

1 2 1 2
1 ,iI R X R Ιαλ < <

I
                         (22) 

, 20 iGα λ< <                               (23) 

with average dwell time satisfying 

( )2 2 2
2 1 1 2

ln
ln ln /a aN

N
c c h

δτ τ
μ λ λ

∗
−

> =
− +

         (24) 

Where 

T T T
, 1 , 2 ,i i i i i iS

T
,iM A A Aα α α

α α απ π π⎡ ⎤= ⋅⋅⋅⎣ ⎦α  

T T
, , , , ,( )i i i i iA A X B Yα α α α α= +  

 T T T
, 1 , 2 ,i i w i i w i iS wL B B Bα α α

α α απ π π⎡ ⎤= ⋅⋅⋅⎣
T

,iα

α

,i

⎦  

,1 ,2 ,{ }SX diag X X Xα α α= ⋅⋅⋅  

Solving the above inequalities, then the controller can be 
constructed as 1

, ,i iK Y Xα α α
−= . 

Proof. Using Schur complement, inequality (8) is equivalent 
to 

                                (25) 

,

, ,
1

, 0

0
i

i i

iP M

G L
P

α

α α

α

αμ Τ

Τ

−

⎡ ⎤−
⎢

∗ − <⎢ ⎥
⎢ ∗ ∗ −⎣ ⎦

⎥

⎥

where  

T T T
1, 1 , 2 , ,i i i i i iSM A Aα α α

α απ π π⎡ ⎤= ⋅⋅⋅⎣ ⎦
T

iAα

α⋅

 

 ,1 ,2 ,{ }SP diag P P Pα α α= ⋅⋅
Consider the state-feedback controller (4), replacing 

,iAα by , ,i iA B K ,iα α α+ and performing a congruence to (25) 

by diag and denoting 1
,{ , , }iP I Iα

− 1
, ,i iX Pα α

−= , 

, ,i iY K X ,iα α α= , we can get LMI (19).  

Inequality (24) can be written as 

, 1

1
,1

1
,

1

0 0

j i iS

S

S

ij
j

P

P

P

α α
β

α

α

βδ π π π

−

−

=

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥∗ − ≤
⎢ ⎥

∗ ∗⎢ ⎥
⎢ ⎥∗ ∗ ∗ −⎣ ⎦

∑
       (26) 

Post and pre multiplying to (26) by diag 1
,{ , , ,iP I Iα

− }⋅ ⋅ ⋅ , 
which leads to 

, , , 1 , ,

,1

,

1

0

i j i i i iS i

S

S

ij
j

X P X X X

X

X

α α
α β α α α

α

α

βδ π π π
=

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥∗ −
⎢ ⎥

∗ ∗⎢ ⎥
⎢ ⎥∗ ∗ ∗ −⎣ ⎦

∑
 

                                     0≤        (27) 
Based on Lemma 1, we have 

, , , , ,2i j i j iX P X X Xα β α β α− ≤ −  

Then 

, , , , ,
11

2i j i j
j

S

ij ij
j

S

iX P X X Xα β α β α
β βδ π δ δπ

==
− ≤∑ ∑ −  (28) 

Formulas (27) and (28) lead to LMI (20) in Theorem 1. 

On the other hand, we consider 

,,i
,,i

min
max

1min )
max )

(
(i

i

P
Xαα

αα
∈ ∈

∈ ∈

λ =
λM S

M S

 

,,i
,,i

max
min

1max )
min )

(
(i

i

P
Xαα

αα
∈ ∈

∈ ∈

λ =
λM S

M S

 

where 1 1 2 1
, , ,i i i

2X P R X Rα α α
−= = . 

From (22) and (23), one has 

, 1,i minmin )( iXαα
λ

∈ ∈
λ >

M S
, ,,,i maxmax )( iXαα∈ ∈

λ <
M S

1

, 2,i maxmax )( iGαα
λ

∈ ∈
λ <

M S
. 

Then (11) can be guaranteed by 
2 2
2 1 1/Nc c 2

2hμ λ λ− > +  

Which, by Schur complementary, can be further turned to 
(21). Using matrix eigenvalue constraint, the dwell time 
constrain in theorem 1can be guaranteed by (24). 

4. NUMERICAL EXAMPLE 
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In this subsection, one simulation is used to show the 
obtained controller can make the finite-time unstably free 
system finite-time stabilizable, which means the validity of 
our approach. Consider switching MJLS with 

, and the following system parameters: 2, 3M S= =

MJLS 1: 

1,1 1,2

1 0.4 0 0.26
,

2 0.81 0.9 1.13
A A

− −⎡ ⎤ ⎡
= =⎢ ⎥ ⎢

⎣ ⎦ ⎣

⎤
⎥
⎦

 

1,3

0.2 1.1
0.2 0.4

A
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, [ ]1,1
T1 1B = , [ ]1,2

T1 1B =  

[ ]1,3
T2 1B = − , [ ]1,1

T0.4 0.3wB = −  

[ ] [ ]1,2 1,3
T0.2 0.26 , 0.5 0.3w wB B= = T−  

The TP matrix is given as follows: 

1

0.3 0.6 0.1
0.2 0.5 0.3
0.2 0.2 0.6

⎡ ⎤
⎢ ⎥Π = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

MJLS 2: 

2,1

1 0.05
0.4 0.72

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
,

 

2,2

0.8 0.8
0.6 1

A ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

2,3

0.3 0.6
0.4 0.34

A
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

2,1 1,1 2,2 1,2 2,3 1,3, , B B B B B B= = =  

2,1 1,1 2,2 1,2 2,3 1,3,  ,  w w w w w wB B B B B B= = =  

The TP matrix is given as follows: 

2

0.5 0.2 0.3
0.7 0.1 0.2
0.2 0.6 0.2

⎡ ⎤
⎢ ⎥Π = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Letting ,2
2 5c = 2R I= , , ,10N = 2 0.5h = 1.01μ = ,

= 1.2δ and by solving the matrix inequalities in Theorem 2, 
the corresponding controller can be derived: 

[ ]1,1 1.5019 0.2073K = − −

[ ]1,2 0.4674 0.4619K = − −  

[ ]1,3 0.0421 0.5210K = −

[ ]2,1 0.7078 0.3763K = −  

[ ]2,2 0.6965 0.9035K = − −   

[ ]2,3 0.1996 0.1730K = −  

with 1 0.6197λ = , 2 1.7096λ = . Then according to (24), 
the minimum average dwell time is calculated as 

, so we choose the average dwell time 

 satisfying 

* 3.0052aτ =

3.1aτ = *
a aτ τ> , then we can orchestrate 3 

times switching in 10 steps. 
For the purpose of facilitate comparison, we will analyze the 
state trajectory of the free system (1) with ( ) 0u k =  and the 
controlled system with controller (4). The initial state, initial 
mode and disturbance signal are taken as 

[ ]0 0.5 0.7x Τ= , 0 1r = , 0 1σ =  and  ( ) 0.6 kw k e−=  
respectively. Figure 1 shows the jump modes and switching 
signal. The state trajectories of the free and controlled MJLS 
(1) are drawn in Figure 2 and Figure 3. It is obvious that the 
state trajectory of free system exceeds the given bound , 
hence the original free system is not stochastic FTB. 
However, with the designed controller (4), the state trajectory 
of stabilized system is limited in the region. 

2c

0 1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time step

ju
m

pi
ng

 m
od

es

0 5 10

1

2

time step

sw
itc

hi
ng

 s
ig

na
l

 
Fig.1. Jump modes and switching signal 
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Fig.2. Trajectory of free system 
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Fig.3. Trajectory of stabilized system 
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5. CONCLUSIONS 

The control synthesis problems for discrete-time switching 
MJLSs in a finite time interval are studied here. The results 
guaranteeing finite-time boundedness have been provided 
firstly, then the state feedback controllers are designed such 
that the corresponding closed-loop system is finite-time 
bounded, finally one example is illustrated to show the 
validity of the obtained controllers in the end. 
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